
HAL Id: hal-01504986
https://hal.science/hal-01504986v1

Preprint submitted on 12 Apr 2017 (v1), last revised 1 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

SHCoClust, a Scalable Similarity-based Hierarchical
Co-clustering Method and its Application to Textual

Collections
Xinyu Wang, Julien Ah-Pine, Jérôme Darmont

To cite this version:
Xinyu Wang, Julien Ah-Pine, Jérôme Darmont. SHCoClust, a Scalable Similarity-based Hierarchical
Co-clustering Method and its Application to Textual Collections. 2017. �hal-01504986v1�

https://hal.science/hal-01504986v1
https://hal.archives-ouvertes.fr

SHCoClust, a Scalable Similarity-based

Hierarchical Co-clustering Method and its

Application to Textual Collections

Xinyu Wang

Université de Lyon

Lyon 2, ERIC, EA3083

5, av. Pierre Mendès-France

69500 Bron, France

Email: xinyu.wang@univ-lyon2.fr

Julien Ah-Pine

Université de Lyon

Lyon 2, ERIC, EA3083

5, av. Pierre Mendès-France

69500 Bron, France

Email: julien.ah-pine@univ-lyon2.fr

Jérôme Darmont

Université de Lyon

Lyon 2, ERIC, EA3083

5, av. Pierre Mendès-France

69500 Bron, France

Email: jerome.darmont@univ-lyon2.fr

Abstract—In comparison with flat clustering methods, such as
K-means, hierarchical clustering and co-clustering methods are
more advantageous, for the reason that hierarchical clustering
is capable to reveal the internal connections of clusters, and
co-clustering can yield clusters of data instances and features.
Interested in organizing co-clusters in hierarchies and in dis-
covering cluster hierarchies inside co-clusters, in this paper,
we propose SHCoClust, a scalable similarity-based hierarchical
co-clustering method. Except possessing the above-mentioned
advantages in unison, SHCoClust is able to employ kernel
functions, thanks to its utilization of inner product. Furthermore,
having all similarities between 0 and 1, the input of SHCoClust
can be sparsified by threshold values, so that less memory and
less time are required for storage and for computation. This
grants SHCoClust scalability, i.e, the ability to process relatively
large datasets with reduced and limited computing resources.
Our experiments demonstrate that SHCoClust significantly out-
performs the conventional hierarchical clustering methods. In
addition, with sparsifying the input similarity matrices obtained
by linear kernel and by Gaussian kernel, SHCoClust is capable
to guarantee the clustering quality, even when its input being
largely sparsified. Consequently, up to 86% time gain and on
average 75% memory gain are achieved.

I. INTRODUCTION

As an important branch of unsupervised methods, clustering

techniques always succeed in drawing interests of researchers

in various domains. Clustering data in different manners re-

veals different information conveyed by the data. For example,

hierarchical clustering groups data instances in an iterative

fashion and outputs a binary-tree like structure called dendro-

gram, which explicitly displays the internal connections among

sub-clusters. However, the process of generating a dendrogram

is computationally costly. Differently, co-clustering is a tech-

nique of subspace clustering, instead of grouping only data

instances, it performs clustering in both data space and feature

space. In a resulted co-cluster, a partition of data instances is

described by a partition of features.

Interested in discovering hierarchical structures inside co-

clusters and in attenuating the influence of high complexity of

hierarchical clustering, in this paper we propose a similarity-

based hierarchical co-clustering algorithm, SHCoClust. It is

built upon a bipartite spectral co-clustering method [1], and

a recent approach of the agglomerative hierarchical clustering

[2], which allows sparsifying the proximity matrix to reduce

computational cost. SHCoClust is capable to organize co-

clusters in a form of dendrogram, and to discover cluster

hierarchies inside co-clusters. We believe this property is

valuable in understanding the content of data. However, none

of the methods that contributes to establish SHCoClust is able

to do so. Furthermore, with inner product at base, SHCoClust

can employ kernel functions, which offers it the capability to

process non-linearly separable datasets more effectively. To

our knowledge, SHCoClust is the first method that is able

to reveal cluster hierarchies of and inside co-clusters, and to

apply kernel functions in co-clustering tasks.

Through this paper, we begin with introducing the methods

that we use to establish SHCoClust in Section II. After detail-

ing our approach in Section III, we illustrate the experiments

and results in Section IV. Section V concludes our current

work and presents further works.

II. STATE OF THE ART

A. The Bipartite Spectral Co-clustering

Since introduced in [3], co-clustering has been widely

applied in the domains of text mining and bio-informatics.

Capable to simultaneously partition data instances and their

features, co-clustering is favored in searching for the most

representative terms for a set of closely grouped documents,

or in searching for the most expressive conditions for a set

of highly related genes. Details of many published works on

co-clustering can be found in [4], [5], [6].

Based on bipartite spectral graph partitioning, [1] models a

collection of documents as an undirected bipartite graph, in

which documents and terms are vertices and TF-IDF weights

are edges. Discovering co-clusters of documents and terms

is to find the best cuts in this graph, eventually resulting in

K subgraphs, in which vertices are highly associated and are

of equally-sized. To solve this NP-hard discrete optimization

problem, an effective heuristic method, the spectral graph

partitioning, is applied to offer a real relaxation. The proposed

solutions are the second largest left and right singular vectors

of the diagonal-normalized document-term matrix. For con-

venience, we refer this approach as BSC (bipartite spectral

co-clustering).

B. The Agglomerative Hierarchical Clustering

There are two principle techniques of hierarchical clus-

tering, the divisive (DHC) and the agglomerative (AHC).

Given a dataset D of n instances and m features, DHC

begins with splitting D into two sets iteratively and results

in clusters of which each is a data instance. AHC performs

in the opposite way, it starts with merging two individual

instances and eventually outputs a cluster of size n. They

output a binary tree-like structure of 2n − 1 nodes, named

dendrogram. Comparing these two techniques in terms of

complexity, AHC is practically preferred as it is of O(N3) in

the worst case. However, finding an optimal split in DHC can

be NP-hard, if n is large. [7] surveys many works that improve

the performance of AHC. In the scope of this paper, we focus

on the conventional AHC and its methods. The computing

procedure of AHC is shown in Algorithm 1, where d(,) is a

distance metric, and each data instance is initially considered

as a cluster, represented by C.

Algorithm 1 Conventional AHC

Require: dataset Dn×m. ∀x ∈ [1, . . . , n], Cx ← Dx

1: distance matrix D← ∅
2: for i = 2 to n do

3: for j = 1 to i− 1 do

4: Dij ← d(Di,Dj)
5: end for

6: end for

7: while num clusters> 1 do

8: (i, j)← argminDx,y

9: Cij ← Ci ∪ Cj

10: for all Ck ∈ D such that Ck 6= Ci, Ck 6= Cj do

11: D
update
←−−−− d(Cij , Ck)

12: end for

13: end while

In the setting of Vector Space Model and the TF-IDF

weighting scheme, documents can have a sphere-like projec-

tion in the feature space, in such case the Euclidean distance

is a suitable choice to compute the distance of two document

vectors. In AHC, an essential step, shown as line 11 in

Algorithm 1, is to determine d(Cij , Ck). There are seven

methods to do so by using either the centroids or the graphic

representatives of clusters. The Lance-Williams (LW) formula

is a framework that unifies the seven conventional clustering

methods [8]. Equation 1 and Table I display the formula and

its parameter values. |Cx| is the number of data instances in

cluster Cx. With this formula, one can simply switch parameter

values to compute d(Cij , Ck) for a given method.

d(Cij , Ck) =αid(Ci, Ck) + αjd(Cj , Ck) + βd(Ci, Cj)

+γ|d(Ci, Ck)− d(Cj , Ck)|.
(1)

TABLE I
LANCE-WILLIAMS FORMULA: METHODS AND PARAMETER VALUES

Methods αi αj β γ

Single 1/2 1/2 0 -1/2
Complete 1/2 1/2 0 1/2

Average
|Ci|

|Ci|+|Cj |

|Cj |

|Ci|+|Cj |
0 0

Weighted 1/2 1/2 0 0

Centroid
|Ci|

|Ci|+|Cj |

|Cj |

|Ci|+|Cj |
−

|Ci||Cj |

(|Ci|+|Cj |)2
0

Median 1/2 1/2 -1/4 0

Ward
|Ci|+|Ck|

|Ci|+|Cj |+|Ck|

|Cj |+|Ck|

|Ci|+|Cj |+|Ck|
−

|Ck|
|Ci|+|Cj |+|Ck|

0

C. Sim AHC, the Similarity-based AHC

A new expression of the LW formula is proposed in [2],

where distances are replaced by similarities, we refer this ap-

proach as Sim AHC. It is mathematically and experimentally

proved to be equivalent to the original LW formula. Input to

Sim AHC is the pairwise similarity matrix S of a normalized

dataset (that each row has norm 1). As ∀s ∈ S, 1 ≥ s ≥ 0,

S can be sparsified by a threshold value, so that less memory

is demanded to store S and less time is required to compute

on it. This is an advantageous property in terms of efficiency.

However, this property cannot be found in the conventional

AHC. Because when distances are used, zero and close-to-zero

values signify high similarities, which are of the most interest

in clustering, thus they have to be stored for computation

instead of being ignored. The similarity updating process

between a newly-merged cluster Cij and any other cluster Ck

in Sim AHC consists of two steps, updating the cross-cluster

similarity and updating the cluster’s self similarity:

s(Cij , Ck) = αis(Ci, Ck) + αjs(Cj , Ck) + βs(Ci, Cj)

− γ|s(Ci, Ck)− s(Cj , Ck)|. (2)

s(Cij , Cij) = δis(Ci, Ci) + δjs(Cj , Cj). (3)

Values of parameters αi, αj , β and γ in Sim AHC are

kept the same as in Table I. To guarantee the equivalence

for each individual clustering method, the values of newly

added parameters δi and δj are set accordingly: for median

method, δi = δj = 1
4 ; for centroid method, δi =

|Ci|
2

(|Ci|+|Cj |)2
,

δj =
|Cj |

2

(|Ci|+|Cj |)2
; and for the other five methods, values of δi

and δj can be determined freely as long as their sum is 1.

III. SHCOCLUST

Co-clusters returned by BSC are of the same level, like

clusters in K-means, they are flat. A dendrogram returned

by AHC or by Sim AHC displays how data instances are

merged step by step, nevertheless, the connections among

data features are unknown. Discovering hierarchies of co-

clusters, and exploring connections of sub-clusters inside co-

clusters surely provide us a better understanding of our data.

For such purpose, we propose SHCoClust, a similarity-based

hierarchical co-clustering method, detailed in Algorithm 2.

Algorithm 2 SHCoClust

Require: dataset Dn×m

1: Rn×n(i, i)←
∑m

j=1Dij , Cm×m(j, j)←
∑n

i Dij

2: Dnorm ← R− 1

2DC− 1

2

3: k ← ⌈log2 K⌉+ 1
4: Un×k,Sk×k,V

T
k×m ← SV D(Dnorm, k)

5: if S11 ≥ · · · ≥ Skk then

6: U′
n×(k−1) ← Un×[2,...,k]

7: V′
m×(k−1) ← Vm×[2,...,k]

8: else if Skk ≥ · · · ≥ S11 then

9: U′
n×(k−1) ← Un×[1,...,k−1]

10: V′
m×(k−1) ← Vm×[1,...,k−1]

11: end if

12: Z(n+m)×(k−1) ←

[

Rn×nU
′
n×(k−1)

Cm×mV′
n×(k−1)

]

13: similarity matrix S← ∅, ∀x ∈ [1, . . . , n+m], Cx ← Zx

14: Z′ ← norm(Z) such
∑k−1

c=1 Z
′2
rc = 1, ∀r ∈ [1, . . . , n+m]

15: for i = 1 to n+m do

16: for j = 1 to i do

17: Sij ← s(Z′
i,Z

′
j)

18: end for

19: end for

20: while num clusters> 1 do

21: (i, j)← argmaxSx,y
22: Cij ← Ci ∪ Cj

23: for all Ck ∈ Z′ such that Ck 6= Ci and Ck 6= Cj do

24: S
update
←−−−− Equations 2 and 3

25: end for

26: end while

The above procedure of SHCoClust outputs a dendrogram

of n + m leaves and n + m − 1 internal nodes. If input

Dn×m is a doc-term matrix, the dendrogram grows by merging

a pair of doc-doc, term-term or doc-term in each iteration.

Cutting the dendrogram by a desired number of clusters K
results in flattened co-clusters, each contains a sub-dendrogram

of documents and terms. In Section IV-E, visualization of a

sampled dataset is presented.

Shown as line 14 in Algorithm 2, Z is normalized so that

if the similarity function s(,) in line 17 takes a form of

inner product, values in matrix S are cosine similarities. The

diagonal entries of S are constantly 1. This nature allows s(,)
to be extended to a kernel function, K, such that K(x, y) =
〈φ(x), φ(y)〉, where φ : I → F is a mapping from I to F ,

with dim(I) ≪ dim(F), and x, y ∈ D. To generalize K,

we apply ∀x, y ∈ D: s(x, y) = K(x, y)/
√

K(x, x)K(y, y). In

our experiments, linear kernel and Gaussian kernel are tested.

Having ∀s ∈ S, 1 ≥ s ≥ 0, given a threshold τ ∈ (0, 1) on S,

we define that s = 0 if s ≤ τ to sparsify S. Consequently, less

memory is required to store S and thus less time is needed to

compute the while loop of lines 20-26 in Algorithm 2.

IV. EXPERIMENTS

A. Datasets, Preprocessing and Evaluation Metrics

Three well-known corpora that have been widely tested

in text clustering benchmarks are used in our experiments.

These collections are Reuters-215781 [9], SMART [1] and

20NewsGroups (20NG)2 [10]. Table II details six experi-

mented datasets that are sampled from the three collections.

In the rest of the paper, theses datasets are referred by their

indexes shown in column “Ind.”. Based on the bag-of-words

assumption and the Space Vector Model, each dataset is

preprocessed into a doc-term matrix, whose rows are document

vectors and columns are terms. A few steps are involved in

preprocessing, in detail, stop words are removed, terms that

have document frequency higher than 20% and lower than

1% are removed, and TF-IDF weighting strategy is applied.

“nb.docs” and “nb.terms” in Table II are the numbers of docu-

ments and of terms after preprocessing, “nb.K” is the ground-

truth number of clusters. “ARPACK” is used as solver in the

function of Singular Value Decomposition that forms Z. ARI

(Adjusted Rand Index) [11] and NMI (Normalized Mutual

Information) [12] are used to evaluate clustering quality.

TABLE II
EXPERIMENTED DATASETS

Dataset Ind. nb.K nb.docs nb.terms Z shape

Reuters R5 5 500 652 (1150, 3)
R7 7 2100 2133 (4277, 3)
R10 10 2450 5075 (7525, 4)

SMART S0 3 1500 2272 (3772, 2)
S1 3 3893 6812 (10705, 2)

20NG NG8 8 3200 1118 (4277, 3)
NG20 20 2000 1104 (3079, 5)

B. Comparisons of Clustering Quality

Our first experiment consists of four tests to compare

clustering quality among conventional AHC, BSC, SHCoClust

with and without sparsification. These tests are:

1) SHCoClust without sparsification v.s. conventional AHC

2) SHCoClust with sparsification v.s. without

3) SHCoClust without sparsification v.s. BSC

4) SHCoClust with sparsification v.s. BSC

In tests that concern sparsification, threshold values τ at

percentile ranks {10, 25, 50, 75, 90}% of similarities in S are

used to sparsify S. In this experiment, we apply linear kernel

to obtain S, which is in fact filled with cosine similarities. The

results of this experiment are illustrated in Figure 1. From top

to down, each row maps to one test that is marked by its

index. Each column lists the corresponding results for a tested

dataset. Graph in each cell is a bar chart that is highlighted by

a vertical line at x=0. The y-axis in each graph is labeled by

the abbreviations of seven clustering methods. Bars in these

graphs indicate the “difference” of values for ARI (the red, or

the dark bars in a gray-scale printed paper) and for NMI (the

1Distribution 1.0, the ApteMod version.
2We used the same dataset as in http://qwone.com/∼jason/20Newsgroups/.

blue, or the light ones) using a clustering method, obtained

by subtraction of two tested algorithms (A v.s. B, A − B).

In the case of sparsification, we chose the highest value of

ARI or NMI obtained in each clustering method through τs,

then subtract it with the ARI or NMI value obtained by the

approach in comparison.

In Figure 1, we can discovery a few interesting findings:

• Compared to conventional AHC, clustering quality is

largely improved using SHCoClust for all clustering

methods, except for single link and the Ward method. In

datasets of S0 and S1, the increase is tremendous, ARI

and NMI are raised up to 0.8 and 0.7 at maximum.

• When sparsification is applied in SHCoClust, the clus-

tering quality is further enhanced, and this enhancement

does not compromise SHCoClust’s efficiency. Addition-

ally, as most highest ARI and NMI are obtained when

τ becomes very close to 1 (values of τ are not shown),

the efficiency of SHCoClust is considerably improved,

thanks to a substantially sparsified input.

• SHCoClust (without sparsification) obtains close results

to BSC for all clustering methods, except for single

link. Though improvements can be found in R5, R7 and

NG8, other datasets do not display any. However, when

sparsification is applied in SHCoClust, some noticeable

amelioration can be observed. Comparing graphs of test

3) and of test 4), bars generally exhibit a left-to-right drift,

diminishing their heights in the left side of the vertical

line at x=0, and growing their heights in the right side.

This drift is very apparent in R7 and in NG20 datasets,

where ARI and NMI bars are noticeably pulled towards

the right side. For other datasets, single link seems to be

the least affected.

To summarize, SHCoClust significantly improves clustering

quality compared to the conventional AHC for most clustering

methods. Without sparsification it obtains close results to

BSC. However, when sparsification is applied, SHCoClust

demonstrates some obvious improvements over BSC.

C. Extension to Kernel Functions

In our second experiment, we extend the similarity function

s(,) in SHCoClust to Gaussian kernel, given by K(x, y) =
exp(−γ‖x − y‖2) for x, y ∈ D, γ = 1/dim(I) by de-

fault3. Three representative datasets R5, S0 and NG8 are

experimented and are compared to their results obtained by

linear kernel. The input kernel matrix is sparsified in the same

fashion as in the previous experiment. For each threshold

value, ARI, NMI, relative memory usage and relative running

time are recorded. Figure 2 illustrates the results of this

experiment. Indexed by the clustering methods in column and

the names of datasets in row, each graph in Figure 2 contains

four lines: the solid line with “+” sign denotes the NMI

values, the dashed line with triangle sign is for ARI, while

3This default setting is used in popular SVM packages. Besides, when γ
is low, Gaussian kernel provides close-to-one values and higher similarities
between pairs of points.

the solid line with “o” sign and the solid line with “x” sign

represent the relative memory usage and the relative running

time, respectively. The x-axis corresponds to the percentile

ranks that define the threshold values τ (not shown). At each

τ ∈ (0, 1), exact memory usage and running time are recorded,

and are divided by those at τ = 0, i.e., when no thresholding

is applied, to obtain the relative memory usage and the relative

running time.

In Figure 2 we can see that, as the percentile rank increases,

memory usage and running time decrease correspondingly,

however, ARI and NMI tend to preserve their values at some

level until the percentile rank approaches closely to 1. More

precisely, before the percentile rank crosses 75%, in most

cases, we can obtain ARI and NMI values as high as (or

higher than) using the full-sized input. In some other cases,

ARI and NMI even boost after percentile rank is over 75%,

like in S0 (of linear kernel using average link). Among seven

clustering methods, single link is the most peculiar, its ARI

and NMI are almost invariant to the effect of sparsification.

Exceptionally, in R5 of linear kernel and Gaussian kernel, ARI

of single link boosts when percentile rank = 90%, at which

point memory usage and running time are largely reduced.

Comparing the two kernel functions, overall similar behavior

can be observed regarding the four curves. In some cases,

Gaussian kernel returns higher metric values than linear kernel,

and vice versa. Among the three experimented datasets, results

of S0 are globally better, while R5 and NG8 display limited

difference in their results.

Principle conclusions we can draw from this experiment

are that (1) SHCoClust is capable to guarantee the clustering

quality even when its input is significantly sparsified, requiring

considerably reduced memory usage and running time. τ at

percentile rank of 75% is a heuristically good threshold in

our experiment (90% for single link). (2) SHCoClust can be

easily employed with a kernel function, though only linear

and Gaussian kernels are experimented, we believe that its

compatibility with kernel functions enables it to handle non-

linearly separable datasets more effectively in other tasks.

D. Discussion of Complexity and Scalability

In terms of storage and time complexity, computation with

the input of a full-sized pairwise similarity matrix S of N
instances and features corresponds to storage complexity of

O(N2) and time complexity of O(N3) (lines 15-25 in Algo-

rithm 2). Sparsifying S with τ results in M non-zero values

stored for computation, M < N2, eventually reduces storage

complexity to O(M) and time complexity to O(NM). The

linear relationship between the storage and time complexity

is demonstrated by the lines of relative memory usage and

running time in Figure 2. Let τ∗ define a threshold value,

at which clustering quality is preserved as high as possible,

meanwhile S is sparsified to have M as small as possible. As

stated previously, τ at percentile rank of 75% is the τ∗ for most

cases in our experiment. Table III exhibits the conservation of

computing resources measured by memory gain and time gain

at τ∗, at which highest ARIs are obtained (marked by *).

No. R5 R7 S0 S1 NG8 NG20

1)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.2 0.0 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
0

0.2
5

0.5
0

0.7
5

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.2 0.4 0.6 0.8

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2 0.3

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.2
−0.1 0.0 0.1 0.2

2)

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
00

0.0
25

0.0
50

0.0
75

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.1
0

−0.0
5

0.0
0

0.0
5

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0 0.1 0.2

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
00

0.0
25

0.0
50

0.0
75

0.1
00

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
00

0.0
05

0.0
10

0.0
15

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
0

0.0
2

0.0
4

0.0
6

3)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.4
−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3
−0.2

−0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6
−0.4

−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6
−0.4

−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3
−0.2

−0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.2
0

−0.1
5

−0.1
0

−0.0
5

0.0
0

4)

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.4
−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

0.0
00

0.0
25

0.0
50

0.0
75

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6
−0.4

−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.6
−0.4

−0.2 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.3
−0.2

−0.1 0.0

WAR

MED

CEN

WEI

AVE

COM

SIN

−0.0
25

0.0
00

0.0
25

0.0
50

Fig. 1. Comparisons of clustering quality among conventional AHC, BSC, SHCoClust with and without sparsification

The clustering methods that output ARIs* and the ARI values

of BSC are listed. Values of −x in Mem% and in Time%

indicate the relatively reduced memory usage and running time

compared to using a full-sized input.

TABLE III
HIGHEST ARI, RELATIVE GAIN IN MEMORY USAGE AND IN RUNNING TIME

Dataset Method τ∗ value Mem% Time% ARI* BSC

R5 Median 0.242 -25 -8 0.395 0.263

R7 Ward 0.998 -75 -61 0.158 0.069

S0 Average 0.996 -90 -86 0.803 0.753

S1 Centroid 0.778 -50 -11 0.770 0.752

NG8 Centroid 0.880 -75 -43 0.287 0.222

NG20 Ward 0.998 -75 -37 0.158 0.094

From this table we can see that all ARIs* are higher

than those of BSC, implying that better clustering quality is

achieved by SHCoClust. Moreover, ARIs* are obtained with

substantially reduced memory usage and running time. Except

for R5 dataset, in which median method only gains 8% in

time and 25% in memory, other datasets obtain up to 86%

time gain and on average 75% memory gain. This proves

that SHCoClust is good at economizing computing resources,

meanwhile preserving clustering effectiveness. In other words,

if given limited computing resources, SHCoClust is able to

process relatively large datasets. This reflects its scalability.

E. Exploration of Hierarchical Co-clusters and Structure

We use a sampled dataset Dsam from the SMART collection

to illustrate the hierarchies of co-clusters and the connections

of sub-clusters inside a co-cluster. Dsam contains 30 docu-

ments (10 from each class) and 51 terms (after preprocessing).

(a) and (b) of Figure 3 exhibit the doc-term matrix of Dsam

before and after being processed by SHCoClust. In (b), we can

clearly see that three co-clusters of different size lie along the

diagonal. These co-clusters are obtained by the dendrogram

cut at a height, shown in (c). Different from the dendrogram

obtained by a conventional AHC method, the dendrogram of

SHCoClust has negative heights, thus it looks like it grows

downwards. In (c), a leave node of the dendrogram is marked

by the number of members in it. The three sub-dendrograms

above the cutting line (from left to right) map to the bottom-

right, the top-left and the middle-situated co-clusters in (b).

With the aid of (c), we are able to know that in (b) the bottom-

right co-cluster is in fact closer to the top-left one and farther

from the middle-situated co-cluster. (d) presents the content

of the left-most sub-dendrogram in (c), i.e., the bottom-right

co-cluster in (b). Keeping the same structure as it is in the

dendrogram, (d) allows us to know which documents and

terms co-exit and how they are connected in their co-cluster.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a similarity-based hierarchical

co-clustering method, SHCoClust. We illustrated its proper-

ties, examined its clustering quality, efficiency, discussed its

complexity, scalability and visualized its output. We believe

that it fills a blank in literature with its unique characteristics.
A future improvement that we intend to do for this method

