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Abstract. Trace formulas have been one of the most powerfull tools in spectral
geometry. This article is an invitation to spectral geometry via trace formulas
paradigm. The main goal of the present survey is to give some classical results
concerning trace formulas in Riemannian geometry and to present some nice
applications in conformal geometry and in dynamical systems. More precisely,
we explain very recent results concerning the study of the geodesic flows on
manifolds with negative variable curvature via the semi-classical zeta func-
tions for contact Anosov flows.
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1 Introduction

The Laplacian in our three-dimensional Euclidean space R3 is the usual linear
differential operator defined by ∆ := ∂2x + ∂2y + ∂2z . This operator can be gener-
alized to a compact Riemannian manifold (M, g) : this generalization is called
the Laplace-Beltrami operator (or just Laplacian) and denoted by the symbol ∆g.
The spectral theory of this operator is a central object in differential geome-
try. Indeed, the spectrum of ∆g contains vast information about the geometry
and the topology of the associated manifold. The study of this operator and in
particular the study of its spectrum is called Spectral Geometry. Spectral geome-
try have numerous connections with others fields of mathematicals or physics,
e.g. for understanding the relationships between the formalism of classical me-
chanics and quantum mechanics : this is semi-classical analysis. Spectral ge-
ometry is also very important in the study of dynamical systems, for example
in classical and quantum chaos. To understand the fundamental relationships
between the sequence of eigenvalues of −∆g and the geometrical properties of
the manifold (M, g), one of the most powerfull tools in this way is the principle
of trace formulas. More generally, traces formulas are also useful techniques in
analysis of PDE, in spectral theory, physics mathematics, in number theory, etc
...
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In this article we focus on trace formulas applied to spectral geometry and
to dynamical systems on a hyperbolic surface via some special zeta functions.
First, we present a simple exact computation of trace formulas on a particu-
lar manifold : a flat torus. This example of trace formula have a fundamental
application in spectral geometry : the famous Milnor Theorem. Next, we inter-
esset with in the powerfull notion of heat kernel, indeed, using trace formulas,
we can establish the Minakshisundaram-Pleijel expansion and the asymptotic
Weyl law for eigenvalues. Then, we finish with trace formulas on hyperbolic
manifolds : in a first time we present the relationships between spectrum of
the manifold and between the lenght spectrum (i.e. the set of lengths of closed
geodesics). And, in a second time, we present Selberg formula and its appli-
cations in dynamical system, in particular for counting periodic geodesics on
hyperbolic surface with an adapted zeta function.

2 Background on spectral geometry

Start here by some basics notions concerning the spectrum of the Laplacian
on a compact Riemannian manifold, for more details classical references on
this subject are the book of M. Berger, P. Gauduchon and E. Mazet [BGM], the
book of P. Bérard [Bér4], of I. Chavel [Cha], the book of S. Rosenberg [Ros], see
also the book [Lab].

2.1 Formal principle of trace formulas

The formal principle of trace formulas is the following : let us consider an
unbounded self-adjoint linear operator H on a Hilbert space, and suppose that
the spectrum of H is discrete :

Spec(H) = {λk, k ≥ 0} .

This means that for all integer k ≥ 0, there exists a vector ϕk 6= 0 such that
: Hϕk = λkϕk. Let us also consider f a “nice” function. The fundamental
principle of trace formulas is to compute the trace of the operator f (H) in two
ways :

• the first way : with the eigenvalues of the linear operator f (H) :

Trace( f (H)) =
+∞

∑
k=0

f (λk).

• The second way : with the integral kernel of f (H) : if for all x ∈ M

f (H)ϕ(x) =
∫

M
K f (x, y)ϕ(y) dy

then

Trace( f (H)) =
∫

M
K f (x, x) dx.
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In consequence we get the following equality :

+∞

∑
k=0

f (λk) =
∫

M
K f (x, x) dx.

In pratice, the main difficulty is to find a “good” choice for the function f . The
usuals choices are :

• f (x) = e−xt where t ≥ 0 (heat function),

• f (x) = 1
xs , where s ∈ C such that Re(s) > 1 (zeta Riemann function),

• f (x) = e−
itx
h where t ≥ 0 (Schrödinger function)

• etc ...

2.2 The Laplacian operator

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1. The Lapla-
cian on (M, g) is the linear operator defined by f 7→ ∆g( f ) := div(∇ f ). In local
coordinates we have : for any C2 real valued function f on M and for any local
chart φ : U ⊂ M → R of M, the Laplacian ∆g is given by the local expression :

∆g f =
1√
g

n

∑
j,k=1

∂

∂xj

(√
ggjk

∂( f ◦ φ−1)

∂xk

)

where g = det(gij) and gjk = (gjk)
−1. This operator appears in many diffusion

equations, for example :

• The heat equation : Consider here a domain Ω ⊂ R
3 with a boundary

Γ := ∂Ω. The heat equation on Ω describe the heat diffusion process on
this domain. The heat equation is the following linear equation :

∂u

∂t
(x, t) = ∆u(x, t).

Here u(x, t) is the temperature at the time t of the point x ∈ Ω.

• The Schrödinger equation : in Quantum Mechanics, a physical particle
on a manifold M in a time intervall I is describe by a wave function, that

is a function (x, t) ∈ M × I 7→ ψ(x, t), where the quantity
∫

Ω
ψ(x, t) dx

represents the probability to find the particle into the domain Ω ⊂ M at

the time t. In particular, this requires that ‖ψ‖2L2(M) =
∫

Ω
ψ(x, t) dx = 1.

The quantum dynamics is governed by the famous Schrödinger equation :

ih̄
∂ψ

∂t
(x, t) = −∆gψ(x, t) +V(x)ψ(x, t).

Here V is a function of L∞
loc(M) such that lim

|x|→∞
V(x) = +∞ : this is the

potential.
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2.3 The spectrum of a compact manifold

For simplify we suppose here that the manifold (M, g) is a closed manifold,
i.e. M is compact and without boundary : for example the sphere, the torus...
The closed spectral problem is : find all real numbers λ such that there exists a
function u ∈ C∞(M)with u 6= 0 such that :

−∆gu = λu.

From a spectral point of view we want to find the (ponctual) spectrum of the
unbounded operator −∆g on the domain D = C∞(M). One of the pillars of
spectral geometry is the following fact (see for example [Bér4], [Cha], [Lab]) :
the spectrum and the ponctual spectrum of the operaror −∆g coincides and it
consists of a real infinite sequence

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·

such that λk → +∞ as k → +∞. Moreover, each eigenvalue has a finite mul-
tiplicity, recall that the multiplicity of an eigenvalue λk is the dimension of the
vector space ker

(
λk Id + ∆g

)
. In the notation (λk)k≥0 eigenvalues are counting

with their multiplicities : in particular the notation 0 = λ0 < λ1 means that the
first eigenvalue is simple and equal to zero. As it turns out, this result is also
available for manifolds with boundary (but we have not always λ0 = 0). The
incovenient of the notation 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · is relative
to concerning the multiplicity of each eigenvalues, we cant see explicitely the
multiplicity of eigenvalues : so for some contexts we also use the following
alternative notation : let us denote the distincts eigenvalues of (M, g) by :

(
0 = λ̃0,m1 = 1

)
<

(
λ̃1,m1

)
<

(
λ̃2,m2

)
· · · <

(
λ̃k,mk

)
< · · ·

where the integer mi denote the multiplicity of the eigenvalue λ̃i.
For sumarize, for any closed (or more generally for any compact) Rieman-

nian manifold there exists an unique sequence of reals numbers (λk)k≥0 such
that

Spec(−∆g) = {λk, k ≥ 0} .
The previous sequence is called the spectrum of the manifold (M, g) and denoted
by Spec(M, g). We said that two (compact) Riemannian manifolds (M, g) and
(M′, g′) are isospectral if and only if Spec(M, g) = Spec(M′, g′). A spectral in-
variant on (M, g) is a quantity which is determined by Spec(M, g).

2.4 The spectral partition function ZM

Definition 2.1. Let (M, g) be a compact Riemannian manifold, we define the
spectral partition function by the following serie of functions

ZM(t) :=
+∞

∑
k=0

e−tλk .

We will see, using Weyl asymptotics (section 4.4) that the previous serie
converge uniformly on R⋆

+. Using this uniform convergence it is obvious that
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function t 7→ ZM(t) is continous, non-increasing on R⋆
+ and we have also

lim
t→+∞

ZM(t) = 0 (because 0 ∈ Spec(M, g) in the closed case). With the nota-

tion
(
0 = λ̃0,m1 = 1

)
<

(
λ̃1,m1 = 1

)
<

(
λ̃2,m2

)
< · · · <

(
λ̃k,mk

)
< · · ·

we have also the expression :

ZM(t) =
+∞

∑
k=1

mke
−tλ̃k .

The main interest of the spectral partition function lies in the fact that this func-
tion ZM determine the spectrum of the manifold (M, g). Indeed, for any real
number µ > 0 consider the function

eµtZM(t)− eµt =
+∞

∑
k=0

mke
(µ−λ̃k)t − eµt =

+∞

∑
k=1

mke
(µ−λ̃k)t

therefore, if µ < λ̃1 then lim
t→+∞

eµtZM(t)− eµt = 0; else if µ = λ̃1 then lim
t→+∞

eµtZM(t)−
eµt = m1; else if µ > λ̃1 then

lim
t→+∞

eµtZM(t)− eµt = +∞.

Thus λ̃1 is the unique real number µ > 0 such that the function t 7→ eµtZM(t)−
eµt admits a finite limit as t tends to infinity. Consequently the function ZM

determine the first non-null eigenvalue λ̃1. By induction, with the function

eµtZM(t)−
i−1

∑
j=1

mje
(µ−λ̃j)t =

+∞

∑
j=i

mje
(µ−λ̃j)t

it is obvious to check that the function ZM determine all eigenvalues λ̃k k ≥ 0.
For finish, observe also that the function ZM is associated to the spectral density
distribution :

DM(t) :=
+∞

∑
k=0

δλk

here δλk
denotes the Dirac mass distribution at the point λk. Indeed, using the

Fourier Transform map (in the sense of distributions) we have :

D̂M(t) :=
+∞

∑
k=0

δ̂λk
=

1√
2π

+∞

∑
k=0

e−itλk = ZM(it)

with the following Fourier Transform convention :

f̂ (x) :=
1√
2πh̄

∫

R

f (t)e−
ixt
h̄ dt.
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3 A simple example of trace formula : the case of

flat torus

3.1 The Poisson summation formula for a lattice

The simplest example of exact trace formula is the Poisson summation formula :
let f ∈ S(R) and consider the function :

F(x) := ∑
k∈Z

f (x+ k).

Since the function f belongs to the Schwartz’s space S(R) it is obvious that
the serie F is absolutely convergent and is 1−periodic. Thanks to the Fourier’s
series theory we have the following equality

F(x) = ∑
n∈Z

cn(F)e
2iπnx

with

cn(F) =
∫ 1

0
F(t)e−2iπnt dt.

Therefore we have

cn(F) =
∫ 1

0

(
∑
k∈Z

f (t+ k)

)
e−2iπnt dt = ∑

k∈Z

(∫ 1

0
f (t+ k)e−2iπnt dt

)

= ∑
k∈Z

∫ k+1

k
f (u)e−2iπnu du = f̂ (n)

with the convention :

f̂ (x) =
∫ +∞

−∞
f (t)e−2iπyt dt.

Consequently, for all x ∈ R, we get the Poisson summation formula :

∑
k∈Z

f (x+ k) = ∑
n∈Z

f̂ (n)e2iπnx;

in particular with x = 0 we obtain the usual classical form :

∑
k∈Z

f (k) = ∑
ℓ∈Z

f̂ (ℓ).

More generally, let a := (a1, a2, ..., an) ∈ Rn such that for all i, ai 6= 0; consider
the associated lattice :

Γ := a1Z + a2Z + · · ·+ anZ

(this is a sub-lattice in Rn of rank n ≥ 1). The Poisson summation formula for
this lattice reads :

∑
k∈Γ

f (k) =
1

Vol(Γ) ∑
ℓ∈Γ⋆

f̂ (ℓ)
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with the notation :
f̂ (y) :=

∫

Rn
f (t)e−2iπ〈y,t〉 dt

and Γ⋆ is the dual lattice of Γ :

Γ⋆ := {x ∈ R
n; ∀y ∈ Γ, 〈x, y〉 ∈ Z} .

Since (a1, a2, ..., an) is a Z-basis of Γ, the dual lattice Γ⋆ is given by the equality

Γ⋆ =
(
A−1)T Zn where

A :=




a1 0 · · · 0

0 a2 0
...

... 0 · · · 0
0 · · · 0 an




.

Consequently
(

1
a1
, 1
a2
, ..., 1

an

)
is Z-basis of the dual lattice Γ⋆ ; it follows that

Vol(Γ⋆) = 1
Vol(Γ)

. Moreover it is easy to show that Γ⋆⋆ = Γ (we have not Γ⋆ =

Γ).
A classical calculus of Fourier transform show that the Fourier transform of

the function
f (x) = e−α‖x‖2 ∈ S(Rn)

where α > 0 is given for all y ∈ Rn by :

f̂ (y) =
(π

α

) n
2
e−

π2‖y‖2
α .

Now, applying Poisson’s formula, we get

∑
x∈Γ

e−α‖x‖2 =
π

n
2

Vol(Γ)α
n
2

∑
y∈Γ⋆

e−
π2‖y‖2

α

replacing the lattice Γ by Γ⋆ we obtain the precious formula :

∑
x∈Γ⋆

e−α‖x‖2 =
π

n
2Vol(Γ)

α
n
2

∑
y∈Γ

e−
π2‖y‖2

α (3.1)

because Γ⋆⋆ = Γ and Vol(Γ⋆) = 1
Vol(Γ)

. In particular, with α = 4π2t, t > 0, we
get the following formula :

∑
x∈Γ⋆

e−4π2t‖x‖2 =
Vol(Γ)

(4πt)
n
2

∑
y∈Γ

e−
‖y‖2
4t . (3.2)

3.2 Trace formula on a flat torus

Now, let us interpret this last formula in term of spectral geometry datas. For
this we need to compute the spectrum of the torus associated to the lattice Γ.
Start with the case of dimension one, i.e. the manifold the one dimensional
torus Ta of length a > 0, in others words the manifold id the circle of radius
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a. We will show briefly that spectrum of the Laplacian − d2

dx2
with closed con-

ditions on this circle is given by :

Spec(Ta) =

{
4π2n2

a2
, n ∈ Z

}

with associated eigenfunctions : x 7→ en(x) = e
2iπnx

a , n ∈ Z.
Indeed, if the scalar number λ is in the spectrum of − d2

dx2
, there exists a non

trivial function u ∈ L2 (Ta) such that

−u′′ = λu.

Thanks to the L2 Fourier’s series theory the sequence of functions
(
x 7→ en(x) = e

2iπnx
a

)
n∈Z

is a Hilbert basis of L2 (Ta), hence there exists an unique sequence (cn)n∈Z
∈

CZ such that :
u = ∑

n∈Z

cnen.

So we can rewrite the differential equation −u′′ − λu = 0 as :

∑
n∈Z

cn

(
4π2n2

a2
− λ

)
en = 0.

Since u 6= 0, there exists n0 ∈ Z such that cn0 6= 0, hence because (en)n∈Z
is a

basis we get :

−u′′ − λu = 0 ⇒ λ =
4π2n20
a2

.

Thus we have the inclusion Spec(Ta) ⊂
{

4π2n2

a2
, n ∈ Z

}
. Conversely, it is clear

that for any integer n ∈ Z we have − d2

dx2
en = 4π2n2

a2
en, so finally we get

Spec(Ta) =

{
4π2n2

a2
, n ∈ Z

}
.

Now, let us come back to the lattice Γ := a1Z + a2Z + · · · anZ. The associated
flat torus is the following quotient space :

Ta := R
n/Γ.

Using multidimensional Fourier’s series theory, the sequence of functions :

(
x 7→ e2iπ〈ω,x〉

)
ω∈Γ⋆

=

(
(x1, x2, . . . , xn) 7→ e

2iπk1x1
a1

+
2iπk2x2

a2
+···+ 2iπknxn

an

)

(k1,k2,...,kn)∈Zn

is a Hilbert basis of L2 (Ta), so the same argument as in dimension one shows
that :

Spec(Ta) =

{
4π2

(
k21
a21

+
k22
a22

+ · · ·+ k2n
a2n

)
, (k1, k2, . . . , kn) ∈ Z

n

}
.
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In other words : the spectrum of the Laplacian (with closed conditions) on a
flat torus Rn/Γ is given by :

Spec(Rn/Γ) =
{
4π2 ‖γ‖

Rn , γ∗ ∈ Γ∗
}
.

We will interpret this equality using the spectral function ZM and the lenght
spectrum of the flat torus Rn/Γ. In the one-dimensional case, the lenght spec-
trum of the circle Ta is obviousely given by :

Σ = {|n| a, n ∈ Z} ,

and in the multidimensional case we have

Σ =

{√
n

∑
i=1

(kia1)
2, (k1, k2, ..., kn) ∈ Z

}
.

Since (see section 3.2) we have the equality :

∑
x∈Γ⋆

e−4π2t‖x‖2 =
Vol(Γ)

(4πt)
n
2

∑
y∈Γ

e−
‖y‖2
4t

and because
ZΓ(t) = ∑

x∈Γ⋆

e−4π2t‖x‖2

holds for all t ≥ 0, we obtain the following trace formula :

ZΓ(t) = ∑
λ∈Spec(Γ)

e−λt =
Vol(Γ)

(4πt)
n
2

∑
ℓ∈Σ

e−
ℓ2
4t . (3.3)

In the previous equality on the right-hand side we have the geometrical infor-
mations of the manifold : dimension, volume,... and on the left-hand side we
have spectral informations. This formula have a very important application :
The Milnor counter-example of isospectrality.

3.3 A fundamental application : Milnor’s counterexample of
isospectrality

In 1966,M. Kac [Kac] in his famous article ”Can one hear the shape of a drum?”
investigate the following question : given a Riemannian manifold (the mem-
brane of a drum), is the spectrum of ∆g (the harmonics of the drum) determine
geometrically, up to an isometry, the manifold (M, g) ? The exact formulation
of isospectrality question is : if two Riemannian manifolds (M, g) and (M′, g′)
are isospectral, are they isometric ? This question may be traced back to H.
Weyl in 1911-1912 and became popularized thanks to M. Kac’s article. Before
1964, this problem was stay quite mysterious and J. Milnor [Mil] give the first
counter-example : a pair of 16-dimensional flat torus which are isospectral and
nonisometric. The proof of Milnor is based on the previous trace formula.

Theorem 3.1. (Milnor, 1964). There exists two lattices Γ and Γ′ of R16 such that the
associated tori T16(Γ) and T16(Γ′) are isospectral but not isometric.
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Indeed, let us consider the lattice Γ(n) generated by the lattice γn ⊂ Zn

defined by :

γn :=

{
(x1, x2, . . . , xn) ∈ Z

n;
n

∑
j=1

xj ∈ 2Z

}

with n = 8 or n = 16. One checks immedialely that : Γ⋆(n) = Γ(n); in conse-
quence the volume of Γ(n) is equal to 1.
The first step of the proof consist to showwith basic arguments that the lattices
Γ(16) and Γ(8) ⊕ Γ(8) are non-isometric. Then, it follows immediately that
their associated tori are also non-isometric.
The second step of this proof is based on trace formula. In this way, we intro-
duce the lattice Γt(n) :=

√
tΓ(n) with t > 0 a parameter. We have :

Γ⋆
t (n) =

1√
t
Γ⋆(n) =

1√
t
Γ(n).

On one hand, we have :

∑
x∈Γ(n)

e−πt‖x‖2 = ∑
x∈Γt(n)

e−π‖x‖2

and, on the other hand, with the formula (3.1)

∑
x∈Γt(n)

e−π‖x‖2 =
1

Vol (Γt(n))
∑

ℓ∈Γ⋆
t (n)

e−π‖ℓ‖2

=
1

t
n
2Vol(Γ(n))

∑
ℓ∈Γ⋆

t (n)

e−π‖ℓ‖2

=
1

t
n
2Vol(Γ(n))

∑
ℓ∈Γ(n)

e−
π‖ℓ‖2

t .

In other words, if we introduce the following theta function :

θΓ(t) := ∑
x∈Γ

e−πt‖x‖2 ;

then, we obtain for all t > 0

θΓ(n)(t) =
1

t
n
2

θΓ(n)

(
1
t

)
.

Moreover, observe that for all t > 0

ZΓ(n)

(
t

4π

)
= ∑

λ∈Spec(Γ(n))

e−λ t
4π =

1

t
n
2

∑
y∈Γ(n)

e−
π‖y‖2

t =
1

t
n
2

θΓ(n)

(
1
t

)
;

therefore, finally, for all t > 0, we have

ZΓ(n)

(
t

4π

)
=

1

t
n
2

θΓ(n)

(
1
t

)
= θΓ(n)(t).
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The last part of the proof may be summarized in : first, to observe that the theta
function

z 7→ θΓ(n)(z)−
1

z
n
2

θΓ(n)

(
1
z

)

admits a holomorphic expansion on {z ∈ C; Re(z) > 0}, consequently, for all
z ∈ C; Re(z) > 0 we have

θΓ(n)(z) =
1

z
n
2

θΓ(n)

(
1
z

)
.

And the last part arguments of the proof consists to show that θΓ(16) and θΓ(8)⊕Γ(8)
are modular forms of weight equal to 4 such that

θΓ(16)(∞) = θΓ(8)⊕Γ(8)(∞) = 1,

and it is possible to conclude that

θΓ(16) = θΓ(8)⊕Γ(8).

Finally, the tori Γ(16) and Γ(8) ⊕ Γ(8) are isospectral (because theta function
determine the spectrum).
As it turns out, in 1984 and 1985, respectively C. Gordon, E.N. Wilson [Go-
Wi] and T. Sunada [Sun] gave a systematic construction for counter-example.
In 1992, C. Gordon, D. Webb and S. Wolpert [GWW1], [GWW2] gave the first
planar counter-example. See also the articles of P. Bérard [Bér1], [Bér2], [Bér3].

4 Heat kernel and trace formulas

In this section we present the fundamental notion of heat kernel and one of
the most important result in geometry and topology : the Minakshisundaram-
Pleijel expansion. Let (M, g) be a closed Riemannian manifold and let us de-
notes by (λk)k≥0 the spectrum of (M, g).

4.1 The heat kernel

The Cauchy problem for the heat equation on a closed Riemannian manifold
(M, g) is the following equation : find a function u : M× R

∗
+ → R such that :





∂u

∂t
(x, t) = ∆gu(x, t)

u(x, 0) = u0(x) ∀x ∈ M.

where u0 is a given smooth function on M. Physically, for every point x ∈ M
the number u0(x) is an initial temperature data on the manifold M and the
solution (x, t) 7→ u(x, t) describe the evolution of the temperature for the point
x ∈ M with the time t.
The first way to solve this equation is to use the spectral theory of ∆g and the
bounded functional calculus of operator. Indeed, we can consider the bounded
one-parameter semi-group {U(t)}t≥0 defined for all t ≥ 0 by

U(t) := et∆g .

11



The generator of this semi-group is the operator ∆g. One sees immedialely that
the function u(x, t) = et∆gu0(x) is a solution of heat equation. By the bounded
functional calculus, for any t ≥ 0 and for any integer k we also have

(
et∆g

)
ek =

(
e−tλk

)
ek

where (ek) is a Hilbert basis of eigenvectors. So, for any initial condition u0 =
+∞

∑
k=0

akek ∈ L2(M), we have :

u(x, t) = U(t)u0(x) =
(
et∆g

)(+∞

∑
k=0

akek(x)

)

=
+∞

∑
k=0

ake
−tλkek(x).

In conclusion, for all x ∈ M and for all t ≥ 0,

u(x, t) =
+∞

∑
k=0

〈u0, ek〉L2 e−tλkek(x).

Another way to solve heat equation is to use the heat kernel of the manifold. The
theory of heat kernel on Riemannian manifolds is a deep and a fundamental
theory providing many powerful tools for understanding the relationship be-
tween geometry and diffusion processes. The diffusion operator related to the
Laplacian on a compact Riemannian manifold is the heat operator. This opera-
tor is an operator acts on smooth functions and admits a fundamental solution
which is called the heat kernel. Indeed, the heat kernel is the fundamental so-
lution of the heat process diffusion equation ∂

∂tu = ∆u. The heat kernel is a
function

E : (x, y, t) ∈ M× M× R
∗
+ 7−→ E(x, y, t)

such that for all y ∈ M the function (x, t) 7→ E(x, y, t) is a solution of the heat
equation and for all x ∈ M and every test function ϕ ∈ D(M) we have the
initial data condition

lim
t→0+

∫

M
E(x, y, t)ϕ(y) dVg(y) = ϕ(x).

For a more complete introduction to heat kernel theory, see for example [Dav],
[Ya-Sc], [BGV], [Gri], [Dod] and for some application see also the article [SaC].

Definition 4.1. The heat kernel (or fundamental solution) of the heat equation on
a closed Riemannian manifold (M, g) is a function :

E :





M× M× R∗
+ −→ R

(x, y, t) 7−→ E(x, y, t)

such that :
(i) E is C0 in the three variables (x, y, t); E is C2 in the second variable y and C1

12



in the third variable t.
(ii) For all (x, y, t) ∈ M2 × R∗

+we have

∂E

∂t
(x, y, t) = ∆g,yE(x, y, t),

where ∆g,y is the Laplacian for the second variable y; in other words, for all
fixed x ∈ M, the function (y, t) 7→ E(x, y, t) is a solution of the heat equation.
(iii) For all x ∈ M and for all test function ϕ ∈ D(M)

lim
t→0+

∫

M
E(x, y, t)ϕ(y) dVg(y) = ϕ(x).

Since the manifold is compact, we have existence and uniqueness of a such
function E (for the construction see [BGM], [Dod] or [Cha2]). We call this
solution the heat kernel of M.

Example 4.2. In the Eucliden case M = Rn with g = can, heat kernel is given
by the expression

E(x, y, t) =
1

(4πt)
n
2
e−

‖x−y‖2
4t ,

This exemple is very important because it can be used to it for construct the
heat kernel in the general case.

Let us introduce the one parameter family integral operator :

Pt :





L2(M) → L2(M)

ϕ 7→
∫
M E(x, y, t)ϕ(y) dVg(y)

where t > 0 is the time parameter, in other words for all x ∈ M we have

Pt(ϕ)(x) =
∫

M
E(x, y, t)ϕ(y) dVg(y).

For all t > 0, the associated integral kernel is (x, y) 7→ E(x, y, t). An impor-
tant fact is that for all ϕ ∈ L2(M), the function Pt(ϕ) is a solution of the heat
equation. As it turns out, the family {Pt}t≥0 is a non-negative semi-group of
bounded operator and this semi-group coincide with U(t) := et∆g .
Now, let us focus on the link between the heat kernel and the spectrum of the
Laplacian. First, observe that we have the fundamental equality :

E(x, y, t) =
+∞

∑
k=0

e−tλkek(x)ek(y),

in the sense that the serie converges uniformly and absolutely on M × M ×
[ε,+∞[ and is limit is equal to E(x, y, t). Indeed, let us consider the function

E : M2 × R+ → R defined by E (x, y, t) :=
+∞

∑
k=0

e−tλkek(x)ek(y). We have

∆g,yE (x, y, t) =
+∞

∑
k=0

e−tλkek(x)∆g,yek(y) =
+∞

∑
k=0

−λke
−tλk ek(x)ek(y).

13



On the other hand,

∂E
∂t

(x, y, t) =
+∞

∑
k=0

−λke
−tλkek(x)ek(y)

hence for all (x, y, t) ∈ M2 × R∗
+ we obtain the equality

∂E
∂t

(x, y, t) = ∆g,yE (x, y, t).

Moreover, for all ϕ ∈ D(M) we have

∫

M
E (x, y, t)ϕ(y) dVg(y) =

+∞

∑
k=0

e−tλkek(x)
∫

M
ek(y)ϕ(y) dVg(y)

=
+∞

∑
k=0

e−tλkek(x) 〈ϕ, ek〉L2

whence

lim
t→0+

∫

M
E (x, y, t)ϕ(y) dVg(y) =

+∞

∑
k=0

ek(x) 〈ϕ, ek〉L2 = ϕ(x).

Hence, E is a fundamental solution of heat equation which can be expressed as

E(x, y, t) :=
+∞

∑
k=0

e−tλkek(x)ek(y).

4.2 The spectral partition function ZM as a trace

Next, let us examine what happens with the heat kernel on the diagonal y = x.
For a fixed ε > 0, for all t ≥ ε and for all x ∈ M the serie

(x, t) 7−→ ∑
k≥1

e−tλke2k(x)

is convergent and its limit is equal to E(x, x, t). Consequently, for all t ∈ [ε,+∞[

∫

M
E(x, x, t) dVg(x) =

∫

M

(
+∞

∑
k=1

e−tλke2k(x)

)
dVg(x)

=
+∞

∑
k=1

e−tλk

∫

M
e2k(x) dVg(x) =

+∞

∑
k=1

e−tλk ‖ek‖2L2 =
+∞

∑
k=1

e−tλk .

So, we can define the trace of the operator et∆g by

ZM(t) := trace
(
et∆g

)
=
∫

M
E(x, x, t) dVg(x) =

+∞

∑
k=1

e−tλk . (4.1)

We conclude that the serie of functions t 7→
+∞

∑
k=1

e−tλk is uniformly and abso-

lutely convergent on [ε,+∞[.
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4.3 From Minakshisundaram-Pleijel expansion ...

Avery important corollary of the of heat kernel construction is theMinakshisundaram-
Pleijel expansion:

Theorem 4.3. (Minakshisundaram-Pleijel expansion). Let (M, g) be a compact
Riemannian manifold of dimension n, and let us denote by E the heat kernel of (M, g).
We have the expansion

E(x, x, t) ∼
t→0+

1

(4πt)
n
2

(
u0(x, x) + u1(x, x)t+ · · ·+ uk(x, x)t

k + . . .
)

where the functions x 7→ uk(x, x) are smooths on M and depend only on the curvature
tensor and its covariant derivatives.

If for any integer k, we denote

ak :=
∫

M
uk(x, x) dVg(x),

then we obtain the nice equality

ZM(t) =
+∞

∑
k=1

e−tλk ∼
t→0+

1

(4πt)
n
2

(
a0 + a1t+ · · ·+ akt

k + · · ·
)

(4.2)

i.e., for any integer N > 0 and for all t > 0,

ZM(t) =
1

(4πt)
n
2

N

∑
k=0

akt
k +O

(
tN− n

2+1
)
.

The computation of the coefficients ak is difficult. Nevertheless, we have :

a0 = Vol(M, g)

and

a1 =
1
6

∫

M
Scalg dVg.

The expression of the term a2 is also know:

a2 =
1

360

∫

M

(
2 |R|2 − 2 |Ric|2 + 5Scal2g

)
dVg,

where R is the Riemann curvature tensor. The others coefficients ak for k ≥ 2
are very complicated to compute and they are quite futile, more details can be
found in the books [BGM], [Ber]. Note that, in the case of surfaces (i.e.dim(M) =
2) the Gauss-Bonnet formula yields

a1 =
π

3
χ(M)

where χ(M) is the Euler-Poincaré characteristic of the surface M. In conse-
quence for any closed surface we have :

ZM(t) =
Vol(M, g)

4πt
+

χ(M)

12
+

πt

60

∫

M
K2 dVg+P(t)t2
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where t 7→ P(t) is a bounded function on M.
A fondamental corollary of the Minakshisundaram-Pleijel expansion is the fol-
lowing fact: if we know the spectrum of (M, g), then in particular we know

• the dimension of the manifold;

• the volume of the manifold;

• the integral of the scalar curvature Scalg over the manifold.

More precisely :

Corollary 4.4. If two Riemannian manifolds (M, g) and (M′, g′) are isospectral then
:
(i) the dimensions of M and M′ are equal.
(ii) The volumes of (M, g) and (M′, g′) are equal.
(iii) The integrals of the scalar curvature over (M, g) and (M′, g′) are equal. In par-
ticular, if M and M′ are surfaces, then χ(M) = χ(M′).

In the case of surfaces, the dimension and the Euler-Poincaré characteristic
are topological invariants.

4.4 ... to Weyl asymptotic formula

To finish, let us present a very famous corollary : that is the Weyl asymptotic
formula. This formula is based on the Karamata Tauberian Theorem, this theorem
reads that for any positive measure µ on R+ if

∫ +∞

0
e−tx dµ(x) ∼

t→0

a

tα

holds for any α, a > 0, then

∫ λ

0
dµ(x) = µ ([0, λ]) ∼

λ→∞

a

Γ(α + 1)
λα.

Let us apply this result to the following positive measure µ :=
+∞

∑
k=1

δλk
, since

ZM(t) ∼
t→0

Vol(M, g)

(4πt)
n
2

,

and using the Karamata Tauberian theorem, we obtain

∫ λ

0
dµ(x) ∼

λ→∞

Vol(M, g)

(4π)
n
2

1
Γ
(
n
2 + 1

)λ
n
2 =

BnVol(M, g)
(2π)n

λ
n
2

with Bn := π
n
2

Γ( n
2+1)

. And, on the other hand, the counting eigenvalues function

satisfy :

# ({k ∈ N, λk ≤ λ}) =
∫ λ

0
dµ(x);

consequently, we deduce the :
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Theorem 4.5. (Weyl asymptotic formula). Let (M, g) be a compact Riemannian
manifold of dimension n, and let us denote by (λk)k≥0 the eigenvalues of −∆g on
(M, g). Then

# ({k ∈ N, λk ≤ λ}) ∼
λ→+∞

BnVol(M, g)
(2π)n

λ
n
2

where Bn := π
n
2

Γ( n
2+1)

is the volume of the closed unit ball in (Rn, can).

An obvious consequence of this asymptotics is the equivalent one

λk ∼
k→+∞

(
(2π)n

BnVol(M, g)

) 2
n

k
2
n .

4.5 Spectral zeta function and uniformization theorem

In this subsection we present the relationship between the eigenvalues of a
closed surface and it associated conformal geometry. For more details on this
amazing subject see for example [Cha] or [Gur].
The spectral zeta function associed to a surface (M, g0) is given by the formula :

ζg0(s) :=
+∞

∑
n=1

1
λs
n

where s ∈ C such that Re(s) > 1. For all s ∈ C such that Re(s) > 1 we have :

ζg0(s) =
+∞

∑
n=1

λ−s
n =

+∞

∑
n=1

e−s ln(λn)

using the Weyl’s formula ie λn ∼
n→+∞

Cn where C := 4π2

B2Vol(M,g) > 0; the nature

of the series
+∞

∑
n=1

1
λs
n
and

+∞

∑
n=1

1
ns

are the same, the serie
+∞

∑
n=1

1
ns

is the usual Riem-

man function which it is convergent for all s ∈ C such that Re(s) > 1. So the

serie ζg0(s) :=
+∞

∑
n=1

1
λs
n
is well defined and convergent for all s ∈ C such that

Re(s) > 1.
Now we shall prove that the function ζg0 admit a meromorphic continuation
to C with a simple pole at s = 1 : first recall that Γ the Euler Gamma function

Γ(s) :=
∫ +∞

0
e−tts−1 dt

converge for all s ∈ C such that Re(s) > 0, moreover for all s ∈ C such that
Re(s) > 0 we have the relation :

1
Γ(s)

= lim
n→+∞

n!ns

s(s+ 1)(s+ 2) · · · (s+ n)

the function Γ admit a meromorphic continuation to C − {0,−1,−2, ...} with
simple poles at s = 0,−1,−2, ... . By changing variables we have for all x > 0
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1
xs

=
1

Γ(s)

∫ +∞

0
e−xtts−1 dt

therefore, for all s ∈ C such that Re(s) > 1 we get

ζg0(s) =
+∞

∑
n=1

1
Γ(s)

∫ +∞

0
e−λntts−1 dt

=
1

Γ(s)

∫ +∞

0

(
+∞

∑
n=1

e−λnt

)
ts−1 dt

=
1

Γ(s)

∫ +∞

0
(ZM(t)− 1) ts−1 dt

because λ0 = 0 thus

ζg0(s) =
1

Γ(s)

∫ 1

0
(ZM(t)− 1) ts−1 dt+

1
Γ(s)

∫ +∞

1
(ZM(t)− 1) ts−1 dt.

Start by studying the first integral : using the remark 7.6.2, we have for all
s ∈ C such that Re(s) > 1

1
Γ(s)

∫ 1

0
(ZM(t)− 1) ts−1 dt

=
1

Γ(s)

∫ 1

0

(
Vol(M, g)

4πt
+

χ(M)

12
+

πt

60

∫

M
K2 dVg+P(t)t2 − 1

)
ts−1 dt

=
1

Γ(s)

∫ 1

0

(
Vol(M, g)

4πt
+

χ(M)

12
+

πt

60

∫

M
K2 dVg − 1

)
ts−1 dt

+
1

Γ(s)

∫ 1

0
P(t)ts+1 dt.

The function s 7→ 1
Γ(s)

∫ 1

0
P(t)ts+1 dt is holomorphic for Re(s) > −2 and

1
Γ(s)

∫ 1

0

(
Vol(M, g)

4πt
+

χ(M)

12
+

πt

60

∫

M
K2 dVg − 1

)
ts−1 dt

=
1

Γ(s)

[
ts−1

s− 1
Vol(M, g)

4π
+

χ(M)ts

12s
+

πts+1

60(s+ 1)

∫

M
K2 dVg −

ts

s

]t=1

t=0

this quantity converges for all s ∈ C such that Re(s) > 1 and has a meromor-
phic continuation to C with a simple pole in s = 1 (because Γ(s) = lim

n→+∞

s(s+1)(s+2)···(s+n)
n!ns ).

For finish : let us study the second integral : for all s ∈ C such that Re(s) > 1

1
Γ(s)

∫ +∞

1
(ZM(t)− 1) ts−1 dt

=
1

Γ(s)

∫ +∞

1

(
+∞

∑
n=1

e−λnt

)
ts−1 dt
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and for all t ≥ 1, e−λnt = e−λ1te(λ1−λn)t , so since the eigenvalues λn grows like
n as n tends to infinity (Weyl asymptotic formula) and since 0 < λ1 ≤ λ2 · · · ≤
λn for t large enough we have

+∞

∑
n=1

e−λnt ≤ Ce−λ1t

consequently using the holomorphic theorem under integral sign we get easily

that the function s 7→ 1
Γ(s)

∫ +∞

1

(
+∞

∑
n=1

e−λnt

)
ts−1 dt is holomorphic on C. Fi-

nally the function ζg0 has a meromorphic expansion to C with a simple pole in
s = 1, in particular ζg0 is analytic in 0, hence the quantity ζ ′g0(0) exist and

ζ ′g0(0) = lim
s→0

ζg0(s)− ζg0(0)
s− 0

.

Next, the derivative of ζg0 is

ζ ′g0(s) =
+∞

∑
i=1

− ln(λi)
1
λs
i

hence for s = 0 we get

ζ ′g0(0) = −
+∞

∑
i=1

ln(λi) = − ln

(
n

∏
i=1

λi

)

therefore we obtain :

e
−ζ ′g0 (0) =

+∞

∏
i=1

λi = det
(
−∆g0

)
.

Thus we can define the determinant of ∆g0 by the formula :

det
(
−∆g0

)
= e

−ζ ′g0 (0).

Now, let g ∈ [g0], so there exists u ∈ C∞(M) such that g = e2ug0, the Polyakov
formula (see for example [Cha]) is :

ln

(
det

(
−∆g

)

det
(
−∆g0

)
)

= − 1
12π

∫

M

(
‖∇u‖2 + Kg0u

)
dVg0

we can consider the following functional :

F :





C∞(M) → R

u 7→ ln
(

det(−∆g)
det(−∆g0)

)
.

Since the determinant is not a scale invariant we consider the normalized func-
tional determinant

S :





C∞(M) → R

u 7→ −12π ln
(

det(−∆g)
det(−∆g0)

)
+ 2πχ(M) ln (Vol(M, g))
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where χ(M) is the Euler’s characteristic of M. The critical functions of S are
functions u such that

−∆g0u+ Kg0 = ce2u

where c is a real constant. Using Gaussian curvature equation we have : u is
a critical function of S if and only if the surface M with the conformal metric
g := e2ug0 admits a constant Gaussian curvature Kg. In 1998, B. Osgood, R.
Phillips and P. Sarnak [OPS1], [OPS2] proved the following theorem :

Theorem 4.6. (Osgood, Philipps, Sarnak, 1998). The supremum sup
u∈C∞(M)

S(u) of

the previous functional exists and it is a maximum : there exists u0 ∈ C∞(M) such
that Gaussian curvature Kg (where g := e2ug0) is constant on M.

It is turn out that each surface can be endowed with a metric conformally
equivalent to a metric with constant Gaussian curvature. The main conse-
quence is the famous Poincaré-Klein-Koebe uniformization theorem :

Theorem 4.7. (Uniformization theorem). Let (M, g0) be a closed surface with a
Riemannian metric g0. Then there exists an unique metric1 g conformal to g0 on M
with a constant Gaussian curvature Kg ∈ {+1, 0,−1}.

The values of the constant Kg ∈ {+1, 0,−1} depends on the topology of the
surface M. Recall that the Gauss-Bonnet formula for a closed surface is :

∫

M
K dVg = 2πχ(M)

and for a surface with boundary
∫

M
K dVg +

∫

M
Kg dSg = 2πχ(M)

where χ(M) is the Euler-Poincaré characteristic of M and Kg is the geodesic
curvature on the boundary. According to the Gauss-Bonnet formula the sign
of the curvature is determined by the Euler-Poincaré characteristic2 χ(M) of
M. Therefore the universal covering of every closed surface can be isometri-
cally embedded onto :

1. the round sphere S2 for genus zero ; χ(M) = 2 > 0, and in this case
Kg ≡ +1.

2. The Euclidian plane R
2 for genus one : χ(M) = 0, in this case Kg ≡ 0.

3. The hyperbolic space H2 for genus g ≥ 2: χ(M) = −2 < 0, in this case
Kg ≡ −1.

1called a uniformization metric.
2For M a closed orientable surface χ(M) = 2− 2g where g is the genus of the surface.
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K=1

K=0

K=-1

Fig. 1. Three geometries on closed surfaces.

5 Trace formulas on hyperbolic manifolds

In this section we investigate trace formulas on closed hyperbolic manifolds,
in particular the case of surfaces.

5.1 Lenght spectrum versus spectrum

The lenght spectrum of a Riemannian manifold (M, g) is the set of lengths
of closed geodesics on (M, g) counted with multiplicites (the multiplicity of
a lenght is the number of free homotopy classes of closed curves containing
a geodesic of the given lenght). In 1973, Y. Colin de Verdière [Col1], [Col2]
showed that, in the compact case, up to a generic hypothesis (which it is al-
ways satisfied in the case of negative sectional curvature), the spectrum of the
Laplacian determines the lenght spectrum. Colin de Verdière’s proof is based
on trace formulas. More precisely, in the first article [Col1], the author focus
on closed hyperbolic surface and he use the heat kernel of the surface via the
following trace formula (see formula 4.2) :

+∞

∑
k=0

e
−λk(M)

z =
∫

M
E

(
x, x,

1
z

)
dVg(x)

with a complex time t = 1
z ∈ C, and he used an approximation of the heat

kernel E
(
x, x, 1z

)
. The main result of [Col1] is :

Theorem 5.1. (Colin de Verdière, 1973). Let M be a compact hyperbolic surface
with a constant sectional curvature : K ≡ −1. Let us denote by L the set of free
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homotopy classes of M, and if a belongs to L then |a| denote the lenght of the unique
periodic geodesic of a. Then, for any z ∈ C such that Re(z) ≥ ξ0 > 0 we have :

+∞

∑
k=0

e
−λk
z =

( z

4π

)
vol(M) +

√
z

4π

+∞

∑
a∈L, γ 6=e

uγe
−z|a|2

4 +O+(1)

with uγ are real numbers such that uγ > 0 and O+(1) is a bounded function on the
set of complex numbers z ∈ C such that Re(z) ≥ ξ0 > 0.

One consequence of this result is :

Corollary 5.2. For any compact hyperbolic surface M with a constant sectional cur-
vature : K ≡ −1, the spectrum of the surface M determine the lenght spectrum of
M.

In the second article [Col2], Y. Colin de Verdière gave a generalisation in
the case of hyperbolic manifolds of dimension n ≥ 2 with a constant sectional
curvature : K ≡ −1, for more recent approach and details see also [Col3].

(M,g), K<0

Fig. 2. A closed hyperbolic surface with some periodic geodesics.

5.2 The Selberg formula for hyperbolic surface

Now let us present some points from the fascinating story of Selberg formula
on hyperbolic surfaces. Main application of this formula concerning dynam-
ical system, in particular for understand trajectories and flows on negatively
curved surfaces. The proof of this formula is based on many technical compu-
tations (see [Sel], [Mar] or [Vor]). The statement of this formula is the follow-
ing : let (M, g) be a compact hyperbolic surface, and consider a test function
h : C → C such that :

• h is analytic for z such that |Im(z)| ≤ σ with σ >
1
2 ;

• h is even;

• for all z in the strip |Im(z)| ≤ σ, we have h(z) = O

(
1

(1+|Re(z)|)N

)
.

Under this previous hypothesis, the Selberg formula read :

Theorem 5.3. (Selberg Formula). Using the previous hypothesis, we have :

+∞

∑
k=0

h

(√
λk −

1
4

)
=

Vol(Γ)

4π

∫ +∞

−∞
h(r) tanh(πr)r dr+ ∑

γ∈Γ

+∞

∑
n=1

|γ|ĥ
(
n|γ|
2π

)

4π sinh
(
n|γ|
2

)
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here Γ denotes the set of prime closed oriented geodesics of the surface M. In the formula
we use the convention :

f̂ (y) :=
∫ +∞

−∞
f (t)e−2iπyt dt.

The first application of this formula is to a Weyl law for surface :

# ({k ∈ N, λk ≤ λ}) ∼
λ→+∞

Vol(Γ)
4π

λ.

5.3 The zeta Selberg function

One other important application of Selberg formula concerning the density of
closed geodesics on a compact hyperbolic surface : let us introduce the follow-
ing counting function :

Π(L) := # ({γ ∈ Γ, |γ| ≤ L}) .
One’s important hope is to understand this function, and more precisely to
give a precise estimate of Π(L) for L → +∞. In the goal to estimate the func-
tion Π(L) for L → +∞ in the case of a compact hyperbolic surface M with a
constant sectional curvature : K ≡ −1, A. Selberg, in a famous paper of 1956
[Sel] introduce a special zeta function : s ∈ C 7→ ζSelberg(s) for understand the
dynamic of geodesics on this surface. This function zeta is defined for all s ∈ C

by the double product formula :

ζSelberg(s) := ∏
γ∈Γ

+∞

∏
k=0

(
1− e−(s+k)|γ|

)
.

An another formulation of ζSelberg is done by :

ζSelberg(s) = exp

(
− ∑

γ∈Γ

+∞

∑
k=0

+∞

∑
m=1

(
e−(s+k)m|γ|

m

))
.

We have an important analogy with the zeta Riemann function. Before to
study the function ζSelberg, we briefly recall some classical elements about the
classical Riemann zeta function. The Riemann zeta function is defined for all
s ∈ C,Re(s) > 1 by the serie :

ζ(s) :=
+∞

∑
n=1

1
ns

.

This function admits a holomorphic expansion to C − {1}. Moreover, for all
s ∈ C such that Re(s) > 1 we have we have also the Euler prodcut :

ζ(s) = ∏
p∈P

1
1− e−s ln p

here P is the set of prime numbers. For all x > 0, we define the counting prime
number functions
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π(x) := # ({p ∈ P, p ≤ x}) .
The statement of the prime number theorem is : for x → +∞ we have

π(x) = ℓi(x) (1+O(1))

where ℓi is the log-integral function : ℓi(x) :=
∫ x

2

du

ln u
. The actual description

of zeros for ζ is the following :

• we have trivial zeros : {−2k, k ≥ 1};
• there exists no zeros in the half plane Re(z) ≥ 1;

• and there exists an infinity of non-trivial zeros on the vertical line Re(z) =
1
2 ... and we have the famous Riemann hypothesis : all non-trivials zeros
are on the vertical line Re(z) = 1

2 ?

Now, we come back to the function ζSelberg, main results concerning this func-
tion are summarized in :

Theorem 5.4. (Selberg, 1956). Let M be a compact hyperbolic surface M with a
constant sectional curvature : K ≡ −1 and let us denotes by Γ the set of prime closed
oriented geodesics of M. Then :
(i) The previous function ζSelberg is absolutely convergent for s such that Re(s) > 1.
(ii) This function admits an analytic extansion to C.
(iii) The zeros of the previous extansion on C are :

{−n, n ≥ 0}
⊎
{
1
2
±
√

1
4
− λk, k ≥ 0

}

where (λk)k≥0 are the eigenvalues of the closed surface M.
(iv)Moreover, for all s ∈ C, we have the relation of duplication :

ζSelberg(1− s) = ζSelberg(s) exp

(
2(g− 1)

∫ s− 1
2

0
πx tan(πx) dx

)

here g ≥ 2 is the genus of the surface M.

Let us examine the item (iii) : we have two types of zeros :

• trivial zeros : −n, n ≥ 0.

• and non-trivial zeros : sk :=
1
2 ±

√
1
4 − λk, k ≥ 0.

Since λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · with λk → +∞ as k → +∞, it is
obvious that there exists an integer N > 0 such that

λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 1
4
< λN+1

thus, for all integer k ∈ {0, ...,N}

sk =
1
2
±
√

1
4
− λk ∈ [0, 1];
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and for all integer k ≥ N + 1

sk =
1
2
±
√

1
4
− λk ∈

{
z ∈ C, Re(z) =

1
2

}
.

Observe that since λ0 = 0 then 0 and 1 are zeros of ζSelberg. Moreover, the
repartition of the real zeros {sk, 0 ≤ k ≤ 1} are symmetric with respect to the
vertical line Re(z) = 1

2 ; and the complex zeros {sk, k ≥ N + 1} are symmetric
with respect to the horizontal axe Re(z). For summarize : without a finite
number, all non trivial zeros of the zeta function ζSelberg are localised on the line
Re(z) = 1

2 . In some sense the Riemann Hypothesis is true on every compact
hyperbolic surface with a constant sectional curvature.

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×× ×× × ×× ×× ×

Re(z)=1/2

-1-3 -2 1 Re(z)

Im(z)

Fig. 3. The zeros of zeta function ζSelberg in the complex plane.

A consequence of the previous theorem 5.4 is concerning the counting func-
tion Π(L) :

Theorem 5.5. There exists ε > 0 such that :

Π(L) = # ({γ ∈ Γ, |γ| ≤ L}) = ℓi

(
eL
)
+ O

L→+∞

(
1(1−ε)L

)

where Li is the log-integral function Li(x) :=
∫ x

2

du

ln u
.

This theorem is a called prime geodesics theorem. In particular, we deduce
the equivalent :

# ({γ ∈ Γ, |γ| ≤ L}) ∼
L→+∞

eL

L
.
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Note that again the analogy with the Riemann zeta function ζ and the prime
number theorem. The definition of the function ζSelberg can be define to any
compact Riemannian manifold and the problem of counting closed geodesics
can be generalized to counting orbit associated to a flow, indeed the case of
geodesics appears as trajectories associated to the dynamics of classical Hamil-
tonian flow of H = −∆g (geodesic flow) in the phase plane, identified with the
cotangent bundle T⋆M.

In 1967, in a fundamenal paper, S. Smale [Sma] has the idea to use the func-
tion ζSelberg in a more general context : the case of of Anosov flows. Note that a
geodesic flow on a compact manifold with a negative curvature is a particular
case of Anosov flow. Unfortunately, since the crux of the proof for theorem 5.4
concerning the zeta function ζSelberg is based on a trace formula for the heat
kernel of a surface with a constant sectional curvature, then it was not clear
that this function was very usefull for understand general Anosov flows on
manifold with no constant curavture. More precisely, S. Smale ask himself the
question “Does the item (i) of the theorem 5.4 is always true for Anosov Flow
? Or on a compact hyperbolic surface with a non constant sectional curvature
K < 0 ? : The author wrote : “Does ζSelberg have a meromorphic continuation
to all C ? An affirmative answer would be roughly necessary and sufficient
condition for ζSelberg to be useful. I must admit a positive answer would be a
little shocking!”

5.4 More recent results

Later, in 2013, P. Giuletti, C. Liverani, M. Policott [GLP], and in 2016, S. Dyatlov
and M. Zworski [Dy-Zw] shows thats the items (i) and (ii) on the function
ζSelberg holds for C∞ Anosov flows (note that a geodesic flow on a compact
manifold with a negative curvature is a Anosov flow). But what happens for
item (iii) ? Let us present a very recent result in this way. We have seen that the
fundamental hypothesis of the works of Selberg is that the sectional curvature
of the surface is constant equal to −1. In the case of hyperbolic surface with a
variable sectional curvature K < 0, the situation is quite delicate ... As it turns
out the “good” zeta function in the case of variable curvature is the following
Semi-Classical zeta function (for a details on this fact see [Fa-Ts2]) :

ζSC(s) := exp


− ∑

γ∈Γ

+∞

∑
m=1




e−sm|γ|

m

√∣∣∣det
(
Id − Dm

γ

)∣∣∣







where Dγ is the Jacobian matrix of the Poincaré map for the orbit γ ∈ Γ. From
a physical point of view, in quantum chaos, it is natural to study this semi-
classical zeta function ζSC rather than the zeta function ζSelberg. Before 2016, the
mathematical study of this semi-classical zeta function seems to be limited to
the special case of constant curvature, where Selberg trace formula is available.
Note that if K ≡ −1 then for all s ∈ C we have

ζSC(s) = ζSelberg

(
s+

1
2

)
.

In 2016, F. Faure and M. Tsujji [Fa-Ts1], [Fa-Ts2] shows that item (iii) holds
for this new function ζSC(s) in the case of geodesic flows on a manifold with
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negative variable curvature K < 0. Indeed the main theorem (see Theorem 1.2)
of the article [Fa-Ts2] is the first result for the study of the semi-classical zeta
function for the geodesic flows on manifolds with negative variable curvature.
The statement of this theorem is :

Theorem 5.6. (Faure, Tsujii, 2016). Let M be a compact hyperbolic surface M and
let us denotes by Γ the set of prime closed oriented geodesics of M. Then we have :
(i) The function ζSC admits an meromorphic extansion to C.
(ii) For all ε > 0, without a finite number, all zeros and poles of ζSC are localised in

{z ∈ C, |Re(z)| ≤ ε}
⋃

{z ∈ C, Re(z) ≤ −λ + ε}

here λ is a constant.
(iii)Moreover, the set {z ∈ C, |Re(z)| ≤ ε} admits finite number of poles and infinite
number of zeros of ζSC.
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Re(z)

Im(z)

Fig. 4. Poles and zeros of semi-classical zeta function ζSC in the complex plane.

In the article [Fa-Ts2], the authors gave also the following exciting open
question :

Conjecture 5.7. For all ε > 0, without a finite number, all zeros of the function ζSC
are in

{z ∈ C, |Re(z)| ≤ ε}
⋃

{z ∈ C, |Im(z)| ≤ C}
here C is a constant.

The huge paper [Fa-Ts2] is a very deep and technical article; it is no reason-
able to explain here the mains arguments of the main theorem. However, let us
just mention that the authors use several complex techniques of semi-classical
analysis. In particular they consider and study spectral properties and trace
formulas applied to some transfer operators, theses operators are associated to
a “prequantum” Anosov flow.
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