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A Convex Approach to K-Means Clustering
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Contact: see http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/

Abstract. A new convex formulation of data clustering and image seg-
mentation is proposed, with fixed number K of regions and possible
penalization of the region perimeters. So, this problem is a spatially
regularized version of the K-means problem, a.k.a. piecewise constant
Mumford–Shah problem. The proposed approach relies on a discretiza-
tion of the search space; that is, a finite number of candidates must be
specified, from which the K centroids are determined. After reformula-
tion as an assignment problem, a convex relaxation is proposed, which
involves a kind of l1,∞ norm ball. A splitting of it is proposed, so as to
avoid the costly projection onto this set. Some examples illustrate the
efficiency of the approach.

Keywords: Image segmentation · Piecewise constant Mumford–Shah
problem · K-means · Convex relaxation

1 Introduction

Data partitioning, or clustering, aims at decomposing a set of elements into
groups, so as to minimize some notion of intra-group dissimilarity. Thus, the
classical K-means problem [1], consists in partitioning N points of Rd into K
groups, by minimizing the sum of squared distances from every point to the
nearest centroid, which is the center of mass of a group. For scalar data (d =
1), the K-means problem can be solved exactly and efficiently using dynamic
programming [2, 3]. By contrast, when d ≥ 2, it is generally NP-hard [4]. An
application is color image quantization [5]: one looks for the palette of K colors
representing at best a given image; in that case, the points are the pixel values
in R

3, corresponding to the coordinates in some color space.
A fundamental problem in image processing and vision, which is even more

difficult, is image segmentation: one wants to decompose an image of N pixels
into K regions, corresponding to the objects of the scene, by favoring, in addition
to intra-region similarity, some notion of spatial homogeneity [6]. We consider in
this article the NP-hard piecewise-constant Mumford–Shah problem [6,7]: spatial
homogeneity is obtained by penalizing the sum of the region perimeter.

The considered problem can be formalized as follows. The data y = (yn)n∈Ω

is a 1-D signal of domain Ω = {1, . . . , N} or a 2-D image of domain Ω =
{1, . . . , N1} × {1, . . . , N2} (having N = N1N2 pixels), with values yn in R

d,

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/


2

endowed with the Euclidean norm. Given an integer K ≥ 2, one wants to parti-
tion Ω into K regions1 Ωk (so

⋃K

k=1 Ωk = Ω and Ωk ∩ Ωk′ = ∅, for all k 6= k′),
and to find the corresponding centroids ck ∈ R

d, so as to

minimize
(Ωk)Kk=1

,(ck)Kk=1

1

2

K
∑

k=1

∑

n∈Ωk

‖yn − ck‖2 +
λ

2

K
∑

k=1

per(Ωk), (1)

where per denotes the perimeter and λ ≥ 0 is a parameter controlling the level of
spatial regularization. When λ = 0, this is exactly the K-means problem; then
the geometry of the domain and the indexing order do not play any role and one
can think in terms of partitioning the point cloud (yn)n∈Ω in R

d into K groups,
whose ck are the means.

We can define the quantized or segmented signal or image x = (xn)n∈Ω, with
xn = ck if n ∈ Ωk. So, x is a piecewise constant approximation of y, taking at
most K different values. If λ = 0, we can express the problem (1) as:

minimize
x∈(Rd)Ω

1
2‖y − x‖22 s.t. |{xn : n ∈ Ω}| ≤ K, (2)

where ‖y − x‖22 =
∑

n∈Ω ‖yn − xn‖2 and | · | denotes the cardinality of a set.

Moreover, in the case of a 1-D signal, 1
2

∑K

k=1 per(Ωk) is equal to |{n : xn 6=
xn+1}|, the number of jumps in the signal2. So, in 1-D, we can express the
problem (1) as:

minimize
x∈(Rd)N

1
2‖y − x‖22 + λ |{n = 1, . . . , N − 1 : xn 6= xn+1}|

s.t. |{xn : n = 1, . . . , N}| ≤ K. (3)

The definition of the discrete perimeter in 2-D, based on finite differences, is
much more problematic [8, 9].

We can note that, if the regions Ωk are fixed, the centroids ck, solutions to the
problem (1), are the means of the elements of the regions: ck = 1

|Ωk|

∑

n∈Ωk
yn.

Conversely, if the ck are fixed, i) if λ = 0, we simply get the regions as the Voronoi
cells Ωk = {n ∈ Ω : k = argmink′ ‖yn − ck′‖}; ii) if λ > 0, there exist efficient
methods to solve the problem, by convex relaxation [8, 9] or by graph cuts [10],
see also [11]. Therefore, a strategy consists in alternating between updating the
Ωk at fixed ck, and the other way around. In the case λ = 0, this yields exactly
the classical K-means algorithm, due to Lloyd [12]; it must be distinguished
from the K-means problem (1), for which it is a heuristic. It converges to a local
minimum of the problem, but is very dependent on the initialization [1, 5].

Globally convex methods, with high complexity, have been proposed to solve
the problem (1), in the particular cases K = 2 or K = 4 [13–15]. The author

1 The number of regions is actually at most K, and not exactly K, because some
regions Ωk could be empty. This is never the case in practical applications.

2 We assume symmetric boundary conditions, so the boundary of the domain Ω is not
counted in the perimeter.
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is not aware of a generic method to approximate the global minimum of (1);
existing convex relaxations of the K-means problem are discussed in Sect. 3.
In this work, the problem is addressed by discretizing the search space of the
centroids: we fix a set Γ = {am}Mm=1 of M points in R

d, called the candidates,
and the centroids are constrained to belong to Γ, instead of to the whole space
R

d. Typically, K ≪ M . We propose a convex formulation of the problem and
an algorithm to solve it in Sect. 2. We illustrate the good performances of the
approach in Sect. 4.

2 Proposed Method

2.1 Problem Reformulation by Lifting

In the segmented signal or image x, every element xn is one of the centroids ck,
which is itself one of the candidates am. Thus, we can reformulate the problem (1)
as an equivalent problem, whose unknown is the assignment array z, which has
one more dimension than y, indexed by m = 1, . . . ,M ; this is called lifting [9].
For every n ∈ Ω and m = 1, . . . ,M , zm,n is equal to 1 if xn = am and to 0 else.
Each vector z:,n = (zm,n)

M
m=1 belongs to the set A of binary assignment vectors,

i.e. vectors with elements in {0, 1} whose sum is 1.
We retrieve x from z by a simple summation:

xn =

M
∑

m=1

zm,nam, ∀n ∈ Ω. (4)

Moreover, the data fidelity term in (1) can be rewritten as

1

2

∑

n∈Ω

‖xn − yn‖2 =
1

2

∑

n∈Ω

M
∑

m=1

zm,nwm,n, (5)

or, in short, 1
2‖x− y‖22 = 〈z, w〉, where

wm,n = 1
2‖yn − am‖2. (6)

By using the coarea formula, according to which the total variation (TV) of the
indicator function of a set (1 inside, 0 outside) is equal to the perimeter of that
set [9], the regularization term in (1) can be rewritten as

λ

2

K
∑

k=1

per(Ωk) =
λ

2

M
∑

m=1

TV(zm,:), (7)

where TV is some discrete form of the TV [8] and zm,: = (zm,n)n∈Ω is a scalar
signal or image of same domain Ω as y.

It remains to reformulate the constraint that the number of regions Ωk is
at most K or, equivalently, that x takes its values in only K among the M
candidates, i.e. |{xn : n ∈ Ω}| ≤ K. We have the following property:
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Proposition 1 The assignment array z ∈ AΩ corresponds, by (4), to a signal
or image x ∈ ΓΩ taking at most K distinct values, if and only if

‖z‖1,∞ ≤ K, (8)

where3 ‖z‖1,∞ =
∑M

m=1 maxn∈Ω zm,n.

Indeed, since z takes its values in {0, 1}, a candidate am is assigned to at least
one point xn, and therefore is one of the centroids ck, if and only if zm,: contains
at least one 1; that is, if and only if maxn∈Ω zm,n = 1.

Hence, we can rewrite the problem (1), with discrete search space Γ for the
centroids, as

minimize
z∈AΩ

〈z, w〉+ λ

2

M
∑

m=1

TV(zm,:) s.t. ‖z‖1,∞ ≤ K. (9)

2.2 Convex Relaxation of the Problem

The problem (9) is not convex; more precisely, the functions and sets are all
convex, except the set A of binary assignment vectors. So, we consider a convex
relaxation, obtained by replacing A by its convex hull, which is the simplex ∆,
i.e. the set of vectors with nonnegative elements whose sum is 1 [16]. Let us
introduce the ball B = {s ∈ R

M×Ω : ‖s‖1,∞ ≤ K}, and the convex indicator
function ıE of a convex set E , which takes the value 0 if its variable belongs to
E and +∞ else. The proposed convex problem is then:

minimize
z∈RM×Ω

〈z, w〉+
∑

n∈Ω

ı∆(z:,n) +
λ

2

M
∑

m=1

TV(zm,:) + ıB(z). (10)

For conveniency, we denote by ∆Ω the set of arrays of same size à z whose
columns are on the simplex, so that ı∆Ω(z) =

∑

n∈Ω ı∆(z:,n).
We can note that another convex relaxation of the perimeter term, which is

better, when z belongs to ∆Ω, than the one in (7) we use in this paper, has been
proposed in [9]. We do not consider it here because of its higher computational
complexity, but there would be no difficulty in using it in our context.

The projection onto the simplex can be performed efficiently [16]. However,
the projection onto B, which can also be performed exactly in finite time [17],
is very costly. That is why we propose a (dual) splitting [18] of the maximum
function:

Proposition 2 The maximum function of a vector, or more generally of an
array with N elements, s can be expressed as an infimal convolution [18]:

max
n=1,...,N

sn = min
q∈R

q/
√

µN + ı≤0(s− S∗q/
√

µN), (11)

3 In this paper, we make an abuse of the terms l1,∞ norm and ball: the elements of z
are nonnegative, so there is no need to take their absolute values.



5

where µ > 0 is some fixed constant, ı≤0 is the indicator function of the cone of
arrays with nonpositive elements, S is the linear operator, which maps an array
to the sum of its elements, and its adjoint operator S∗ duplicates a real number
into an array of same size as s with N identical elements.

We can note that, in Proposition 2, the norm of the linear operator (s, q) 7→
s− S∗q/

√
µN is 1 + 1/µ.

Let us introduce the constraint set C =
{

s ∈ R
M :

∑M

m=1 sm ≤ K
√
µN

}

.
The convex problem we propose to solve is then:

minimize
z∈RM×Ω,q∈RM

〈z, w〉+ ı∆Ω(z) + ıC(q) +
λ

2

M
∑

m=1

TV(zm,:)

+

M
∑

m=1

ı≤0

(

zm,: − S∗qm/
√

µN
)

. (12)

We can remark that the use of ‖z‖1,∞ to control the number of regions
has been proposed in the same context in [19], but as a penalty and not as a
constraint. Handling a l1,∞ constraint is a priori more difficult than regularizing
with the l1,∞ norm, but we have seen that the splitting technique in Proposition 2
ends in the convex optimization problem (12), involving only simple terms.

2.3 Proposed Algorithm

In the following, we assume that the ‘isotropic’ form of the discrete TV [8] is
used. There would be no difficulty in using instead the form proposed in [8],
for better quality but higher computational complexity. As usual, we express
the isotropic TV as the l1,2 norm composed with a linear operator D of finite
differences [8, 20]. More precisely, in the case of a 2-D image with domain Ω =
{1, . . . , N1} × {1, . . . , N2}, we introduce D : RM×Ω → R

M×Ω×2, z 7→ v, with
vm,n,1 = zm,(n1+1,n2) − zm,n and vm,n,2 = zm,(n1,n2+1) − zm,n, for every m =
1, . . . ,M and n = (n1, n2) ∈ Ω (using symmetric boundary conditions). Note
that the operator norm of D is 8. We also introduce V = {v ∈ R

M×Ω×2 :
v2m,n,1 + v2m,n,2 ≤ λ2/4, ∀m = 1, . . . ,M, n ∈ Ω}.

In the case of a 1-D signal with domain Ω = {1, . . . , N}, some simplifications
can be made. We can set D : RM×N → R

M×(N−1), z 7→ v, with vm,n = zm,n+1−
zm,n, for every m = 1, . . . ,M and n = 1, . . . , N − 1, and V = {v ∈ R

M×(N−1) :
|vm,n| ≤ λ/2, ∀m = 1, . . . ,M, n = 1, . . . , N − 1}. Note that the operator norm
of D is 4 in this case, so we can set σv := (1− γ)/τ/4 in Algorithm 1 below.

We denote by PE the projection onto a set E , by ı≥0 and P≥0 the indicator
function of and the projection onto the cone of arrays with nonnegative elements,
respectively. We extend the summation operator S to any array u ∈ R

M×Ω of
same size as z, to mean summation with respect to the index n ∈ Ω; that is,
Su = (Sum,:)

M
m=1 ∈ R

M . Consequently, the last term in (12) can be rewritten

more shortly as
∑M

m=1 ı≤0(zm,: − S∗qm/
√
µN) = ı≤0(z − S∗q/

√
µN).
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The proposed algorithm is the over-relaxed version [21] of the Chambolle–
Pock algorithm [20], applied to the problem (12), viewed as the sum of one
function and two functions composed with linear operators, with the pair (z, q)
as variable. With the proposed range of parameters, it is proved to converge to
a solution of (12).

Algorithm 1

Input : w, K, λ, M , N , µ. Output : estimate z(i+
1

2
) of a solution to (12).

Choose ρ ∈ [1, 2), τ > 0, γ ∈ (0, 1), and the initial estimates z(0), q(0), u(0), v(0).
Set σu := γ/τ/(1 + 1/µ), σv := (1− γ)/τ/8.

Iterate: for i = 0, 1, . . .






























z(i+
1

2
) := P∆Ω

(

z(i) − τ(u(i) + w +D∗v(i))
)

,

q(i+
1

2
) := PC

(

q(i) + (τ/
√
µN)Su(i)

)

,

u(i+ 1

2
) := P≥0

(

u(i) + σu

(

2z(i+
1

2
) − z(i) − S∗(2q(i+

1

2
) − q(i))/

√
µN

))

,

v(i+
1

2
) := PV

(

v(i) + σvD(2z(i+
1

2
) − z(i))

)

,

z(i+1) := z(i) + ρ(z(i+
1

2
) − z(i)),

q(i+1) := q(i) + ρ(q(i+
1

2
) − q(i)),

u(i+1) := u(i) + ρ(u(i+ 1

2
) − u(i)),

v(i+1) := v(i) + ρ(v(i+
1

2
) − v(i)).

The memory size for z and the dual variables u and v is O(NM); it is O(M)
for q. The complexity of P∆Ω using the default sorting strategy is O(NM logM)
[16]; it can be reduced to O(NM) using a linear-time median-finding subrou-
tine [16]. The complexity of the other operations is O(NM), so the overall com-
plexity of every iteration of the algorithm is O(NM logM). The parameters µ,
τ , γ, ρ influence the convergence speed. They must be chosen on a case-by-case
basis, but as a first step, one might consider ρ = 1.9, µ = 1, γ = 0.01.

In the case of clustering or quantization, i.e. λ = 0, the algorithm can be
simplified as

Algorithm 2

Input : w, K, M , N , µ. Output : estimate z(i+
1

2
) of a solution to (12).

Choose ρ ∈ [1, 2), τ > 0, and the initial estimates z(0), q(0), u(0). Set σ :=
1/τ/(1 + 1/µ).

Iterate: for i = 0, 1, . . .






















z(i+
1

2
) := P∆Ω

(

z(i) − τ(u(i) + w)
)

,

q(i+
1

2
) := PC

(

q(i) + (τ/
√
µN)Su(i)

)

,

u(i+ 1

2
) := P≥0

(

u(i) + σ
(

2z(i+
1

2
) − z(i) − S∗(2q(i+

1

2
) − q(i))/

√
µN

))

,

z(i+1) := z(i) + ρ(z(i+
1

2
) − z(i)),

q(i+1) := q(i) + ρ(q(i+
1

2
) − q(i)),

u(i+1) := u(i) + ρ(u(i+ 1

2
) − u(i)).
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To study the numerical convergence of Algorithm 1, it is useful to consider
the dual problem [18] of the primal problem (12):

minimize
u∈RM×Ω,v∈RM×Ω×2

∑

n∈Ω

max
m=1,...,M

(−u−D∗v − w)m,n + ıC∗(Su) +K(Su)1

+ ı≥0(u) + ıV(v), (13)

where C∗ = {s ∈ R
M : s1 = · · · = sM ≥ 0}. At convergence, the primal and

the dual cost values are opposite to each other [18]. That is, for a solution z to
(12) and a solution pair (u, v) to (13),

Ψ∞ = 〈z, w〉+λ

2

M
∑

m=1

TV(zm,:) =
∑

n∈Ω

min
m=1,...,M

(u+D∗v+w)m,n−K(Su)1. (14)

The iterate z(i+
1

2
) does not belong to the l1,∞ ball B, so its cost value

Ψp,i = 〈z(i+ 1

2
), w〉 + λ

2

M
∑

m=1

TV(z
(i+ 1

2
)

m,: ), (15)

which tends to Ψ∞ as i → +∞, is not guaranteed to be larger than Ψ∞. Con-
cerning the dual variables, u(i+ 1

2
) ≥ 0 and v(i+

1

2
) ∈ V , but Su(i+ 1

2
) does not

belong to C∗. However, taking the maximum over m of Su(i+ 1

2
) to evaluate the

cost yields a valid lower bound of Ψ∞; that is,

Ψd,i =
∑

n∈Ω

min
m=1,...,M

(u(i+ 1

2
) +D∗v(i+

1

2
) + w(i+ 1

2
))m,n −K max

m=1,...,M

∑

n∈Ω

u
(i+ 1

2
)

m,n

(16)
is ≤ Ψ∞ and tends to Ψ∞ as i → +∞. Hence, a good way to test the convergence
of Algorithm 1 is to check that

M
∑

m=1

max
n∈Ω

z
(i+ 1

2
)

m,n −K ≤ ǫ1 (17)

and
Ψp,i − Ψd,i ≤ ǫ2, (18)

for small constants ǫ1 and ǫ2.

3 Prior Work on the K-Means Problem

The convex relaxation described in the previous section turns out to be well
known in operations research for the closely related K-median, a.k.a. p-median,
problem, which is the same as the K-means problem, with the halved squared
Euclidean distance replaced by the Euclidean distance or any cost function with
metric properties [22]. The search space for the cluster centers is discretized, as
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well. The classical example is a facility location problem: given N clients {yn}Nn=1

and a set Γ = {am}Mm=1 of potential facilities, open K facilities so as to minimize
the sum of the cost for each client of using its nearest open facility; typically
this cost is the distance wm,n = ‖yn − am‖. The 0-1 integer formulation and
its convex relaxation as the linear program (12) (with λ = 0, µ = 1/N , and
the simplex constraint split into nonnegativity and sum-to-one constraints) can
be traced back to half a century ago [23]. The variable qm say whether facility
m has to be opened or not and zm,n is the fraction of the demand of client n
that is supplied by facility m. When the solution is not binary, several rounding
strategies have been proposed [24].

In the case the candidates coincide with the data, i.e. M = N and Γ = y, the
K-means or K-median problem is often called the K-medoid(s) problem [25]; a
centroid ck is then constrained to be an exemplar from within the dataset and
is called a medoid. The convex problem (12) can be simplified, because there is
no need to introduce the auxiliary variables qm: the maximum element of zm,:

is zm,m. Therefore, the problem can be rewritten as: minimizez∈RN×N 〈z, w〉
subject to tr(z) = K and 0 ≤ zm,n ≤ zm,m and

∑

m zm,n = 1, for every m,n.
There does exist a convex relaxation of the K-means problem, which does

not require discretizing the search space of the centroids. Indeed, in the solution,
we have the identity

∑

n∈Ωk
‖yn − ck‖2 =

∑

(n,n′)∈(Ωk)2
‖yn − yn′‖2/(2|Ωk|).

Consequently, we can define the symmetric affinity matrix h of size N ×N , with
hn,n′ = {1/|Ωk| if n and n′ belong to the same cluster Ωk in the solution, 0
else}. Every column of h is on the simplex, h is positive semidefinite, its trace
and rank are K. We can then reformulate the problem as minimizing 〈h,w〉 over
the set of such matrices. Linear programming and semidefinite programming
convex relaxations of this problem have been proposed [26, 27]. They are less
efficient in practice than the convex formulation (12) [27].

Another convex relaxation of the K-means problem consists in minimizing
‖x − y‖22/2 + λ

∑N

n=1

∑

n′>n ‖xn − xn′‖p over x, for some p ∈ [1,+∞] and
some regularization parameter λ [28]. Then a cluster consists in all the points
yn corresponding to the same point xn. This is a hierarchical approach: if two
points are in the same cluster, they remain so when λ increases.

We can notice that the alternatives to the convex formulation (12) mentioned
in this section require to store matrices of size N ×N and to perform operations
with complexity O(N2); this is not feasible when N is a typical image size.

4 Experimental Validation

4.1 K-Means Clustering

We consider the K-means problem, i.e. (1) with λ = 0, applied to the dataset
A1 from https://cs.joensuu.fi/sipu/datasets/ [29], to partition the point
cloud y of N = 3000 points in dimension d = 2 into K = 20 clusters.

In a first experiment, the set of candidates Γ is a uniform grid of 80 × 40
points, from which we kept only the M = 2280 points in the convex hull of y.
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(a)

(b)

(c)

Fig. 1. Clustering of N = 3000 points, in red, into K = 20 groups. In (a), the M

candidates am are on a uniform grid and in (b), they coincide with the data points. In
both cases, they are represented with a color corresponding to the value maxn∈Ω zm,n,
where z is the solution to (12), with λ = 0. It turns out that z is binary, so it is a solution
to the nonconvex problem (9). In (c), the centroids found by the kmeans algorithm of
MATLAB, with default random initialization, are shown in black, whereas the centroids
found by the same algorithm, but initialized with the centroids found by the proposed
method, in yellow in (b), are shown in green. The latter are the global solutions of the
K-means problem (1).
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Fig. 2. Palette of M = 279 colors obtained by sampling the CIELAB color space on
a body centered cubic lattice. The two last orange and red colors have been added
manually.

Remarkably, Algorithm 2 converges to the exact solution of the problem (12), up
to machine precision, in a finite number of iterations. It is also remarkable that
the solution z, represented in Fig. 1 (a), is binary, i.e. with values in {0, 1}; this
can be easily verified by testing that minn∈ΩmaxMm=1 zm,n = 1. Therefore, the
solutions to the convex problem (10) and to the nonconvex problem (9) coincide,
and the proposed method yields the global solution of the K-means problem (for
this choice of Γ).

In a second experiment, we consider the K-medoids case: M = N and Γ = y.
In this case too, Algorithm 2 converges in finite time to the exact solution of the
problem, represented in Fig. 1 (b), which is binary. So, the global solution of the
K-medoids problem has been found.

We can note that it is easy to design counter-examples, where the solution
of the convex problem (12) is not binary and does not yield a solution to the
nonconvex K-means problem.

4.2 Color Image Quantization

We consider the color image quantization problem [5]. It is an instance of the
K-means problems, which consists in partitioning the pixel values yn ∈ R

3 of
an image, supposed to be coordinates in some color space. We consider here the
CIELAB color space, because the Euclidean distance in it approximately matches
the human perceptual distance. We first construct a palette of M = 279 colors,
shown in Fig. 2, obtained by sampling the CIELAB space on a body centered cu-
bic lattice. Indeed, this lattice is the one minimizing the quantization error; that
is, for a given sampling density, or size of the Voronoi cell, the average squared
distance between any point and the closest point in the lattice is minimized [30].
We consider three images and, for each, the three cases K = 4, K = 5, K = 6.
The results are shown in Fig. 3. In the nine cases, Algorithm 2 converges af-
ter a finite number of iterations to the exact solution of (12), which is binary.
So, the obtained images are the global solutions of the nonconvex color image
quantization problem.

4.3 Image Segmentation

We now consider the segmentation problem, i.e. (1) with λ > 0, using the same
images as in Sect. 4.2 and Fig. 3 (a), the palette Γ of M = 279 candidate colors in
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Fig. 2, and λ = 500. The segmented images, solution to (12) and (4), are shown
in Fig. 4. z is never binary in this context and a small blur is present at edges.
Indeed, each value zm,n can be interpreted as the proportion of the candidate
am required to represent the pixel value xn at location n ∈ Ω; for a pixel at an
edge between two regions, it is natural that is is soft-classified, instead of being
fully assigned to one or the other region.

The method succeeds in providing images made of K colors in the palette,
for the sunflower with K = 4 and K = 6, the ladybug with K = 5 and K = 6,
and the parrot with K = 4 and K = 5; that is, maxn∈Ω zm,n = 1 for K indexes
m, and zm,n = 0 for all the other m and all n ∈ Ω. In these cases, up to
the blur at the edges, which can be removed by rounding z to make it binary,
we can consider that we have obtained the global solution to the segmentation
problem (1). For the sunflower with K = 5, the orange at the center of the
large sunflower is actually a mixture of 59% of the color m = 80 and 41% of the
color m = 92. Similarly, for the ladybug with K = 4, there are two pure colors,
i.e. maxn∈Ω zm,n = 1 for m = 155 and m = 107, and mixtures of four colors,
with maxn∈Ω zm,n equal to 0.88 for m = 23 and m = 84, and equal to 0.12
for m = 31 and m = 83. In both cases, this is not an issue, since if one really
wants to identify the K colors of the palette adapted to represent the image, a
post-processing step keeping the K colors with the largest value maxn∈Ω zm,n

would be appropriate. However, in the last case of the parrot with K = 6, the
method fails to provide an image with 6 dominant colors. Indeed, maxn∈Ω zm,n

is equal to 1, 1, 1, 1, 0.66, 0.34, 0.34, 0.34, 0.33, for m = 261, 255, 63, 18, 155,
60, 66, 58, 68, respectively. There is no obvious rounding procedure to keep 6
out of these 9 colors. Thus, the proposed method succeeds eight times and fails
once, in the nine examples considered.

We can remark that the proposed approach, which estimates the K colors
and the corresponding regions with low perimeter jointly, performs better than a
two-step strategy, that would first estimate the K colors using quantization and
then solve the segmentation problem restricted to these M = K colors. Indeed,
we can see that the proposed approach yields different orange and green colors
for the sunflower with K = 4, in Fig. 4 (c), from the ones in Fig. 3 (d). The
dark gray for the parrot with K = 4, in Fig. 4 (c), is also different from the dark
green in Fig. 3 (d). So, in these two examples, the two-step strategy would have
failed to provide an image with the appropriate colors.
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