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Abstract

A new convex formulation of data clustering and image segmentation is proposed, with fixed number K of

regions and possible penalization of the region perimeters. So, this problem is a spatially regularized version

of the K -means problem, a.k.a. piecewise constant Mumford–Shah problem. The proposed approach relies on

a discretization of the search space; that is, a finite number of candidates must be specified, from which the

K centroids are determined. After reformulation as an assignment problem, a convex relaxation is proposed,

which involves a kind of l1,∞ norm ball. A splitting of it is proposed, so as to avoid the costly projection onto

this set. Some examples illustrate the e�ciency of the approach.

I. Introduction

Data partitioning, or clustering, aims at decomposing a set of elements into groups, so as to minimize

some notion of intra-group dissimilarity [1], [2]. Thus, the classical K-means problem [3], which is generally

NP-hard [4], [5], consists in partitioning N points of Rd into K groups, by minimizing the sum of squared

distances from every point to the nearest centroid, which is the center of mass of a group. An application is

color image quantization [6], [7]: one looks for the palette of K colors representing at best a given image;

in that case, the points are the pixel values in R
3, corresponding to the coordinates in some color space.

A fundamental problem in image processing and vision, which is even more di�cult, is image segmentation:

one wants to decompose an image of N pixels into K regions, corresponding to the objects of the scene, by

favoring, in addition to intra-region similarity, some notion of spatial homogeneity [8], [9]. We consider in

this article a variational approach of minimal partition type [10]; that is, spatial homogeneity is obtained by

penalizing the perimeter of the regions. This problem, which is generally NP-hard, is sometimes called Potts

problem [11], or piecewise-constant Mumford–Shah problem [9], [12].

The considered problem can be formalized as follows. The data y = (yn)n∈Ω is a 1-D signal of domain

Ω = {1, . . . ,N } or a 2-D image of domain Ω = {1, . . . ,N1} × {1, . . . ,N2} (having N = N1N2 pixels), with

values yn in R
d , endowed with the Euclidean norm. Given an integer K ≥ 2, one wants to partition Ω into

K regions¹ Ωk (so
⋃K

k=1 Ωk = Ω and Ωk ∩ Ωk ′ = ∅, for all k , k
′), and to find the corresponding centroids

ck ∈ R
d , so as to

minimize
(Ωk )

K

k=1
,(ck )

K

k=1

1

2

K
∑

k=1

∑

n∈Ωk

‖yn − ck‖
2
+

λ

2

K
∑

k=1

per(Ωk ), (1)

where per denotes the perimeter and λ ≥ 0 is a parameter controlling the level of spatial regularization.

When λ = 0, this is exactly the K-means problem; then the geometry of the domain and the indexing order

do not play any role and one can think in terms of partitioning the point cloud (yn)n∈Ω in R
d into K groups,

whose ck are the means.

We can define the quantized or segmented signal or image x = (xn)n∈Ω , with xn = ck if n ∈ Ωk . So, x
is a piecewise constant approximation of y, taking at most K different values. If λ = 0, we can express the

¹The number of regions is actually at most K , and not exactly K , because some regions Ωk could be empty. This is never the case
in practical applications.
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problem (1) as:

minimize
x ∈(Rd )Ω

1
2
‖y − x‖22 s.t. |{xn : n ∈ Ω}| ≤ K , (2)

where ‖y − x‖22 =
∑

n∈Ω ‖yn − xn‖
2 and | · | denotes the cardinality of a set. Moreover, in the case of a 1-D

signal, 1
2

∑K
k=1 per(Ωk ) is equal to |{n : xn , xn+1}|, the number of jumps in the signal². So, in 1-D, we can

express the problem (1) as:

minimize
x ∈(Rd )N

1
2
‖y − x‖22 + λ |{n = 1, . . . ,N − 1 : xn , xn+1}| s.t. |{xn : n = 1, . . . ,N }| ≤ K . (3)

The definition of the discrete perimeter in 2-D, based on finite differences, is much more problematic [10],

[13].

We can note that, if the regions Ωk are fixed, the centroids ck , solutions to the problem (1), are the means

of the elements of the regions: ck =
1

|Ωk |

∑

n∈Ωk yn . Conversely, if the ck are fixed, i) if λ = 0, we simply get

the regions as the Voronoi cells Ωk = {n ∈ Ω : k = argmink ′ ‖yn − ck ′‖}; ii) if λ > 0, there exist e�cient

methods to solve the problem, by convex relaxation [10], [13] or by graph cuts [14], see also [15]. Therefore,

a strategy consists in alternating between updating the Ωk at fixed ck , and the other way around. In the case

λ = 0, this yields exactly the classical K-means algorithm, due to Lloyd [16]; it must be distinguished from

the K-means problem (1), for which it is a heuristic. It converges to a local minimum of the problem, but is

very dependent on the initialization [3], [7].

Globally convex methods, with high complexity, have been proposed to solve the problem (1), in the

particular cases K = 2 or K = 4 [17]–[19]. The author is not aware of a generic method to approximate

the global minimum of (1). In this work, the problem is addressed by discretizing the search space of the

centroids: we fix a set Γ = {am}Mm=1 ofM points in R
d , called the candidates, and the centroids are constrained

to belong to Γ, instead of to the whole space R
d . Typically, K << M.

II. Proposed Method

A. Problem Reformulation by Lifting

In the segmented signal or image x , every element xn is one of the centroids ck , which is itself one of

the candidates am . Thus, we can reformulate the problem (1) as an equivalent problem, whose unknown

is the assignment array z, which has one more dimension than y, indexed by m = 1, . . . ,M; we talk about

lifting [10], [20]. For every n ∈ Ω andm = 1, . . . ,M, zm,n is equal to 1 if xn = am and to 0 else. Each vector

z:,n = (zm,n )
M
m=1 belongs to the set A of binary assignment vectors, i.e. vectors with elements in {0,1} whose

sum is 1.

We retrieve x from z by a simple summation:

xn =

M
∑

m=1

zm,nam , ∀n ∈ Ω. (4)

Moreover, the data fidelity term in (1) can be rewritten as

1

2

∑

n∈Ω

‖xn − yn‖
2
=

1

2

∑

n∈Ω

M
∑

m=1

zm,nwm,n , (5)

or, in short, 1
2
‖x − y‖22 = 〈z,w〉, where

wm,n =
1
2
‖yn − am‖

2. (6)

By using the coarea formula, according to which the total variation (TV) of the indicator function of a set (1

inside, 0 outside) is equal to the perimeter of that set [10], the regularization term in (1) can be rewritten

as

λ

2

K
∑

k=1

per(Ωk ) =
λ

2

M
∑

m=1

TV(zm,:), (7)

²We assume symmetric boundary conditions, so the boundary of the domain Ω is not counted in the perimeter.
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where TV is some discrete form of the TV [13] and zm,: = (zm,n )n∈Ω is a scalar signal or image of same

domain Ω as y.
It remains to reformulate the constraint that the number of regions Ωk is at most K or, equivalently, that x

takes its values in only K among the M candidates, i.e. |{xn : n ∈ Ω}| ≤ K . We have the following property:

Proposition 1 The assignment array z ∈ A
Ω corresponds, by (4), to a signal or image x ∈ ΓΩ taking at most

K distinct values, if and only if

‖z‖1,∞ ≤ K , (8)

where³ ‖z‖1,∞ =
∑M
m=1 maxn∈Ω zm,n .

Indeed, since z takes its values in {0,1}, a candidate am is assigned to at least one point xn , and therefore

is one of the centroids ck , if and only if zm,: contains at least one 1; that is, if and only if maxn∈Ω zm,n = 1.

Hence, we can rewrite the problem (1), with discrete search space Γ for the centroids, as

minimize
z∈AΩ

〈z,w〉 +
λ

2

M
∑

m=1

TV(zm,:) s.t. ‖z‖1,∞ ≤ K . (9)

B. Convex Relaxation of the Problem

The problem (9) is not convex; more precisely, the functions and sets are all convex, except the set A

of binary assignment vectors. So, we consider a convex relaxation, obtained by replacing A by its convex

hull, which is the simplex ∆, i.e. the set of vectors with nonnegative elements whose sum is 1 [21]. Let us

introduce the ball B = {s ∈ R
M×Ω : ‖s‖1,∞ ≤ K}, and the convex indicator function ıE of a convex set E,

which takes the value 0 if its variable belongs to E and +∞ else. The proposed convex problem is then:

minimize
z∈RM×Ω

〈z,w〉 +
∑

n∈Ω

ı∆(z:,n) +
λ

2

M
∑

m=1

TV(zm,:) + ıB(z). (10)

For conveniency, we denote by ∆
Ω the set of arrays of same size à z whose columns are on the simplex, so

that ı∆Ω(z) =
∑

n∈Ω ı∆(z:,n).
We can note that another convex relaxation of the perimeter term, which is better, when z belongs to ∆

Ω,

than the one in (7) we use in this paper, has been proposed in [10]. We do not consider it here because of

its higher computational complexity, but there would be no di�culty in using it in our context.

The projection onto the simplex can be performed e�ciently [21]. However, the projection onto B, which

can also be performed exactly in finite time [22], is very costly. That is why we propose a (dual) splitting [23]

of the maximum function:

Proposition 2 The maximum function of a vector, or more generally of an array with N elements, s can be

expressed as an infimal convolution [23]:

max
n=1, ...,N

sn = min
q∈R

q/
√

µN + ı≤0(s − S
∗q/
√

µN ), (11)

where µ > 0 is some fixed constant, ı≤0 is the indicator function of the cone of arrays with nonpositive elements,

S is the linear operator, which maps an array to the sum of its elements, and its adjoint operator S∗ duplicates
a real number into an array of same size as s with N identical elements.

We can note that, in Proposition 2, the norm of the linear operator (s,q) 7→ s − S∗q/
√

µN is 1 + 1/µ.

Let us introduce the constraint set C=
�
s ∈ RM :

∑M
m=1 sm ≤ K

√

µN
	
. The convex problem we propose

to solve is then:

minimize
z∈RM×Ω

,q∈RM

〈z,w〉 + ı∆Ω(z) + ıC(q) +
λ

2

M
∑

m=1

TV(zm,:) +

M
∑

m=1

ı≤0
�
zm,: − S

∗qm/
√

µN
�
. (12)

³In this paper, we make an abuse of the terms l1,∞ norm and ball: the elements of z are nonnegative, so there is no need to take
their absolute values.
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We can remark that the use of ‖z‖1,∞ to control the number of regions has been proposed in the same

context in [24], but as a penalty and not as a constraint. Handling a l1,∞ constraint is a priori more di�cult

than regularizing with the l1,∞ norm, but we have seen that the splitting technique in Proposition 2 ends in

the convex optimization problem (12), involving only simple terms.

C. Proposed Algorithm

In the following, we assume that the ‘isotropic’ form of the discrete TV [13] is used. There would be no

di�culty in using instead the form proposed in [13], for better quality but higher computational complexity. As

usual, we express the isotropic TV as the l1,2 norm composed with a linear operator D of finite differences [13],

[25]. More precisely, in the case of a 2-D image with domain Ω = {1, . . . ,N1} × {1, . . . ,N2}, we introduce

D : RM×Ω → R
M×Ω×2,z 7→ v , with vm,n,1 = zm,(n1+1,n2) − zm,n and vm,n,2 = zm,(n1,n2+1) − zm,n , for every

m = 1, . . . ,M and n = (n1,n2) ∈ Ω (using symmetric boundary conditions). Note that the operator norm of

D is 8. We also introduce V= {v ∈ RM×Ω×2 : v2
m,n,1 + v

2
m,n,2 ≤ λ2/4, ∀m = 1, . . . ,M, n ∈ Ω}.

In the case of a 1-D signal with domain Ω = {1, . . . ,N }, some simplifications can be made. We can set

D : RM×N → R
M×(N−1),z 7→ v , with vm,n = zm,n+1 − zm,n , for every m = 1, . . . ,M and n = 1, . . . ,N − 1, and

V= {v ∈ RM×(N−1) : |vm,n | ≤ λ/2, ∀m = 1, . . . ,M, n = 1, . . . ,N − 1}. Note that the operator norm of D is

4 in this case, so we can set σv := (1 − γ )/τ/4 in Algorithm 1 below.

We denote by PE the projection onto a set E, by ı≥0 and P≥0 the indicator function of and the projection

onto the cone of arrays with nonnegative elements, respectively. We extend the summation operator S to

any array u ∈ R
M×Ω of same size as z, to mean summation with respect to the index n ∈ Ω; that is,

Su = (Sum,:)
M
m=1 ∈ R

M . Consequently, the last term in (12) can be rewritten more shortly as
∑M
m=1 ı≤0(zm,: −

S∗qm/
√

µN ) = ı≤0(z − S
∗q/
√

µN ).
The proposed algorithm is the over-relaxed version [26] of the Chambolle–Pock algorithm [25], applied

to the problem (12), viewed as the sum of one function and two functions composed with linear operators,

with the pair (z,q) as variable. With the proposed range of parameters, it is proved to converge to a solution

of (12).

Algorithm 1

Input : w, K , λ, M, N , µ. Output : estimate z(i+
1
2
) of a solution to (12).

Choose ρ ∈ [1,2), τ > 0, γ ∈ (0,1), and the initial estimates z(0), q(0), u(0), v (0). Set σu := γ/τ/(1 + 1/µ),
σv := (1 − γ )/τ/8.
Iterate: for i = 0,1, . . .


z(i+
1
2
) := P∆Ω

�
z(i) − τ (u(i) +w + D∗v (i))

�
,

q(i+
1
2
) := PC

�
q(i) + (τ/

√

µN )Su(i)
�
,

u(i+
1
2
) := P≥0

�
u(i) + σu

�
2z(i+

1
2
) − z(i) − S∗(2q(i+

1
2
) − q(i))/

√

µN
��
,

v (i+ 1
2
) := PV

�
v (i)
+ σvD(2z

(i+ 1
2
) − z(i))

�
,

z(i+1) := z(i) + ρ(z(i+
1
2
) − z(i)),

q(i+1) := q(i) + ρ(q(i+
1
2
) − q(i)),

u(i+1) := u(i) + ρ(u(i+
1
2
) − u(i)),

v (i+1) := v (i)
+ ρ(v (i+ 1

2
) − v (i)).

The memory size for z and the dual variables u and v is O(NM); it is O(M) for q. The complexity of

P∆Ω using the default sorting strategy is O(NM logM) [21]; it can be reduced to O(NM) using a linear-time

median-finding subroutine [21]. The complexity of the other operations is O(NM), so the overall complexity

of every iteration of the algorithm is O(NM logM). The parameters µ, τ , γ , ρ influence the convergence

speed. They must be chosen on a case-by-case basis, but as a first step, one might consider ρ = 1.9, µ = 1,

γ = 0.01.

In the case of clustering or quantization, i.e. λ = 0, the algorithm can be simplified as

Algorithm 2
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Input : w, K , M, N , µ. Output : estimate z(i+
1
2
) of a solution to (12).

Choose ρ ∈ [1,2), τ > 0, and the initial estimates z(0), q(0), u(0). Set σ := 1/τ/(1 + 1/µ).
Iterate: for i = 0,1, . . .


z(i+
1
2
) := P∆Ω

�
z(i) − τ (u(i) +w)

�
,

q(i+
1
2
) := PC

�
q(i) + (τ/

√

µN )Su(i)
�
,

u(i+
1
2
) := P≥0

�
u(i) + σ

�
2z(i+

1
2
) − z(i) − S∗(2q(i+

1
2
) − q(i))/

√

µN
��
,

z(i+1) := z(i) + ρ(z(i+
1
2
) − z(i)),

q(i+1) := q(i) + ρ(q(i+
1
2
) − q(i)),

u(i+1) := u(i) + ρ(u(i+
1
2
) − u(i)).

To study the numerical convergence of Algorithm 1, it is useful to consider the dual problem [23] of the

primal problem (12):

minimize
u ∈RM×Ω

,v ∈RM×Ω×2

∑

n∈Ω

max
m=1, ...,M

(−u − D∗v −w)m,n + ıC∗(Su) + K(Su)1 + ı≥0(u) + ıV(v), (13)

where C
∗
= {s ∈ RM : s1 = · · · = sM ≥ 0}. At convergence, the primal and the dual cost values are opposite

to each other [23]. That is, for a solution z to (12) and a solution pair (u,v) to (13),

Ψ
∞
= 〈z,w〉 +

λ

2

M
∑

m=1

TV(zm,:) =
∑

n∈Ω

min
m=1, ...,M

(u + D∗v +w)m,n − K(Su)1 . (14)

The iterate z(i+
1
2
) does not belong to the l1,∞ ball B, so its cost value

Ψ
p,i
= 〈z(i+

1
2
),w〉 +

λ

2

M
∑

m=1

TV(z
(i+ 1

2
)

m,: ), (15)

which tends to Ψ
∞ as i → +∞, is not guaranteed to be larger than Ψ

∞. Concerning the dual variables,

u(i+
1
2
) ≥ 0 and v (i+ 1

2
) ∈ V, but Su(i+

1
2
) does not belong to C

∗. However, taking the maximum over m of

Su(i+
1
2
) to evaluate the cost yields a valid lower bound of Ψ∞; that is,

Ψ
d,i
=

∑

n∈Ω

min
m=1, ...,M

(u(i+
1
2
)
+ D∗v (i+ 1

2
)
+w(i+ 1

2
))m,n − K max

m=1, ...,M

∑

n∈Ω

u
(i+ 1

2
)

m,n (16)

is ≤ Ψ
∞ and tends to Ψ

∞ as i → +∞. Hence, a good way to test the convergence of Algorithm 1 is to check

that
M
∑

m=1

max
n∈Ω

z
(i+ 1

2
)

m,n − K ≤ ϵ1 (17)

and

Ψ
p,i
− Ψ

d,i
≤ ϵ2, (18)

for small constants ϵ1 and ϵ2.

III. Experimental Validation

A. K-Means Clustering

We consider the K-means problem, i.e. (1) with λ = 0, applied to the dataset A1 from

https://cs.joensuu.fi/sipu/datasets/ [27], to partition the point cloud y of N = 3000 points in

dimension d = 2 into K = 20 clusters.

In a first experiment, the set of candidates Γ is a uniform grid of 80× 40 points, from which we kept only

the M = 2280 points in the convex hull of y. Remarkably, Algorithm 2 converges to the exact solution of

the problem (12), up to machine precision, in a finite number of iterations. It is also remarkable that the

solution z, represented in Fig. 1 (a), is binary, i.e. with values in {0,1}; this can be easily verified by testing
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that minn∈Ω maxMm=1 zm,n = 1. Therefore, the solutions to the convex problem (10) and to the nonconvex

problem (9) coincide, and the proposed method yields the global solution of the K-means problem (for this

choice of Γ).
In a second experiment, the candidates coincide with the data, i.e. M = N and Γ = y. In this case, the

centroids ck , which are constrained to be some of the data points yn , are sometimes called medoids [28]. We

can then rewrite (1) as the K-medoids problem:

minimize
n1, ...,nK ∈{1, ...,N }

1

2

N
∑

n=1

min
k=1, ...,K

‖yn − ynk ‖
2. (19)

This problem is combinatorial, with a number
�n
k

�
of possible solutions, which takes a huge value even for

moderate K and N . In this case too, Algorithm 2 converges in finite time to the exact solution of the problem,

represented in Fig. 1 (b), which is binary. So, the global solution of the K-medoids problem has been found.

B. Color Image Quantization

We consider the color image quantization problem [6]. It is an instance of the K-means problems, which

consists in partitioning the pixel values yn ∈ R
3 of an image, supposed to be coordinates in the CIELAB

color space. We consider this space, because the Euclidean distance in it approximately matches the human

perceptual distance. We first construct a palette of M = 279 colors, shown in Fig. 2, obtained by sampling

the CIELAB space on a body centered cubic lattice. Indeed, this lattice is the one minimizing the quantization

error; that is, for a given sampling density, or size of the Voronoi cell, the average squared distance between

any point and the closest point in the lattice is minimized [29]. We consider three images and, for each, the

three cases K = 4, K = 5, K = 6. The results are shown in Fig. 3. In the nine cases, Algorithm 2 converges

after a finite number of iterations to the exact solution of (12), which is binary. So, the obtained images are

the global solutions of the nonconvex color image quantization problem.

C. Image Segmentation

We now consider the segmentation problem, i.e. (1) with λ > 0, using the same images as in Sect. III-B

and Fig. 3 (a), the palette Γ of M = 279 candidate colors in Fig. 2, and λ = 500. The segmented images,

solution to (12) and (4), are shown in Fig. 4. z is never binary in this context and a small blur is present

at edges. Indeed, each value zm,n can be interpreted as the proportion of the candidate am required to

represent the pixel value xn at location n ∈ Ω; for a pixel at an edge between two regions, it is natural that

is is soft-classified, instead of being fully assigned to one or the other region.

The method succeeds in providing images made of K colors in the palette, for the sunflower with K = 4 and

K = 6, the ladybug with K = 5 and K = 6, and the parrot with K = 4 and K = 5; that is, maxn∈Ω zm,n = 1

for K indexes m, and zm,n = 0 for all the other m and all n ∈ Ω. In these cases, up to the blur at the edges,

which can be removed by rounding z to make it binary, we can consider that we have obtained the global

solution to the segmentation problem (1). For the sunflower with K = 5, the orange at the center of the

large sunflower is actually a mixture of 59% of the color m = 80 and 41% of the color m = 92. Similarly,

for the ladybug with K = 4, there are two pure colors, i.e. maxn∈Ω zm,n = 1 for m = 155 and m = 107,

and mixtures of four colors, with maxn∈Ω zm,n equal to 0.88 for m = 23 and m = 84, and equal to 0.12 for

m = 31 and m = 83. In both cases, this is not an issue, since if one really wants to identify the K colors

of the palette adapted to represent the image, a post-processing step keeping the K colors with the largest

value maxn∈Ω zm,n would be appropriate. However, in the last case of the parrot with K = 6, the method

fails to provide an image with 6 dominant colors. Indeed, maxn∈Ω zm,n is equal to 1, 1, 1, 1, 0.66, 0.34,

0.34, 0.34, 0.33, for m = 261, 255, 63, 18, 155, 60, 66, 58, 68, respectively. There is no obvious rounding

procedure to keep 6 out of these 9 colors. Thus, the proposed method succeeds eight times and fails once,

in the nine examples considered.

We can remark that the proposed approach, which estimates the K colors and the corresponding regions

with low perimeter jointly, performs better than a two-step strategy, that would first estimate the K colors

using quantization and then solve the segmentation problem restricted to these M = K colors. Indeed, we
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can see that the proposed approach yields different orange and green colors for the sunflower with K = 4, in

Fig. 4 (c), from the ones in Fig. 3 (c). The dark gray for the parrot with K = 4, in Fig. 4 (c), is also different

from the one in Fig. 3 (c). So, in these two examples, the two-step strategy would have failed to provide an

image with the appropriate colors.
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(a)

(b)

(c)

Fig. 1. Clustering of N = 3000 points, in red, into K = 20 groups. In (a), the M candidates am are on a uniform grid and in (b),
they coincide with the data points. In both cases, they are represented with a color corresponding to the value maxn∈Ω zm,n , where
z is the solution to (12), with λ = 0. It turns out that z is binary, so it is a solution to the nonconvex problem (9). In (c), the centroids
found by the kmeans algorithm of Matlab, with default random initialization, are shown in black, whereas the centroids found by the
same algorithm, but initialized with the centroids found by the proposed method, in yellow in (b), are shown in green. The latter
are the global solutions of the K -means problem (1).
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Fig. 2. Palette of M = 279 colors obtained by sampling the CIELAB color space on a body centered cubic lattice. The two last orange
and red colors have been added manually.

(a)

(b)

(c)

(d)

Fig. 3. In (a), original sunflower, ladybug, parrot images y, of size 254 × 168, 298 × 228, and 200 × 199, respectively. In (b)–(d),
quantized images x solution to (12) (λ = 0) and (4), with K = 6, K = 5, K = 4, respectively, with the palette Γ of candidate colors
shown in Fig. 2.
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(a)

(b)

(c)

Fig. 4. Segmented images x , solution to (12) and (4), with y in Fig. 3 (a), K = 5, λ = 500, and the palette Γ of candidate colors
shown in Fig. 2. In (a), (b), (c), K = 6, K = 5, K = 4, respectively.


