
HAL Id: hal-01437124
https://hal.science/hal-01437124v1

Submitted on 10 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Similarity Based Hierarchical Clustering with an
Application to Text Collections

Julien Ah-Pine, Xinyu Wang

To cite this version:
Julien Ah-Pine, Xinyu Wang. Similarity Based Hierarchical Clustering with an Application to Text
Collections. Intelligent Data Analysis, Oct 2016, Stockholm, Sweden. pp.320 - 331, �10.1007/978-3-
319-46349-0_28�. �hal-01437124�

https://hal.science/hal-01437124v1
https://hal.archives-ouvertes.fr

Similarity based hierarchical clustering with an
application to text collections

Julien Ah-Pine and Xinyu Wang

University of Lyon, Eric Lab
5, avenue Pierre Mendès France

69676 Bron Cedex, France
Julien.Ah-Pine@univ-lyon2.fr

Xinyu.Wang@univ-lyon2.fr

Abstract. Lance-Williams formula is a framework that unifies seven
schemes of agglomerative hierarchical clustering. In this paper, we es-
tablish a new expression of this formula using cosine similarities instead
of distances. We state conditions under which the new formula is equiv-
alent to the original one. The interest of our approach is twofold. Firstly,
we can naturally extend agglomerative hierarchical clustering techniques
to kernel functions. Secondly, reasoning in terms of similarities allows
us to design thresholding strategies on proximity values. Thereby, we
propose to sparsify the similarity matrix in the goal of making these
clustering techniques more efficient. We apply our approach to text clus-
tering tasks. Our results show that sparsifying the inner product matrix
considerably decreases memory usage and shortens running time while
assuring the clustering quality.

Key words: Agglomerative hierarchical clustering, Lance-Williams for-
mula, Scalable hierarchical clustering, Kernel machines, Text clustering.

1 Introduction

Hierarchical clustering is an important member in the clustering family. As it
is able to reveal internal connections of clusters, it is more informative than
its counterpart, flat clustering. Due to this advantage, it is widely applied in
different domains like in documents organization where it makes it possible to
highlight the relationships between topics.

There are two types of hierarchical clustering: agglomerative and divisive.
Given a dataset D of N instances, agglomerative hierarchical clustering (AHC)
recursively merges two clusters at each step, until that all instances are grouped
into one cluster. Whereas, divisive hierarchical clustering (DHC) functions in
the opposite way. DHC is computationally demanding, as there are 2N−1 − 1
possible subdivisions into two clusters when splitting a dataset of N . Compar-
atively, AHC is more efficient, and thus more widely studied and applied. The
result of AHC is usually represented by a dendrogram, a binary tree composed
of 2N − 1 nodes, to which a real value called height is assigned. The conven-
tional procedure of AHC, also called the stored dissimilarities approach, takes a

pairwise dissimilarity matrix D of size N as input, initializes a binary tree with
N leaves (singletons) with null height values, and iteratively adds new nodes
(merged clusters) by fusing a pair of clusters (Ci, Cj) determined as follows:

(Ci, Cj) = arg min
(Ck,Cl)

D(Ck, Cl) (1)

AHC can be computationally costly. For the usual AHC procedure described
above, the time complexity is O(N3). Other approaches, such as NN-chain based
methods [1, 7], have time complexity O(N2). But the drawback is that, NN-chain
based methods are constrained by reducibility property, thus they cannot work
with median and centroid methods. Another approach, called SparseHC [9] struc-
tures clusters with an adjacency hash map. According to its experiment results,
SparseHC does decrease the memory growth, but its time complexity is improved
for single link only. Besides this approach is not generic, as it is only applica-
ble for single link, complete link and average link. Another method, CURE [4],
reduces data by random sampling and partitioning. Though it decreases time
complexity to O(N2

samplelogNsample), its results are indeterministic due to the
random procedures. And for BIRCH [11], its time complexity is O(N), but extra
structure like clustering features (CF) tree has to be employed in order to store
compact summaries of the original data.

In this paper, we propose an AHC approach which is generic for all usual
methods. It allows a better scalability compared to the conventional AHC al-
gorithm both in memory and processing time, and its results are deterministic
unlike some aforementioned techniques. Our method is based on a new expres-
sion of the Lance-Williams (LW) formula, in which we replace dissimilarities
with inner product based similarities. This change provides us with two impor-
tant advantages: (1) it allows us to easily extend AHC to kernel functions; (2)
it enables us to design a suitable thresholding strategy so that we can obtain a
sparsified similarity matrix, resulting in a more scalable AHC procedure.

In order to illustrate the properties and benefits of our approach, we applied
it to text clustering tasks. Our experiments show that results obtained by our
framework are identical to the results obtained by the usual AHC methods,
demonstrating their equivalence. Moreover, our experimental results show that
on a largely sparsified similarity matrix, our approach is still able to cluster
correctly, but with higher speed and less memory usage.

The rest of paper is structured as follows. Section 2 introduces fundamental
materials on AHC. Section 3 details our approach and the mathematical proof
of correctness. Experimental verification on results quality and performance im-
provement on real-world text clustering tasks can be found in Section 4. Section
5 concludes our paper with a discussion and presents future work.

2 Conventional AHC methods and the LW formula

There are many AHC techniques and reviews of these algorithms can be found
in [8] and [10]. Conventional AHC methods can be classified into graph and geo-
metric methods. Single link, complete link, average link and Mcquitty are graph

methods, in which dissimilarity of two clusters is determined by the dissimilari-
ties of instances from these clusters. Due to this property, these techniques can
use graph representations that rely on a pairwise dissimilarity matrix. Whereas,
for geometric methods, composed of centroid, median and Ward methods, in-
stances are assumed to be represented in an Euclidean space, clusters are rep-
resented by prototypes and Euclidean distances between these representative
vectors are used as dissimilarities.

Proposed by Lance G.N and Williams W.T in 1967 [5], the LW formula is
a convenient formulation, which unifies the graph and the geometric methods
mentioned above. It is used as a generic equation for updating the dissimilar-
ity matrix D at each iteration once the newly formed cluster C(ij) = Ci ∪ Cj
given by (1) has been added to the dendrogram. According to this approach the
dissimilarity between C(ij) and another cluster Ck is given by:

D(C(ij), Ck) =αiD(Ci, Ck) + αjD(Cj , Ck) + βD(Ci, Cj)

+ γ|D(Ci, Ck)−D(Cj , Ck)|
(2)

Depending on the choice of a certain clustering method, values of parameters
αi, αj , β and γ change accordingly. Table 1 displays parameter values in (2) that
correspond to seven particular methods.

Table 1. Lance-Williams formula: methods and parameter values.

Methods αi αj β γ

single 1/2 1/2 0 -1/2
complete 1/2 1/2 0 1/2

average |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

0 0

Mcquitty 1/2 1/2 0 0

centroid |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

− |Ci||Cj |
(|Ci|+|Cj |)2

0

median 1/2 1/2 -1/4 0

Ward |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

|Cj |+|Ck|
|Ci|+|Cj |+|Ck|

− |Ck|
|Ci|+|Cj |+|Ck|

0

3 Our approach

In this section, we introduce our method from three aspects: (1) we propose
to renew the original LW formula using cosine similarities instead of squared
Euclidean distances; (2) we extend this expression to kernel functions; (3) we in-
troduce a simple sparsification strategy which is applied to the similarity matrix
in the goal of reducing memory use and running time.

3.1 An equivalent LW formula using cosine similarities

We suppose that the N instances of dataset D are represented by vectors in an
Euclidean space I of dimension p. Cosine of the angle between two vectors is

considered as their similarity. Input S is a pairwise similarity matrix of size N .
For two data points x, y ∈ D, with 〈., .〉 denoting inner product, their similarity
is defined as follows:

S(x, y) = 〈 x
‖x‖

,
y

‖y‖
〉 (3)

Note that this implies that S(x, x) = 1 for all data point x ∈ D. It is an important
condition in our context to establish the new expression. We associate S with
a dissimilarity matrix D whose general term is the squared Euclidean distance
between normalized vectors:

D(x, y) = ‖ x

‖x‖
− y

‖y‖
‖2

= S(x, x) + S(y, y)− 2S(x, y) (4)

= 2(1− S(x, y)) (5)

With the above assumptions, we provide an expression of the LW formula
using S instead of D. In fact, our approach amounts to work with − 1

2D(Ck, Cl)
instead of D(Ck, Cl). In order to guarantee the correctness of our reasoning,
we proceed by induction. In the first iteration of the AHC algorithm, there are
N leaves {Ck}, each is one data point. In this case, the relationship below is
straightforward:

arg min
(Ck,Cl)

D(Ck, Cl) = arg max
(Ck,Cl)

−1

2
D(Ck, Cl)

= arg max
(Ck,Cl)

S(Ck, Cl)−
1

2
(S(Ck, Ck) + S(Cl, Cl)) (6)

Next, for the subsequent iterations, we show that the LW formula can be
recast as follows:

−1

2
D(C(ij), Ck) = S(C(ij), Ck)− 1

2
(S(C(ij), C(ij)) + (αi + αj)S(Ck, Ck)) (7)

where:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (8)

−γ|S(Ci, Ci)/2− S(Ci, Ck)− S(Cj , Cj)/2 + S(Cj , Ck)|
S(C(ij), C(ij)) = (αi + β)S(Ci, Ci) + (αj + β)S(Cj , Cj) (9)

Equation (7) together with the recurrence formulas (8) and (9) are respec-
tively the counterparts of (1) and (2) that establish our method. With the con-
dition that S(Ck, Ck) = 1 for all N singletons {Ck}, we show below that our
formulation is equivalent to the usual LW formula for each clustering scheme
listed in Table 1:

1. For single link and complete link, (8) reduces to S(C(ij), Ck) = αiS(Ci, Ck)+
αjS(Cj , Ck) + βS(Ci, Cj) − γ|S(Ci, Ck) − S(Cj , Ck)|, and (9) reduces to

S(C(ij), C(ij)) = 1, as αj + αj + 2β = 1. Since in (7) αi + αj = 1, then (6)
with the reduced updating rules of (8) and (9) are globally equivalent to the
conventional procedure. Note that for other remaining methods γ = 0, so
that (8) boils down to S(C(ij), Ck) = αiS(Ci, Ck)+αjS(Cj , Ck)+βS(Ci, Cj).

2. If we assume again that S(Ck, Ck) = 1 for all N singletons {Ck} and if we
replace S(C(ij), C(ij)) with (9) as well, then the second term in the right-hand
side of (7) becomes −(αi + αj + β). By this, we can divide the remaining
clustering methods into two groups: (a) average link, Mcquitty and Ward
which have −(αi +αj +β) = −1, and (b) centroid and median which satisfy
−(αi + αj + β) > −1:
(a) Regarding average link, Mcquitty and Ward, it is not difficult to prove

by induction that the second term in the right-hand side of (7) al-
ways equals to −1. Consequently, for these cases, (6) with the updat-
ing rules S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) and
S(C(ij), C(ij)) = 1 are globally equivalent to the general procedure.

(b) Concerning the centroid and median methods, since αi + αj = 1 in (7),
the coefficient assigned to S(Ck, Ck) vanishes. However, αi+αj+2β 6= 1
in (9) hence S(C(ij), C(ij)) 6= 1. Therefore, it is important to apply the
weighting system determined in (9) for the global equivalence of centroid
and median to hold.

We can wrap up all particular cases discussed above through the following
general procedure which defines our AHC framework. At each iteration, we solve:

(Ci, Cj) = arg max
(Ck,Cl)

S(Ck, Cl)−
1

2
(S(Ck, Ck) + S(Cl, Cl)) (10)

After having merged (Ci, Cj) into C(ij), the similarity matrix S is updated
by applying the two following equations:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (11)

−γ|S(Ci, Ck)− S(Cj , Ck)|
S(C(ij), C(ij)) = δiS(Ci, Ci) + δjS(Cj , Cj) (12)

Table 2 lists parameter values of each method in our framework. Note that
in this table, the newly introduced parameters δi and δj sum to one except for
centroid and median methods. In fact, for the other methods, we could have
taken any values providing that δi + δj = 1.

3.2 Extending to kernel functions

Our approach allows us to naturally extend AHC methods to kernel functions
(see for example [2]) since most of the latter mappings are defined with respect
to inner products. Consequently, in our method, broader similarity measures can
be easily employed and non linearly separable cases can be addressed effectively.

Thereby, let K denote a pairwise inner product matrix (or Gram matrix) of
size N whose general term for two data points x, y ∈ D is K(x, y) = 〈φ(x), φ(y)〉

xywang
Underline

xywang
Underline

Table 2. The cosine similarity based formula: methods and parameter values.

Methods αi αj β γ δi δj
single 1/2 1/2 0 -1/2 1/2 1/2

complete 1/2 1/2 0 1/2 1/2 1/2

average |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

0 0 1/2 1/2

Mcquitty 1/2 1/2 0 0 1/2 1/2

centroid |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj |

− |Ci||Cj |
(|Ci|+|Cj |)2

0 |Ci|2
(|Ci|+|Cj |)2

|Cj |2

(|Ci|+|Cj |)2

median 1/2 1/2 -1/4 0 1/4 1/4

Ward |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

|Cj |+|Ck|
|Ci|+|Cj |+|Ck|

− |Ck|
|Ci|+|Cj |+|Ck|

0 1/2 1/2

where φ : I → F is a mapping from I to F and the latter notation designates a
feature space of dimension q > p (q is possibly infinite).

The S matrix in our approach should contain cosine measures, and more
importantly, its diagonal entries should be constant. Gaussian and Laplacian
kernels satisfy this condition naturally, but for other kernels, they have to be
normalized. To generalize all the cases, we obtain a cosine similarity matrix by
applying for all x, y ∈ D: S(x, y) = K(x, y)/

√
K(x, x)K(y, y).

3.3 Sparsification of the cosine similarity matrix

In general terms, S could contain negative values. In that case, let m < 0 be the
minimal value in S and |m| its absolute value. It is always possible to transform
S in order to have non negative values using the following rescaling operator,
∀x, y ∈ D:

S(x, y)← S(x, y) + |m|
1 + |m|

(13)

Since this mapping is monotonically increasing, the resulting S remains an
inner product matrix and, in addition, it has ones on its diagonal.

Assuming that S is non negative, we propose to apply a simple thresholding
operator which depends on a parameter τ ∈ [0, 1]: any similarity value below τ1

is considered irrelevant and it is replaced with 02, ∀x, y ∈ D:

S(x, y)← S(x, y)I(S(x,y)≥τ) (14)

where I(S(x,y)≥τ) = 1 if S(x, y) ≥ τ and I(S(x,y)≥τ) = 0 otherwise.
The resulting S matrix is sparser than the original one and thus requires less

memory.
Next, we propose to restrict the search for pairs of clusters to merge in (10)

to the following subset: S = {(Ck, Cl) : S(Ck, Cl) > 0}. This allows the running

1 Note that if τ = 0 then S is not sparsified.
2 It is interesting to mention that such a thresholding operator cannot be applied to

a dissimilarity matrix D, because the larger values are the less relevant ones in that
case and replacing them with 0 is not sound.

time to be diminished as well, since the bottleneck procedure in the general
AHC algorithm is precisely the search for the optimal proximity value, which
has O(N2) time complexity. Accordingly, we propose to replace (10) with:

(Ci, Cj) = arg max
(Ck,Cl)∈S

S(Ck, Cl)−
1

2
(S(Ck, Ck) + S(Cl, Cl)) (15)

As we shall see in the next section, not only this approach dramatically
reduces the processing time but it also allows obtaining better clustering results.

4 Experiments

The goals of our experiments are to demonstrate that: (1) our framework based
on equations (10), (11) and (12) is equivalent to the usual AHC procedure (1)
based on the LW formula (2) under the assumptions exposed previously; (2)
sparsifying the cosine similarity matrix with (14) and applying our AHC given
by (15), (11) and (12) considerably decreases memory use and running time
while having the capacity to provide better clustering results.

To this end, we experimented on text clustering tasks. Indeed, hierarchical
clustering is particularly interesting in this case, since it allows expressing the
relationships between different topics in a collection and at different granular-
ity levels. Moreover, cosine similarities are classic proximity functions used for
documents. In addition, hierarchical document organization based on the con-
ventional AHC procedure faces the problem of scalability since text collections
are usually very large. Our experiments seek to demonstrate new perspectives
to overcome these limits.

It is important to note that our purpose is not to compare the different
AHC methods between each other, but rather to exemplify the properties of our
framework compared to the usual AHC procedure using the LW formula. As a
consequence, the results obtained by the latter conventional approach are our
baselines.

4.1 Datasets, preprocessing and evaluation measures

We used three well-known corpora employed in text clustering benchmarks:
Reuters-215783 (Reuters), Smart [3] and 20Newsgroups4 (20ng) [6]. Their de-
scriptive statistics are given in Table 3.

We used the bag-of-words approach where each document is represented by a
vector in the space spanned by a set of terms. As for preprocessing we applied a
rough feature selection by removing terms that appear in less than 0.2% and more
than 95% documents of the collection. No stemming, lemmatization nor stop
word removal were applied. Then, the tfidf weighting strategy was performed.

3 Distribution 1.0, the ApteMod version.
4 We used the same dataset as in http://qwone.com/~jason/20Newsgroups/.

The adjusted Rand index (ARI) and (the absolute value of) the cophenetic
correlation (CC) between dendrograms are used to compare the clustering out-
puts. CC is employed to evaluate how far our dendrogram is from the one pro-
duced by the conventional AHC procedure. In this case, higher is better and a
maximum value one means that the dendrograms are equivalent and thus repre-
sent the same hierarchy. ARI is an external assessment criterion that evaluates
the quality of the clustering output in regard to a given ground-truth. It requires
to flatten the dendrogram with the correct number of clusters, then the obtained
partition and the ground-truth are compared to each other. Greater ARI values
imply better clustering outputs. The maximum value one is observed when the
ground-truth is perfectly recovered.

Table 3. Descriptions of datasets.

Dataset Nb of classes Nb of documents Nb of features

Reuters 10 2446 2547

Smart 3 3893 3025

20ng 15 4483 4455

4.2 Experiments settings and results

Given a term-document matrix, two types of matrices are generated: the cosine
similarity matrix S and the corresponding distance matrix D as defined by (5).
Note that since the term-document matrix consists of non negative values then
S takes values in [0, 1] therefore no rescaling operator is needed.

Given a clustering method, the S matrix is taken as the input to our frame-
work, while the related dense D matrix is input to the conventional AHC algo-
rithm. Consequently, two dendrograms are returned and we compute the CC in
order to assess the similarity between the two outputs. Two cases are of interest:
(1) when τ = 0 which means no sparsification and the dense S is used; and (2)
when τ > 0 and being increased which leads to sparser and sparser S matrices.

In addition to 0, we chose other threshold values τ as the 10th, 25th, 50th,
75th and 90th percentiles of distribution of values in S. Let k denote the rank
of a percentile so that k ∈ {0, 10, 25, 50, 75, 90} with the convention that the 0th
percentile is 0. Accordingly, when k grows the kth percentile τ is greater and
greater and the S matrix becomes sparser and sparser.

We experimented with two types of kernel: linear and Gaussian. The linear
kernel is simply the inner dot product in I between normalized vectors as defined
in (3). The Gaussian kernel between two points x, y ∈ D is given by K(x, y) =
exp(−γ‖x − y‖2). It corresponds to a cosine measure in F . In our experiment
we set γ to 1/p by default5.

5 Note that this default setting is used in popular SVM packages. Furthermore, in this
case γ is very low and the Gaussian kernel provides values close to one and close to
each other between pairs of points.

In Figure 1, we show the results obtained for all seven methods on Reuters,
Smart and 20ng datasets respectively. We report the curves of several measure-
ments (y-axis) when S is progressively sparsified as the percentile rank (x-axis)
increases. In addition to CC and ARI graphs (dotted lines with circle and tri-
angle symbols respectively), the percentage of the memory cost of a sparse S
with respect to the dense S, and the proportion of the running time when using
a sparse S as compared to the dense S, are plotted as well (solid lines with
plus symbols and dashed lines with cross symbols respectively). Therefore, the
memory and processing time costs related to the full S (corresponding to the
0th percentile where τ = 0) serve as baselines (with y-axis value of 100%). In
these cases, the lower the percentages the bigger the gains.

Equivalence between our method and the LW formula. In Figure 1, for
all datasets and both kernels, the CC values are all equal to one when τ = 0 (0th
percentile shown at the origin). This empirically demonstrates that our approach
is equivalent to the AHC algorithm using the LW formula as claimed previously.

Next, as the percentile rank increases, the CC values generally decrease il-
lustrating the fact that the dendrograms move away from the LW formula based
results. However, when using the linear kernel, the CC values generally remain
high even when the majority of the similarity values are removed. Concerning
the Gaussian kernel, the CC values drop rapidly after having thresholded 10%
of the lowest similarities but they start increasing again after this fall.

The single link method however, presents a peculiar behavior: for all col-
lections and both kernels, it always recover the result given by the usual AHC
procedure despite the fact that 90% of the S matrix is sparsified. In other words,
our framework is able to obtain the same dendrogram provided by the original
LW formula but with 90% of memory usage and running time saved.

Impact of the sparsification of S on scalability. Let M ≤ N2 be the
number of non zero cells in S. The storage cost of our approach is O(M). The
time complexity6 is O(NM) which indicates a linearly relationship with respect
to the storage complexity.

In Figure 1, the solid lines with plus symbols give the percentage of size of
the sparse S with respect to the dense S. As expected, this quantity linearly
decreases as the percentile rank k grows.

Next, the dashed lines with cross signs show the proportion of the processing
time observed with a sparse S with respect to the running time noted with the
dense S. We observe linear curves as well which depicts the linear relationship
between the memory and time complexities as mentioned above.

The sparsification of the S matrix enables decreasing the storage complexity
and the running time. Besides, it also has an impact on the clustering quality.
Previously, we have noticed that CC values were decreasing as S were sparser

6 Similarly to the general AHC algorithm based on a dissimilarity matrix for which
M = N(N − 1).

Linear kernel Gaussian kernel
Reuters Smart 20ng Reuters Smart 20ng

Si

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Co

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Av

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Mc

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Me

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Ce

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Wa

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.4

0
.8

Fig. 1. Experiments results for linear and Gaussian kernels in left and right blocks.
Rows correspond to AHC methods (using their abbreviations) and columns to collec-
tions. In each graph: each point corresponds to one of the measurements listed after-
wards with respect to an S matrix; the x-axis correspond to percentile ranks (divided
by 100) which define the threshold values τ (not shown); solid lines with plus signs
represent the relative memory use, dashed lines with cross signs show the relative run-
ning time, dotted lines with circle symbols indicates the absolute value of cophenetic
coefficient (CC), dotted lines with triangle symbols give the ARI values.

xywang
Note
Should have compute ARI using conventional AHC + D, then compare the ARI obtained by Sim_AHC + S

and sparser. In the sequel, we examine some cases in which our framework wins
on both sides: scalability and quality.

Impact of sparsification of S on clustering quality. We focus on the quality
of clustering outputs by analyzing the ARI values. We observe that average link,
Mcquitty and the Ward techniques worked out better in general. Surprisingly,
many of the best results are obtained with a very sparse S matrix and not with
the full one. In Table 4 we report the best outcomes where such a phenomenon
is illustrated. Mem% and Time% indicate the percentage of saved memory and
processing time respectively, when using the corresponding sparse S as compared
to the dense S.

Table 4. Best ARI results for each collection when τ = 0 (baseline) and when τ > 0
(sparsified S) and relative gains in memory and time.

Method kernel τ Mem% Time% CC ARI

Reuters
Average Gaussian 0 0 0 1 0.543
Average Gaussian 0.99 -75 -62 0.81 0.539

Smart
Average Linear 0 0 0 1 0.939
Average Linear 0.078 -90 -85 0.96 0.944

20ng
Ward Gaussian 0 0 0 1 0.100
Ward Gaussian 0.99 -50 -47 0.26 0.154

For Reuters, the best ARI value is provided by average link with a full S
given by the Gaussian kernel. However, a comparable performance is obtained
with the same method and kernel but with a sparse S that saves 75% of memory
and 62% of processing time.

Concerning Smart, average link gave the best ARI value as well, but with
a linear kernel. Compared to the LW based AHC algorithm, our framework
obtained higher ARI and with 90% of memory and 85% of running time less.

Regarding 20ng, it is the Ward technique with Gaussian kernel that worked
out the best. Our method allows increasing the baseline ARI value up to 54%
and meanwhile consuming around half of memory and running time.

5 Discussion and future work

We have introduced an equivalent formulation of the LW formula based on cosine
similarities instead of squared Euclidean distances. Our AHC procedure that
relies on this formulation and a sparsified cosine similarity matrix, not only has
better scalability properties but is also able to give better clustering results.

We believe that two reasons account for this phenomenon. Firstly, sparsifying
the S matrix reduces the noise by removing the lowest similarity values, therefore
leading to better clustering performances. Secondly, when two clusters (Ci, Cj)
are merged together, their respective neighborhoods (clusters having a non null

similarity value with Ci and Cj respectively) are fused as well, so that C(ij) has
a larger neighborhood than both Ci and Cj . Furthermore, the updating rule
(11) allows reinforcing the similarity value of C(ij) with Ck if the latter cluster
belongs to both initial neighborhoods. In fact, our approach can be viewed as
a sort of “transitive closure” starting with reliable seeds (the pairs with highest
similarity values) and propagating similarities through “trusted” neighborhoods.

However, the main drawback of our method is that, either sparsifying S does
not improve the ARI value at all (see complete link applied to Reuters with
Gaussian kernel in Figure 1 for instance), or the improvements are not regular
and setting the threshold value τ becomes difficult. More theoretical investiga-
tions should be undertaken in these respects to have a better understanding of
the properties of our framework.

Another line of research that we intend to pursue is to implement our ap-
proach in the manner of distributed computing to take better advantage of its
scalability.

Acknowledgment This work was supported by the french national project
Request PIA/FSN.

References

1. Bruynooghe, M.: Classification ascendante hiérarchique des grands ensembles de
données : un algorithme rapide fondé sur la construction des voisinages réductibles.
Cahiers de l’analyse des données 3(1), 7–33 (1978)

2. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and
other kernel-based learning methods. Cambridge university press (2000)

3. Dhillon, I.S.: Co-clustering documents and words using Bipartite Co-clustering
documents and words using Bipartite Spectral Graph Partitioning. Proc of 7th
ACM SIGKDD Conf pp. 269–274 (2001)

4. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large
databases. In: ACM SIGMOD Record. vol. 27, pp. 73–84. ACM (1998)

5. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies
ii. clustering systems. The computer journal 10(3), 271–277 (1967)

6. Lang, K.: NewsWeeder : learning to filter netnews. In: Proceedings of the Twelfth
International Conference on Machine Learning. pp. 331–339 (1995)

7. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal 26(4), 354–359 (1983)

8. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 86–
97 (2012)

9. Nguyen, T.D., Schmidt, B., Kwoh, C.K.: Sparsehc: a memory-efficient online hier-
archical clustering algorithm. Procedia Computer Science 29, 8–19 (2014)

10. Xu, R., Wunsch, D., et al.: Survey of clustering algorithms. Neural Networks, IEEE
Transactions on 16(3), 645–678 (2005)

11. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. In: ACM Sigmod Record. vol. 25, pp. 103–114. ACM
(1996)

