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A new convex formulation of data clustering and image segmentation is proposed, with fixed number K of regions and possible penalization of the region perimeters. So, this problem is a spatially regularized version of the K-means problem, a.k.a. piecewise constant Mumford-Shah problem. The proposed approach relies on a discretization of the search space; that is, a finite number of candidates must be specified, from which the K centroids are determined. After reformulation as an assignment problem, a convex relaxation is proposed, which involves a kind of l1,∞ norm ball. A splitting of it is proposed, so as to avoid the costly projection onto this set. Some examples illustrate the efficiency of the approach.

Introduction

Data partitioning, or clustering, aims at decomposing a set of elements into groups, so as to minimize some notion of intra-group dissimilarity [START_REF] Jain | Data clustering: A review[END_REF][START_REF] Gan | Data Clustering: Theory, Algorithms, and Applications[END_REF]. Thus, the classical K-means problem [START_REF] Steinley | K-means clustering: A half-century synthesis[END_REF], consists in partitioning N points of R d into K groups, by minimizing the sum of squared distances from every point to the nearest centroid, which is the center of mass of a group. For scalar data (d = 1), the K-means problem can be solved exactly and efficiently using dynamic programming [START_REF] Wu | Optimal quantization by matrix searching[END_REF][START_REF] Soong | Optimal quantization of LSP parameters[END_REF]. By contrast, when d ≥ 2, it is generally NP-hard [START_REF] Aloise | NP-hardness of Euclidean sum-of-squares clustering[END_REF][START_REF] Mahajan | The planar k-means problem is NP-hard[END_REF]. An application is color image quantization [START_REF] Brun | Digital Color Imaging Handbook[END_REF][START_REF] Celebi | Improving the performance of k-means for color quantization[END_REF]: one looks for the palette of K colors representing at best a given image; in that case, the points are the pixel values in R 3 , corresponding to the coordinates in some color space.

A fundamental problem in image processing and vision, which is even more difficult, is image segmentation: one wants to decompose an image of N pixels into K regions, corresponding to the objects of the scene, by favoring, in addition to intra-region similarity, some notion of spatial homogeneity [START_REF] Cremers | A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape[END_REF][START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF].

We consider in this article the NP-hard piecewise-constant Mumford-Shah problem [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]: spatial homogeneity is obtained by penalizing the sum of the region perimeter.

In general terms, the considered problem can be formalized as follows. The data y = (y n ) n∈Ω is a 1-D signal of domain Ω = {1, . . . , N } or a 2-D image of domain Ω = {1, . . . , N 1 } × {1, . . . , N 2 } (having N = N 1 N 2 pixels), with values y n in R d , endowed with the Euclidean norm. Given an integer K ≥ 2, one wants to partition Ω into K regions1 Ω k (so

K k=1 Ω k = Ω and Ω k ∩ Ω k ′ = ∅,
for all k = k ′ ), and to find the corresponding centroids c k ∈ R d , so as to minimize

(Ω k ) K k=1 ,(c k ) K k=1 1 2 K k=1 n∈Ω k y n -c k 2 + λ 2 K k=1 per(Ω k ), (1) 
where per denotes the perimeter and λ ≥ 0 is a parameter controlling the level of spatial regularization. When λ = 0, this is exactly the K-means problem; then the geometry of the domain and the indexing order do not play any role and one can think in terms of partitioning the point cloud (y n ) n∈Ω in R d into K groups, whose c k are the means. We can define the quantized or segmented signal or image x = (x n ) n∈Ω , with

x n = c k if n ∈ Ω k . So,
x is a piecewise constant approximation of y, taking at most K different values. If λ = 0, we can express the problem (1) as:

minimize x∈(R d ) Ω 1 2 y -x 2 2 s.t. |{x n : n ∈ Ω}| ≤ K, (2) 
where yx2 2 = n∈Ω y nx n 2 and | • | denotes the cardinality of a set.

Moreover, in the case of a 1-D signal, 1 2 K k=1 per(Ω k ) is equal to |{n : x n = x n+1 }|, the number of jumps in the signal 2 . So, in 1-D, we can express the problem (1) as:

minimize x∈(R d ) N 1 2 y -x 2 2 + λ |{n = 1, . . . , N -1 : x n = x n+1 }| s.t. |{x n : n = 1, . . . , N }| ≤ K. (3) 
The definition of the discrete perimeter in 2-D, based on finite differences, is much more problematic [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF][START_REF] Chambolle | A convex approach to minimal partitions[END_REF]. We can note that, if the regions Ω k are fixed, the centroids c k , solutions to the problem [START_REF] Jain | Data clustering: A review[END_REF], are the means of the elements of the regions:

c k = 1 |Ω k | n∈Ω k y n .
Conversely, if the c k are fixed, i) if λ = 0, we simply get the regions as the Voronoi cells

Ω k = {n ∈ Ω : k = arg min k ′ y n -c k ′ }; ii) if λ > 0,
there exist efficient methods to solve the problem, by convex relaxation [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF][START_REF] Chambolle | A convex approach to minimal partitions[END_REF][START_REF] Pustelnik | Proximity operator of a sum of functions; application to depth map estimation[END_REF] or by graph cuts [START_REF] Yuan | A continuous max-flow approach to Potts model[END_REF], see also [START_REF] Zach | What is optimized in convex relaxations for multilabel problems: Connecting discrete and continuously inspired MAP inference[END_REF]. Therefore, a strategy consists in alternating between updating the Ω k at fixed c k , and the other way around. In the case λ = 0, this yields exactly the classical K-means algorithm, due to Lloyd [START_REF] Lloyd | Least squares quantization in PCM[END_REF]; it must be distinguished from the K-means problem (1), for which it is a heuristic. It converges to a local minimum of the problem, but is very dependent on the initialization [START_REF] Steinley | K-means clustering: A half-century synthesis[END_REF][START_REF] Celebi | Improving the performance of k-means for color quantization[END_REF].

Globally convex methods, with high complexity, have been proposed to solve the problem [START_REF] Jain | Data clustering: A review[END_REF], in the particular cases K = 2 or K = 4 [START_REF] Brown | Completely convex formulation of the Chan-Vese image segmentation model[END_REF][START_REF] Bae | Simultaneous convex optimization of regions and region parameters in image segmentation models[END_REF][START_REF] Bae | Efficient global minimization methods for image segmentation models with four regions[END_REF]. The author is not aware of a generic method to approximate the global minimum of (1); existing convex relaxations of the K-means problem are discussed in Sect. [START_REF] Steinley | K-means clustering: A half-century synthesis[END_REF]. In this work, the problem is addressed by discretizing the search space of the centroids: we fix a set Γ = {a m } M m=1 of M points in R d , called the candidates, and the centroids are constrained to belong to Γ, instead of to the whole space R d . Typically, K ≪ M . We propose a convex formulation of the problem and an algorithm to solve it in Sect. 2. We illustrate the good performances of the approach in Sect. 4.

Proposed Method

Problem Reformulation by Lifting

In the segmented signal or image x, every element x n is one of the centroids c k , which is itself one of the candidates a m . Thus, we can reformulate the problem (1) as an equivalent problem, whose unknown is the assignment array z, which has one more dimension than y, indexed by m = 1, . . . , M ; this is called lifting [START_REF] Chambolle | A convex approach to minimal partitions[END_REF][START_REF] Pock | Global solutions of variational models with convex regularization[END_REF]. For every n ∈ Ω and m = 1, . . . , M , z m,n is equal to 1 if x n = a m and to 0 else. Each vector z :,n = (z m,n ) M m=1 belongs to the set A of binary assignment vectors, i.e. vectors with elements in {0, 1} whose sum is 1.

We retrieve x from z by a simple summation:

x n = M m=1 z m,n a m , ∀n ∈ Ω. (4) 
Moreover, the data fidelity term in (1) can be rewritten as

1 2 n∈Ω x n -y n 2 = 1 2 n∈Ω M m=1 z m,n w m,n , (5) 
or, in short, 1 2 xy 2 2 = z, w , where

w m,n = 1 2 y n -a m 2 . ( 6 
)
By using the coarea formula, according to which the total variation (TV) of the indicator function of a set (1 inside, 0 outside) is equal to the perimeter of that set [START_REF] Chambolle | A convex approach to minimal partitions[END_REF], the regularization term in (1) can be rewritten as

λ 2 K k=1 per(Ω k ) = λ 2 M m=1
TV(z m,: ),

where TV is some discrete form of the TV [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] and z m,: = (z m,n ) n∈Ω is a scalar signal or image of same domain Ω as y.

It remains to reformulate the constraint that the number of regions Ω k is at most K or, equivalently, that x takes its values in only K among the M candidates, i.e. |{x n : n ∈ Ω}| ≤ K. We have the following property: Proposition 1 The assignment array z ∈ A Ω corresponds, by [START_REF] Wu | Optimal quantization by matrix searching[END_REF], to a signal or image x ∈ Γ Ω taking at most K distinct values, if and only if

z 1,∞ ≤ K, ( 8 
)
where3 z 1,∞ = M m=1 max n∈Ω z m,n . Indeed, since z takes its values in {0, 1}, a candidate a m is assigned to at least one point x n , and therefore is one of the centroids c k , if and only if z m,: contains at least one 1; that is, if and only if max n∈Ω z m,n = 1.

Hence, we can rewrite the problem (1), with discrete search space Γ for the centroids, as

minimize z∈A Ω z, w + λ 2 M m=1 TV(z m,: ) s.t. z 1,∞ ≤ K. (9) 

Convex Relaxation of the Problem

The problem (9) is not convex; more precisely, the functions and sets are all convex, except the set A of binary assignment vectors. So, we consider a convex relaxation, obtained by replacing A by its convex hull, which is the simplex ∆, i.e. the set of vectors with nonnegative elements whose sum is 1 [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]. Let us introduce the ball B = {s ∈ R M×Ω : s 1,∞ ≤ K}, and the convex indicator function ı E of a convex set E, which takes the value 0 if its variable belongs to E and +∞ else. The proposed convex problem is then:

minimize z∈R M ×Ω z, w + n∈Ω ı ∆ (z :,n ) + λ 2 M m=1 TV(z m,: ) + ı B (z). (10) 
For conveniency, we denote by ∆ Ω the set of arrays of same size à z whose columns are on the simplex, so that

ı ∆ Ω (z) = n∈Ω ı ∆ (z :,n ).
We can note that another convex relaxation of the perimeter term, which is better, when z belongs to ∆ Ω , than the one in [START_REF] Mahajan | The planar k-means problem is NP-hard[END_REF] we use in this paper, has been proposed in [START_REF] Chambolle | A convex approach to minimal partitions[END_REF]. We do not consider it here because of its higher computational complexity, but there would be no difficulty in using it in our context.

The projection onto the simplex can be performed efficiently [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF], see code on the author's webpage. However, the projection onto B, which can also be performed exactly in finite time [START_REF] Quattoni | An efficient projection for l1,∞ regularization[END_REF], is very costly. That is why we propose a (dual) splitting [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] of the maximum function:

Proposition 2 The maximum function of a vector, or more generally of an array with N elements, s can be expressed as an infimal convolution [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]:

max n=1,...,N s n = min q∈R q/ µN + ı ≤0 (s -S * q/ µN ), (11) 
where µ > 0 is some fixed constant, ı ≤0 is the indicator function of the cone of arrays with nonpositive elements, S is the linear operator, which maps an array to the sum of its elements, and its adjoint operator S * duplicates a real number into an array of same size as s with N identical elements.

We can note that, in Proposition 2, the norm of the linear operator

(s, q) → s -S * q/ √ µN is 1 + 1/µ. Let us introduce the constraint set C = s ∈ R M : M m=1 s m ≤ K √ µN .
The convex problem we propose to solve is then:

minimize z∈R M ×Ω ,q∈R M z, w + ı ∆ Ω (z) + ı C (q) + λ 2 M m=1 TV(z m,: ) + M m=1 ı ≤0 z m,: -S * q m / µN . (12) 
We can remark that the use of z 1,∞ to control the number of regions has been proposed in the same context in [START_REF] Yuan | A continuous max-flow approach to minimal partitions with label cost prior[END_REF], but as a penalty and not as a constraint. Handling a l 1,∞ constraint is a priori more difficult than regularizing with the l 1,∞ norm, but we have seen that the splitting technique in Proposition 2 ends in the convex optimization problem [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], involving only simple terms.

Proposed Algorithm

In the following, we assume that the 'isotropic' form of the discrete TV [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] is used. There would be no difficulty in using instead the form proposed in [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF], for better quality but higher computational complexity. As usual, we express the isotropic TV as the l 1,2 norm composed with a linear operator D of finite differences [START_REF] Condat | Discrete total variation: New definition and minimization[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. More precisely, in the case of a 2-D image with domain

Ω = {1, . . . , N 1 } × {1, . . . , N 2 }, we introduce D : R M×Ω → R M×Ω×2 , z → v, with v m,n,1 = z m,(n1+1,n2) -z m,n and v m,n,2 = z m,(n1,n2+1) -z m,n
, for every m = 1, . . . , M and n = (n 1 , n 2 ) ∈ Ω (using symmetric boundary conditions). Note that the operator norm of D is 8. We also introduce

V = {v ∈ R M×Ω×2 : v 2 m,n,1 + v 2 m,n,2 ≤ λ 2 /4, ∀m = 1, . . . , M, n ∈ Ω}.
In the case of a 1-D signal with domain Ω = {1, . . . , N }, some simplifications can be made. We can set D : R M×N → R M×(N -1) , z → v, with v m,n = z m,n+1z m,n , for every m = 1, . . . , M and n = 1, . . . , N -1, and V = {v ∈ R M×(N -1) : |v m,n | ≤ λ/2, ∀m = 1, . . . , M, n = 1, . . . , N -1}. Note that the operator norm of D is 4 in this case, so we can set σ v := (1γ)/τ /4 in Algorithm 1 below.

We denote by P E the projection onto a set E, by ı ≥0 and P ≥0 the indicator function of and the projection onto the cone of arrays with nonnegative elements, respectively. We extend the summation operator S to any array u ∈ R M×Ω of same size as z, to mean summation with respect to the index n ∈ Ω; that is, Su = (Su m,: ) M m=1 ∈ R M . Consequently, the last term in ( 12) can be rewritten more shortly as M m=1 ı ≤0 (z m,: -S * q m / √ µN ) = ı ≤0 (z -S * q/ √ µN ). The proposed algorithm is the over-relaxed version [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] of the Chambolle-Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], applied to the problem [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], viewed as the sum of one function and two functions composed with linear operators, with the pair (z, q) as variable. With the proposed range of parameters, it is proved to converge to a solution of [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF].

Algorithm 1 Input : w, K, λ, M , N , µ. Output : estimate z (i+ 1
2 ) of a solution to [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. Choose ρ ∈ [1, 2), τ > 0, γ ∈ (0, 1), and the initial estimates z (0) , q (0) , u (0) , v (0) . Set σ u := γ/τ /(1 + 1/µ), σ v := (1γ)/τ /8. Iterate: for i = 0, 1, . . .

               z (i+ 1 2 ) := P ∆ Ω z (i) -τ (u (i) + w + D * v (i) ) , q (i+ 1 2 ) := P C q (i) + (τ / √ µN )Su (i) , u (i+ 1 2 ) := P ≥0 u (i) + σ u 2z (i+ 1 2 ) -z (i) -S * (2q (i+ 1 2 ) -q (i) )/ √ µN , v (i+ 1 2 ) := P V v (i) + σ v D(2z (i+ 1 2 ) -z (i) ) , z (i+1) := z (i) + ρ(z (i+ 1 2 ) -z (i) ), q (i+1) := q (i) + ρ(q (i+ 1 2 ) -q (i) ), u (i+1) := u (i) + ρ(u (i+ 1 2 ) -u (i) ), v (i+1) := v (i) + ρ(v (i+ 1 2 ) -v (i) ).
The memory size for z and the dual variables u and v is O(N M ); it is O(M ) for q. The complexity of P ∆ Ω using the default sorting strategy is O(N M log M ) [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]; it can be reduced to O(N M ) using a linear-time median-finding subroutine [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]. The complexity of the other operations is O(N M ), so the overall complexity of every iteration of the algorithm is O(N M log M ). The parameters µ, τ , γ, ρ influence the convergence speed. They must be chosen on a case-by-case basis, but as a first step, one might consider ρ = 1.9, µ = 1, γ = 0.01.

In the case of clustering or quantization, i.e. λ = 0, the algorithm can be simplified as Algorithm 2 Input : w, K, M , N , µ. Output : estimate z (i+ 1 2 ) of a solution to [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. Choose ρ ∈ [1, 2), τ > 0, and the initial estimates z (0) , q (0) , u (0) . Set σ := 1/τ /(1 + 1/µ). Iterate: for i = 0, 1, . . .

           z (i+ 1 2 ) := P ∆ Ω z (i) -τ (u (i) + w) , q (i+ 1 2 ) := P C q (i) + (τ / √ µN )Su (i) , u (i+ 1 2 ) := P ≥0 u (i) + σ 2z (i+ 1 2 ) -z (i) -S * (2q (i+ 1 2 ) -q (i) )/ √ µN , z (i+1) := z (i) + ρ(z (i+ 1 2 ) -z (i) ), q (i+1) := q (i) + ρ(q (i+ 1 2 ) -q (i) ), u (i+1) := u (i) + ρ(u (i+ 1 2 ) -u (i) ).
To study the numerical convergence of Algorithm 1, it is useful to consider the dual problem [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] of the primal problem [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]:

minimize u∈R M ×Ω ,v∈R M ×Ω×2 n∈Ω max m=1,...,M (-u -D * v -w) m,n + ı C * (Su) + K(Su) 1 + ı ≥0 (u) + ı V (v), (13) 
where

C * = {s ∈ R M : s 1 = • • • = s M ≥ 0}.
At convergence, the primal and the dual cost values are opposite to each other [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. That is, for a solution z to (12) and a solution pair (u, v) to ( 13),

Ψ ∞ = z, w + λ 2 M m=1 TV(z m,: ) = n∈Ω min m=1,...,M (u+D * v+w) m,n -K(Su) 1 . (14) 
The iterate z (i+ 1 2 ) does not belong to the l 1,∞ ball B, so its cost value

Ψ p,i = z (i+ 1 2 ) , w + λ 2 M m=1
TV(z

(i+ 1 2 ) m,: ), (15) 
which tends to Ψ ∞ as i → +∞, is not guaranteed to be larger than Ψ ∞ . Concerning the dual variables, u (i+ 1 2 ) ≥ 0 and v (i+ 1 2 ) ∈ V, but Su (i+ 1 2 ) does not belong to C * . However, taking the maximum over m of Su (i+ 1 2 ) to evaluate the cost yields a valid lower bound of Ψ ∞ ; that is,

Ψ d,i = n∈Ω min m=1,...,M (u (i+ 1 2 ) + D * v (i+ 1 2 ) + w (i+ 1 2 ) ) m,n -K max m=1,...,M n∈Ω u (i+ 1 2 ) m,n (16) 
is ≤ Ψ ∞ and tends to Ψ ∞ as i → +∞. Hence, a good way to test the convergence of Algorithm 1 is to check that

M m=1 max n∈Ω z (i+ 1 2 ) m,n -K ≤ ǫ 1 ( 17 
)
and

Ψ p,i -Ψ d,i ≤ ǫ 2 , (18) 
for small constants ǫ 1 and ǫ 2 . In all the examples of Sect. 4, it took several tenths of minutes to generate the results with the proposed algorithms, run several thousands of iterations.

Prior Work on the K-Means Problem

The convex relaxation described in the previous section turns out to be well known in operations research for the closely related K-median, a.k.a. p-median, problem, which is the same as the K-means problem, with the halved squared Euclidean distance replaced by the Euclidean distance or any cost function with metric properties [START_REF] Reese | Solution methods for the p-median problem: An annotated bibliography[END_REF]. The search space for the cluster centers is discretized, as well. The classical example is a facility location problem: given N clients {y n } N n=1 and a set Γ = {a m } M m=1 of potential facilities, open K facilities so as to minimize the sum of the cost for each client of using its nearest open facility; typically this cost is the distance w m,n = y na m . The 0-1 integer formulation and its convex relaxation as the linear program [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] (with λ = 0, µ = 1/N , and the simplex constraint split into nonnegativity and sum-to-one constraints) can be traced back to half a century ago [START_REF] Balinski | On finding integer solutions to linear programs[END_REF]. The variable q m say whether facility m has to be opened or not and z m,n is the fraction of the demand of client n that is supplied by facility m. When the solution is not binary, several rounding strategies have been proposed [START_REF] Li | Approximating k-median via pseudo-approximation[END_REF].

In the case the candidates coincide with the data, i.e. M = N and Γ = y, the K-means or K-median problem is often called the K-medoid(s) problem [START_REF] Van Der Laan | A new partitioning around medoids algorithm[END_REF]; a centroid c k is then constrained to be an exemplar from within the dataset and is called a medoid. The convex problem ( 12) can be simplified, because there is no need to introduce the auxiliary variables q m : the maximum element of z m,: is z m,m . Therefore, the problem can be rewritten as: minimize z∈R N ×N z, w subject to tr(z) = K and 0 ≤ z m,n ≤ z m,m and m z m,n = 1, for every m, n.

There does exist a convex relaxation of the K-means problem, which does not require discretizing the search space of the centroids. Indeed, in the solution, we have the identity

n∈Ω k y n -c k 2 = (n,n ′ )∈(Ω k ) 2 y n -y n ′ 2 /(2|Ω k |)
. Consequently, we can define the symmetric affinity matrix h of size N × N , with h n,n ′ = {1/|Ω k | if n and n ′ belong to the same cluster Ω k in the solution, 0 else}. Every column of h is on the simplex, h is positive semidefinite, its trace and rank are K. We can then reformulate the problem as minimizing h, w over the set of such matrices. Linear programming and semidefinite programming convex relaxations of this problem have been proposed [START_REF] Peng | A new theoretical framework for K-means-type clustering[END_REF][START_REF] Peng | Approximating K-means-type clustering via semidefinite programming[END_REF][START_REF] Awasthi | Relax, no need to round: Integrality of clustering formulations[END_REF]. They are less efficient in practice than the convex formulation (12) [START_REF] Awasthi | Relax, no need to round: Integrality of clustering formulations[END_REF].

Another convex relaxation of the K-means problem consists in minimizing

x -y 2 2 /2 + λ N n=1
n ′ >n x nx n ′ p over x, for some p ∈ [1, +∞] and some regularization parameter λ [START_REF] Pelckmans | Convex clustering shrinkage[END_REF][START_REF] Hocking | Clusterpath: an algorithm for clustering using convex fusion penalties[END_REF][START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF][START_REF] Zhu | Convex optimization procedure for clustering: theoretical revisit[END_REF][START_REF] Chi | Splitting methods for convex clustering[END_REF]. Then a cluster consists in all the points y n corresponding to the same point x n . This is a hierarchical approach: if two points are in the same cluster, they remain so when λ increases.

We can notice that the alternatives to the convex formulation [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] mentioned in this section require to store matrices of size N × N and to perform operations with complexity O(N 2 ); this is not feasible when N is a typical image size.

Experimental Validation

K-Means Clustering

We consider the K-means problem, i.e. ( 1) with λ = 0, applied to the dataset A1 from https://cs.joensuu.fi/sipu/datasets/ [START_REF] Kärkkäinen | Dynamic local search algorithm for the clustering problem[END_REF], to partition the point cloud y of N = 3000 points in dimension d = 2 into K = 20 clusters.

In a first experiment, the set of candidates Γ is a uniform grid of 80 × 40 points, from which we kept only the M = 2280 points in the convex hull of y. Remarkably, Algorithm 2 converges to the exact solution of the problem [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], up to machine precision, in a finite number of iterations. It is also remarkable that the solution z, represented in Fig. 1 (a), is binary, i.e. with values in {0, 1}; this can be easily verified by testing that min n∈Ω max M m=1 z m,n = 1. Therefore, the solutions to the convex problem [START_REF] Cremers | A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape[END_REF] and to the nonconvex problem (9) coincide, and the proposed method yields the global solution of the K-means problem (for this choice of Γ).

In a second experiment, we consider the K-medoids case: M = N and Γ = y. In this case too, Algorithm 2 converges in finite time to the exact solution of the problem, represented in Fig. 1 (b), which is binary. So, the global solution of the K-medoids problem has been found.

We can note that it is easy to design counter-examples, where the solution of the convex problem [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] is not binary and does not yield a solution to the nonconvex K-means problem.

Color Image Quantization

We consider the color image quantization problem [START_REF] Celebi | Improving the performance of k-means for color quantization[END_REF]. It is an instance of the K-means problems, which consists in partitioning the pixel values y n ∈ R 3 of an image, supposed to be coordinates in some color space. We consider here the CIELAB color space, because the Euclidean distance in it approximately matches the human perceptual distance. We first construct a palette of M = 279 colors, shown in Fig. 2, obtained by sampling the CIELAB space on a body centered cubic lattice. Indeed, this lattice is the one minimizing the quantization error; that is, for a given sampling density, or size of the Voronoi cell, the average squared distance between any point and the closest point in the lattice is minimized [START_REF] Barnes | The optimal lattice quantizer in three dimensions[END_REF]. We consider three images and, for each, the three cases K = 4, K = 5, K = 6. The results are shown in Fig. 3. In the nine cases, Algorithm 2 converges after a finite number of iterations to the exact solution of [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], which is binary. So, the obtained images are the global solutions of the nonconvex color image quantization problem.

Image Segmentation

We now consider the segmentation problem, i.e. (1) with λ > 0, using the same images as in Sect. 4.2 and Fig. 3 in Fig. 4. z is never binary in this context and a small blur is present at edges. Indeed, each value z m,n can be interpreted as the proportion of the candidate a m required to represent the pixel value x n at location n ∈ Ω; for a pixel at an edge between two regions, it is natural that it is soft-classified, instead of being fully assigned to one or the other region.

The method succeeds in providing images made of K colors in the palette, for the sunflower with K = 4 and K = 6, the ladybug with K = 5 and K = 6, and the parrot with K = 4 and K = 5; that is, max n∈Ω z m,n = 1 for K indexes m, and z m,n = 0 for all the other m and all n ∈ Ω. In these cases, up to the blur at the edges, which can be removed by rounding z to make it binary, we can consider that we have obtained the global solution to the segmentation problem [START_REF] Jain | Data clustering: A review[END_REF]. For the sunflower with K = 5, the orange at the center of the large sunflower is actually a mixture of 59% of the color m = 80 and 41% of the color m = 92. Similarly, for the ladybug with K = 4, there are two pure colors, i.e. max n∈Ω z m,n = 1 for m = 155 and m = 107, and mixtures of four colors, with max n∈Ω z m,n equal to 0.88 for m = 23 and m = 84, and equal to 0.12 for m = 31 and m = 83. In both cases, this is not an issue, since if one really wants to identify the K colors of the palette adapted to represent the image, a post-processing step keeping the K colors with the largest value max n∈Ω z m,n would be appropriate. However, in the last case of the parrot with K = 6, the method fails to provide an image with 6 dominant colors. Indeed, max n∈Ω z m,n is equal to 1, 1, 1, 1, 0.66, 0.34, 0.34, 0.34, 0.33, for m = 261, 255, 63, 18, 155, 60, 66, 58, 68, respectively. There is no obvious rounding procedure to keep 6 out of these 9 colors. Thus, the proposed method succeeds eight times and fails once, in the nine examples considered.

We can remark that the proposed approach, which estimates the K colors and the corresponding regions with low perimeter jointly, performs better than a two-step strategy, that would first estimate the K colors using quantization and then solve the segmentation problem restricted to these M = K colors. Indeed, we can see that the proposed approach yields different orange and green colors for the sunflower with K = 4, in Fig. 4 (c), from the ones in Fig. 3 (d). The dark gray for the parrot with K = 4, in Fig. 4 (c), is also different from the dark green in Fig. 3 (d). So, in these two examples, the two-step strategy would have failed to provide an image with the appropriate colors. 

Fig. 1 .

 1 Fig.1. Clustering of N = 3000 points, in red, into K = 20 groups. In (a), the M candidates am are on a uniform grid and in (b), they coincide with the data points. In both cases, they are represented with a color corresponding to the value maxn∈Ω zm,n, where z is the solution to[START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], with λ = 0. It turns out that z is binary, so it is a solution to the nonconvex problem[START_REF] Celebi | Improving the performance of k-means for color quantization[END_REF]. In (c), the centroids found by the kmeans algorithm of MATLAB, with default random initialization, are shown in black, whereas the centroids found by the same algorithm, but initialized with the centroids found by the proposed method, in yellow in (b), are shown in green. The latter are the global solutions of the K-means problem (1).

Fig. 2 .

 2 Fig. 2. Palette of M = 279 colors obtained by sampling the CIELAB color space on a body centered cubic lattice. The two last orange and red colors have been added manually.

Fig. 3 .Fig. 4 .

 34 Fig. 3. In (a), original sunflower, ladybug, parrot images y, of size 254 × 168, 298 × 228, and 200 × 199, respectively. In (b)-(d), quantized images x solution to (12) (λ = 0) and (4), with K = 6, K = 5, K = 4, respectively, with the palette Γ of candidate colors shown in Fig. 2.

The number of regions is actually at most K, and not exactly K, because some regions Ω k could be empty. This is never the case in practical applications.

We assume symmetric boundary conditions, so the boundary of the domain Ω is not counted in the perimeter.

In this paper, we make an abuse of the terms l1,∞ norm and ball: the elements of z are nonnegative, so there is no need to take their absolute values.