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A B S T R A C T

A comparative analysis of the Czjzek's and Maurer's models of the joint distribution density of NMR quadrupole
parameters has been carried out in view of their application to account for spectra broadening induced by local
disorder in crystals. As an example of such an application, we have considered Magic Angle Spinning NMR of
11B and 71Ga isotopes in polycrystalline gallium borate. Computer simulations carried out using both models
unambiguously show that in the case of low local disorder the Maurer's model, in contrast to the Czjzek's model,
provides satisfactory fits to experimental NMR spectra.

1. Introduction

Extracting meaningful physical information from Nuclear Magnetic
Resonance (NMR) spectra requires accurate computer simulations.
Fitting to experimental NMR spectra usually allows estimating chemi
cal shifts and quadrupole parameters [1,2]. However, the existence of
disorder in the environment of magnetic (with nuclear spin I ≠ 0), in
particular, quadrupolar I( > )1

2 nuclei manifests itself in broadening of
the spectra. As a consequence, relative amplitudes and widths of
spectra features can be satisfactorily fitted to only if local disorder is
explicitly taken into account in the simulation code, allowing for
statistical distributions of the NMR parameters, in particular of the
quadrupole parameters related to components of the electric field
gradient (EFG) tensor.

From the viewpoint of the magnetic resonance (both electronic and
nuclear) spectroscopist, different degrees of local disorder give rise to
more or less broad distributions of relevant spectroscopic parameters.
Therefore, in most cases, the degree of disorder can be defined with
respect to the ratio distribution width/mean value of the most
representative parameters. Typically, low local disorder occurs in high
quality crystals possessing low concentrations of structure defects [3]
while high local disorder is observed in non crystalline, in particular
glassy solids [4] as well as in crystals with highly flawed structure [5,6].
In what follows, we shall refer to low and high degree of disorder in
accordance with the above mentioned criterion.

The issue of the distribution of the quadrupole parameters was first

raised by Czjzek in the framework of a random packing model of
amorphous materials [7,8]. As far as the quadrupole parameters are
related to components of the EFG tensor, Czjzek et al. suggested a joint
distribution density (JDD) of these parameters. Later, Le Caër and
Brand [9] have provided a more general justification of the Czjzek's
JDD; indeed, they have shown that it holds if all components of the
EFG (in NMR) or of the quadrupole fine structure (in Electron
Paramagnetic Resonance, EPR) tensor are subjected to normal
(Gaussian) random distributions. The Czjzek's JDD has been exten
sively used in both NMR and EPR studies of non crystalline materials
[10 12] and also applied to simulate NMR spectra of some crystals
with high degree of local disorder [5]. Yet, the major drawback of this
JDD is to completely disregard symmetry and local structure persisting
to a certain extent in crystals with low degree of disorder.

With the aim to describe a randomly distorted structure preserving,
to a certain extent, local ordering, a more elaborated JDD of the
quadrupole parameters has been suggested by Maurer [13] and Le Caër
and Brand [9]. For brevity, we refer to this JDD as the Maurer's model,
although Le Caër and Brand have provided a more detailed theoretical
analysis thereof. Interestingly, a similar model has been put forward to
describe the JDD of nanoparticle size and shape distribution [14].

The aim of the present work is to evaluate the applicability of the
Czjzek's and Maurer's JDDs to NMR studies of only slightly disordered
crystals. As an example, we have treated the NMR Magic Angle
Spinning (MAS) spectra of 11B and 71Ga nuclei in GaBO3 crystals. A
special computer simulation code has been put forward in order to test
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different JDDs. Indeed, the available NMR simulation programs, e.g.,
GAMMA, SIMPSON, Winfit, STARS, Wsolids, QUASAR, QuadFit and
DMFit, either do not at all take into account the distributions of the
NMR parameters or, at best, allow calculations only with “standard”
JDDs (e.g. Gauss in DMfit and QuadFit or Czjzek's in QuadFit) [15
23].

2. Comparative analysis of Czjzek's and Maurer's models

2.1. General characteristics

The EFG is described by a second rank tensor V with principal
components V V V, andx y z subjected to the restriction that
V V V+ + = 0x y z [1]. In choosing the principal axes of V , the convention
V V V⩾ ⩾z y x is usually applied. The “asymmetry parameter” η is
defined as [1].

η
V V

V
=

−
,x y

z (1)

so that η remains confined within the range η0 ⩽ ⩽ 1. For η = 0,
i.e. V V=x y, one deals with axial distortion, while for η = 1, i.e.
V V V= 0 and = −x y z, the absolute deviation from cubic symmetry is
the same along two principal axes of V (the maximum rhombic
distortion).

In a disordered solid, all components of V are expected to be
statistically distributed. In order to satisfy the requirements of diagonal
symmetry and tracelessness, as well as of rotational invariance of V ,
these components are calculated as linear combinations of five
normally distributed random quantities U i, = 1, …, 5i , with zero
mean values and equal standard deviations σ1

2 [7,9,24]. (Here the 1
2

factor has been introduced in order that the subsequent formulae could
be expressed in their habitual form [7 9,13,24].) Thus, we get:
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Note that with this definition σ represents the standard deviation of
Vzz.

With these assumptions, the Czjzek's JDD takes the form [7,9]:
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with marginal distributions, respectively, for V−∞ < < ∞z and
η0 ⩽ ⩽ 1:
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Alternatively, instead of V ηandz the following parameters can be
introduced [8]:

Δ V η= 1 + ²z
1
3 (5)

and
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The advantage of the latter representation is that, as a difference of
the former one it assures the continuity of the region of non zero
probability density of distributed quadrupole parameters, cf. Figs. 1

and 3 in the Czjzek's paper [8]. One can see that Δ ⩾ 0 and ψ− ⩽ ⩽π π
6 6 ,

ψ = ± π
6 and ψ = 0 corresponding, respectively, to η = 0 (axial distor

tion) and η = 1 (maximum rhombic distortion).
For the corresponding form of the Czjzek's JDD one gets [8]:
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and the marginal distributions, for Δ0 ⩽ < ∞ and ψ− ⩽ ⩽π π
6 6 , respec

tively, are:
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In the Maurer's and Le Caër's et al. approach [9,13,24], the EFG
tensor is represented as a sum of two tensors, V V+0 where V is the
random tensor defined above, and V0 is a fixed traceless tensor
describing a “perfect crystal” and characterized by parameters
V ηandz0 0. In the coordinate frame where V0 is diagonal,
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The parameters Δ0 and ψ0 are introduced by means of Eqs. (5) and
(6), respectively, replacing in the latter V V η ηby and byz z0 0.

(Note that in the Maurer's approach all components of the V tensor
are assumed to be normally distributed with zero mean values and
equal standard deviations [13]. However, such an assumption does not
satisfy the above mentioned requirements for this tensor.)

We have put forward a simulation code implementing the above
model.1 This code

i. generates the normal random quantities U i, = 1,…,5i , vide supra;

i. using Eqs. (2) and (9) computes and diagonalizes theV V+0 tensor;
ii. for each set of main values of the latter calculates Δ and ψ ,

respecting the above mentioned convention V V V⩾ ⩾z y x and
using Eqs. (1), (5) and (6);

iii. builds marginal distribution densities of Δ and ψ as well as the JDD
P Δ ψ( , ) for the V V+0 tensor;

iv. computes mean values Δ ψ, , standard deviations σ σ,Δ ψ and a
correlation coefficient ρ of Δ ψand .

Figs. 1 3 illustrate variations of the latter parameters with σ for
different Δ0 and ψ .0

The graph of Δ vs. σ is shown in Fig. 1 (left). In the case of Δ = 00 ,
corresponding to the Czjzek's JDD (obviously, in this case ψ = 00 as
well), the increase of Δ with the increase of σ is strictly linear; indeed,
the marginal distribution P Δ( )m , see Eq. (8), yields:

Δ σ σ= ≈ 4.2554 .
π

16
3

2
(11)

For Δ ≠ 00 and different values of ψ0, Δ tends to Δ0 when σ tends
to 0 and asymptotically reaches the trend given by Eq. (11) for σ Δ≫ 0.
From Fig. 1 (right) one can see that ψ tends to ψ0 when σ tends to 0
and tends to zero for σ Δ≫ 0. If ψ = 00 , ψ is always zero, including the
case Δ = 00 corresponding to the Czjzek's JDD.

With an increase of σ , both σΔ and σψ increase, see Fig. 2. For Δ = 00
one can readily show that

1 Available on request from the authors.
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σ σ σ= 45 − ≈ 1.3754 .Δ π
2
3

128
(12)

For Δ ≠ 00 the relationship between σΔ and σ becomes non linear,
and the trend given by Eq. (12) is reached asymptotically for σ Δ≫ 0. In
the latter case, as shown in Fig. 2 (right), σψ tends to its limiting value,
corresponding to that of the Czjzek's JDD. Using the marginal
distribution P ψ( )m , see Eq.(8), one gets:

σ πlim = − 8 ≈ 0.2279.
σ

ψ
→∞

1
6

2
(13)

Fig. 5 in the Maurer's paper [13] suggests that the correlation
between Δ and ψ tends to decrease with increasing the departure from
axial symmetry (viz., increasing η0) and with lowering the degree of
disorder (viz., increasing the Δ σ/0 ratio). However, Fig. 3 below shows
that this is only a part of a more general trend: indeed, ρ vanishes for

any degree of disorder if ψ = 00 as well as in the limits of both low and
high disorder. The absolute value of ρ attains a maximal value of ca.
0.21 for ψ = ± π

0 6 (i.e., for axial symmetry) at intermediate degree of
disorder. The corresponding value of σ , σmax , is proportional to Δ0;
numerical calculations yield the following relationship between these
parameters:

Fig. 1. Dependences on σ of Δ (left) and ψ (right) for different Δ0 and ψ0. The dashed line in the left part of the figure corresponds to Eq. (11). Δ0, σ and Δ are in arbitrary units.

Fig. 2. Dependences on σ of σΔ (left) and σψ (right) for different Δ0 and ψ0. The dashed lines in the left and right parts correspond to Eqs. (12) and (13), respectively. Δ0, σ and σΔ are in

arbitrary units.

Fig. 3. Relationships between ρ and σ for different Δ0 (in arbitrary units) and ψ0.

Fig. 4. Relationships between Δ σ/ Δ0 and Δ σ/ Δ0
cal cal for ψ = 0.50 : σ = 0.102Δ a. u.,

σ = 0.024ψ , ρ = 0.033 (squares, blue online) and σ = 0.303Δ a. u., σ = 0.066ψ , ρ = 0.097
(circles, green online). The dashed line corresponds to Δ σ Δ σ/ = /Δ Δ0

cal cal
0 . (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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σ Δ≈ 0.16 .max 0 (14)

2.2. Analytical Maurer's JDD

Besides, Maurer [13] has introduced an empirical analytical JDD by
associating the marginal distribution of δ Δ σ= / , derived from a non
central χ 2 distribution with five degrees of freedom, with a semi
heuristic marginal distribution of ψ and allowing for a certain correla
tion between both random variables.

Here we prefer using σΔ instead of σ; indeed, such a choice seems
more appropriate for a bivariate JDD P Δ ψ( , ). After amending for a
clerical error (in the third term inside the brackets of the exponent in
Eq. (10) of the Maurer's paper [13], ρ should be replaced by ρ−2 ), this

JDD becomes:

P Δ ψ Δ
σ

g x ψ e( , ) ∝ ( ) cos 3 ²
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where

g x x x e x ΔΔ
σ

( ) = − 1 + ( + 1) and = .x

Δ

−2 0
2 (16)

Of course, the use of an analytical JDD considerably simplifies the
analysis of the experimental results; yet, the limits of its applicability
should be carefully evaluated. With this aim in view, we have examined
the relations between the “input” parameters Δ ψ ρ σ, , and Δ0 0 occur
ring in Eq. (15) and the corresponding “output” parameters

Fig. 5. Relationships between ψ0 and ψ0
cal for Δ = 3.00 a. u.: σ = 0.102Δ a. u., σ = 0.024ψ ,

ρ = 0.033 (squares, blue online) and σ = 0.303Δ a. u., σ = 0.066ψ , ρ = 0.097 (circles, green

online). The dashed line corresponds to ψ ψ=0
cal

0. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Experimental MAS NMR spectra (solid, blue online) for 11B (left) and 71Ga (right) and the corresponding best-fit computer-generated spectra using the Maurer's JDD (dashed,
red online). The simulation parameters are: for 11B, δ Δ= 24.7ppm, = 2.84MHziso 0 , σ = 0. 04MHzΔ , ψ σ= , = 0. 011π

ψ0 6
and ρ = 0.1 [25], and for 71Ga, δ = −6.9iso ppm, σ = 0.4δ ppm,

Δ = 4.77 MHz,0 σ ψ σ= 0. 02 MHz, = 0.523, = 0.013Δ ψ0 and ρ = 0.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 7. Maurer's JDD calculated with the parameters of the computer-generated
spectrum shown in Fig. 6 for 71Ga. The JDD for 11B has a qualitatively similar shape.
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Δ ψ ρ σ, , and Δ0
cal

0
cal cal cal, i.e., the characteristics of the JDD P Δ ψ( , ),

calculated for different Δ σ/ Δ0 ratios. As far as σ and σψ are interrelated,
the values of the latter parameter have been chosen in accordance with
the relationships shown in Fig. 2. The values of ρ have been chosen
from the data displayed in Fig. 3.

Figs. 4 and 5 show the results of this analysis. In both figures Δ0,
Δ0

cal and σΔ are expressed in arbitrary units (a. u.). In Fig. 5 the data are
presented for two cases: Δ σ/ ≈ 30Δ0 (squares, blue online) and
Δ σ/ ≈ 10Δ0 (circles, green online).

As one can see, for relatively low disorder, Δ σ/ ≈ 30Δ0 , the “input”
and “output” parameters are in good agreement; however, at higher
disorder, e.g., already at Δ σ/ ≈ 10Δ0 , these parameters considerably
differ from each other. In Figs. 4 and 5 we show the results only for
ψ = 0.50 , as far as in the low disorder case those for ψ = 00 and
ψ = −0.50 are almost the same. For higher disorder, the results for
ψ = ± 0.50 are still very close to each other. For ψ = 00 the discrepancy
between the “input” and “output” parameters becomes more pro
nounced, but in any case we are outside the limits of applicability of
the analytical Maurer's JDD.

3. Experimental results and discussion

11B and 71Ga MAS NMR spectra of GaBO3, ground to powder were

Fig. 8. Marginal distributions of Δ for 11B (a and b) and 71Ga (c and d) obtained for the Maurer's (points, green online) and Czjzek's (squares, red online) models. The parameters of the
Maurer's distribution correspond to the best-fit shown in Fig. 6. For the Czjzek's distribution, for 11B σ = 1.42 (a) and σ = 0.04MHz (b), and for 71Ga σ = 2.4 (c) and σ = 0.02MHz(d). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Marginal distributions of ψ obtained for the Maurer's for 11B (points, green

online) and 71Ga (triangles, blue online) and Czjzek's (squares, red online) models. The
parameters of the Maurer's distribution correspond to the best-fits shown in Fig. 6. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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measured with a Bruker Avance 400 NMR spectrometer. The measure
ments of 11B spectra have been described in our previous paper [25].
The measurements of 71Ga spectra have been carried out at the
corresponding resonance frequency, 122.0564 MHz, with 4 mm rotors
at the spinning rate of 14 kHz. The absorption signal was recorded
using classical direct acquisition by single pulse free induction decay
(FID) excitation with accumulation of 1000 pulse signals repeated with
2.4 μs radiofrequency pulse length. The NMR spectra were obtained by
a Fourier transform of the FID signals.

The 11B and 71Ga NMR spectra were computer simulated using
laboratory developed codes. Computer generated spectra have been
acquired by integrating over distributed values of the spin Hamiltonian
parameters and random orientations of crystallites.

Fig. 6 shows the experimental spectra for 11B (left) [25] and 71Ga
(right) together with corresponding best fit computer generated spec
tra for the Maurer's JDD. The simulation procedure for 71Ga spectra
has been similar to that for 11B [25]; however, in order to obtain closer
fittings, a normal distribution of δiso with a standard deviation σδ has
also been assumed.

One can see that the Maurer's JDD provides satisfactory fits to the
experimental MAS NMR spectra using fairly reasonable parameter
values. The remaining discrepancy between the computer generated
and experimental spectra for 71Ga can be caused by an ill resolved
superimposed resonance, probably arising from 71Ga nuclei in more
disordered environment and/or by a superposed contribution from
non central NMR transitions.

The best fit simulation parameters for 71Ga NMR spectra are
consistent with sixfold coordinated gallium sites [26]. FeBO3 crystals
have calcite structure where each iron is surrounded by six oxygens
forming a nearly perfect octahedron [27]. As far as FexGa1-xBO3 are
isomorphous to FeBO3 [28], it can be reasonably assumed that Ga ions
are also sixfold coordinated, and this is confirmed by the NMR results.

One might wonder if adequate fitting to the above experimental
spectra can be achieved with the Czjzek's JDD. Obviously, in this case
one should be able by varying the only adjustable parameter σ to
simultaneously obtain in the simulations the mean parameter values
Δ and ψ close, respectively, to Δ0 and ψ0 obtained with the Maurer's
JDD and similar distribution widths of these parameters.

Fig. 7 shows the three dimensional JDD for the Maurer's model,
and Figs. 8 and 9 show the corresponding marginal distributions of Δ

and ψ . In the latter two figures we have also shown for the Czjzek's
model the marginal distributions of Δ ψand yielding the required
mean values of these parameters for the Maurer's model. One can see
that in order to obtain Δ values close to Δ 0 we need very high
σ values, resp., unrealistically broad distributions of Δ, cf. Fig. 8 (a and
c). On the other hand, taking the same distribution widths of Δ as those
determined with the Maurer's JDD (σΔ), in the case of the Czjzek's JDD
would result in very low mean Δ values, 0.08 and 0.04 MHz for 11B and
71Ga, respectively, cf. Fig. 8 (b and d).

Moreover, the Czjzek's JDD, as expected from Eq. (8), regardless of
the σ value, always gives one and the same, extremely broad marginal
distribution of ψ , see Fig. 9. Obviously, such a distribution is
incompatible with only slightly perturbed axial site symmetry in the
crystal. In contrast, the Maurer's JDD can produce quite narrow
marginal distributions of ψ , describing weak random distortions from
the perfect structure.

Fig. 10 compares the experimental NMR spectra for 11B and 71Ga
with computer generated spectra using the Czjzek's JDD with the same
σ values as in Fig. 8. Obviously, in contrast to the Maurer's model, the
Czjzek's model flagrantly fails to describe the experimental results. This
result is not surprising; indeed, as we have seen above, the Czjzek's
JDD, in principle, contains no information on the crystal structure. In
contrast, the Maurer's JDD includes mean values Δ0, ψ0 and separate
distribution widths of both random variables Δ and ψ , as well the
correlation coefficient ρ between them, thus preserving to a certain
extent the information on intrinsic symmetry and ordering in crystals
with low local disorder.

4. Conclusions

We have carried out comparative analysis of Czjzek's and Maurer's
models of the JDD of the NMR quadrupole parameters. In the case of
the Maurer's model, we have considered both the numerical and the
analytical JDD of the random parameters Δ and ψ , and we have put
forward a computer code allowing to obtain the dependences of the
corresponding mean values Δ ψ, , standard deviations σ σ,Δ ψ and
correlation coefficient ρ on the input value of σ , proportional to the
degree of local disorder. The obtained relationships have allowed to
determine the limits of applicability of the analytical Maurer's JDD.

The Czjzek's JDD is relatively well adapted to the case of heavily

Fig. 10. Experimental (solid, blue online) for 11B (left) and 71Ga (right) and corresponding computer-generated NMR spectra for the Czjzek's JDD. The simulation parameters are: for
11B, σ = 1.42 (dotted, red online) and σ = 0.04 MHz (dashed-dotted, green online), and for 71Ga, σ = 2.4 (dotted, red online) and σ = 0.02 MHz (dashed-dotted, green online). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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disordered solids; meanwhile it contains only one adjustable para
meter, describing the degree of local disorder and does not include the
characteristics of local structure, partially preserved in the presence of
a low degree of disorder. As a result, the marginal distribution of the
parameter ψ , describing the local symmetry, becomes extremely broad,
which is incompatible with the existence of short range ordering. In
contrast, the Maurer's JDD has no these drawbacks, therefore it is
expected to provide satisfactory fits to experimental NMR spectra in
crystals with low local disorder.

The above considerations have been corroborated by applying the
Czjzek's and Maurer's models to computer simulations of MAS NMR
spectra of 11B and 71Ga isotopes in gallium borate. With the former
distribution no adequate description can be obtained while the latter
has provided quite satisfactory fits.

The present study shows that the Czjzek's model should not be used
in computer assisted analysis of NMR spectra of materials with low
degree of local disorder. On the other hand, the Maurer's model,
conceptually well adapted to this situation, can provide quite satisfac
tory fits to the experimental NMR spectra.
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