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Abstract

We study aggregation functions defined as convex combinations of the linguis-
tically quantified propositions “at least k criteria are satisfied”. Our approach
is similar to the TOWA function in spirit but instead of using a maxitive mea-
sure we propose to rely on a real-valued finitely additive set function. This
assumption leads to a new framework. However, it is combinatorial by na-
ture and, in general, it produces functions with high computational costs.
Therefore, we analyze some particular settings and introduce new aggrega-
tion functions which can alleviate the combinatorial burden thanks to several
combinatorial identities. These methods have interesting features and in par-
ticular, some of them make it possible to set different types of relationships
between criteria by allowing the use of different t-norms. The interest of our
proposals is illustrated on a famous example which cannot be modeled by
classical aggregation functions such as the Choquet integral.

Keywords: Fuzzy connectives and aggregation operators, Combinatorial
problems.

1. Introduction

Aggregation operators are mathematical functions that combine several
input values into a unique representative one. These operators have been
studied from different theoretical viewpoints and they have also been applied
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in many application fields such as multicriteria decision making, statistics,
information fusion or pattern recognition among others [1, 2]. From a general
standpoint, aggregation operators play an important role in problems where
one needs to fuse information coming from different criteria (or attributes or
sources). We assume that these pieces of information are numerical measures
that all belong to the closed interval [0, 1]. Then an aggregation operator
aims at synthesizing the latter numerical ratings into a unique global score
in [0, 1]. More formally, an aggregation operator is defined as follows.

Definition 1. An aggregation operator is a function1 F : [0, 1]N 7→ [0, 1]
which fulfills the following requirements:

• F (0, . . . , 0) = 0,
• F (1, . . . , 1) = 1,
• F is non-decreasing in each variable.

Note that when N = 1, we have, ∀a ∈ [0, 1] : F (a) = a.

In this paper, we define new aggregation operators that can be formu-
lated in the context of multicriteria decision making. Accordingly, the basic
definitions and notations we use, are from this field. In that case, aggrega-
tion functions are used to help a decision maker when several alternatives are
evaluated in regard to many criteria. The overall scores they produce allow
the decision maker to better compare the alternatives and select the most
performing ones. However, this implies that the aggregation function is able
to reflect the decision maker’s preference model.

In [3, 4, 5], it was shown that multicriteria decision problems can be
formulated by means of quantified linguistically propositions. Some basic
examples of such statements are “all criteria are satisfied”, “most of criteria
are satisfied” and so on. Then using tools from fuzzy set theory, one can
evaluate the membership values of these propositions for all alternatives,
and use the latter measures to make decisions.

In our case, we focus on propositions of the type “at least k criteria are
satisfied” where k is a non-negative integer. These events are studied and
encountered in the so-called TOWA2 function [6]. The latter aggregation op-

1Note that to explicitly mention the number of arguments N , the notation F (N) is often
used in the literature. However, in order to lighten the notations, we choose to remove
the superscript. We assume that we always have N input values but this is without loss
of generality.

2Triangular norms Ordered Weighted Average.
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erator is a convex combination of the membership functions of fuzzy subsets
“at least k criteria are satisfied” with k varying from 1 to N .

The general formulation of the aggregation functions we propose share
common roots with the TOWA method. Yet, our framework assumes a
completely different type of measure for representing uncertainty. In [6] a
maxitive measure is employed whereas we suggest an additive set function.

However, using such a set function generally leads to combinatorial for-
mulas with high computational complexities. But, as we will see, this com-
binatorial burden can be dramatically alleviated in several particular cases.

Furthermore, the aggregation functions we introduce, present interesting
features in comparison to the TOWA operator and the Choquet integral as
well. These properties make our proposals interesting both from a theoretical
and a practical standpoints as we shall argue in the sequel.

To introduce our method we proceed as follows. In Section 2, we re-
view the approach developed in [4, 5] which leads to the formulation of the
TOWA function in [6]. Then in Section 3, we present our framework and
we subsequently introduce several aggregation functions with their respec-
tive features. Next, in Section 4, we illustrate the interest of our different
proposals using a well-motivated problem. We finally synthesize the findings
of the paper and discuss some future works in Section 5.

2. Formulating multicriteria decisions and the TOWA operator

In this section, we discuss the previous works that have paved the way for
our approach. In Paragraph 2.1, we recall the seminal framework developed
by Bellman and Zadeh to cast multicriteria decision functions in terms of
fuzzy sets. In the following parts, we detail some extensions proposed by
Yager in a series of papers and we subsequently present the TOWA operator
in Paragraph 2.2, the attitudinal character index in Paragraph 2.3 and the
related OWA function in Paragraph 2.4. Then in Paragraph 2.5, we underline
some possible extensions of these works in order to position our contribution.

2.1. Modeling multicriteria decisions by means of fuzzy subsets

Let X and A be two non-empty and finite sets of alternatives and criteria
respectively. We denote by x an alternative in X, and we assume A contains
N criteria which are denoted by Ai with i = 1, . . . , N . Then let S designate
a class of N fuzzy subsets of X where, for all i = 1, . . . , N , Si is the subset of
alternatives such that “criterion Ai is satisfied”. For any fuzzy subset Si, we
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denote by µSi its membership function. Given an alternative x, µSi(x) is a
real number in [0, 1] which can be interpreted as a degree of satisfaction: the
closer to 1 the value µSi(x) is, the more alternative x satisfies the criterion
Ai.

In [3], Bellman and Zadeh propose a framework to define a decision func-
tion as a fuzzy subset of X. They particularly suggest to frame a decision
function as the intersection of fuzzy subsets representing the different goals
and the different constraints the alternatives should satisfy. They call this
method the “confluence of goals and constraints”. Such a general conjunc-
tion can be linguistically stated as “all goals and all constraints are satisfied”.
The best alternatives are the ones which have the greatest membership values
in this fuzzy subset.

2.2. The TOWA operator

In [4, 5], Yager proposes some extensions of Bellman and Zadeh’s ap-
proach. He defines a decision function as a quantified linguistically propo-
sition. One particular formulation is the following one: “Q objectives are
satisfied” where Q is a linguistic quantifier. Yager makes the distinction be-
tween absolute and relative linguistic quantifiers. “At least one”, “at least
k” or “all”, are instances of absolute quantifiers while examples of relative
quantifiers could be “most”, “few” or “many”. The former type can be under-
stood as fuzzy subsets of non-negative numbers whereas relative quantifiers
are fuzzy subsets of the unit interval.

We are interested in absolute quantifiers and we focus on fuzzy subsets
of X which correspond to the events “at least k criteria are satisfied” where
k = 1, . . . , N . We denote these fuzzy subsets by EN

k and they can be formally
defined as follows:

EN
k =

⋃
1≤i1<...<ik≤N

(Si1 ∩ . . . ∩ Sik) . (1)

There are many ways to determine µENk . The approach proposed in [4, 5,

6] amounts to assuming a possibility measure. In this case, µ is maxitive and
given two subsets S, S ′, their fuzzy union is obtained through the following
membership function: µS∪S′ = max(µS, µS′). Therefore, the membership
function of EN

k can be written as follows:

µENk = max
1≤i1<...<ik≤N

µSi1∩...∩Sik . (2)
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Then in order to define the membership functions of the fuzzy intersec-
tions involved in (2), one can use any triangular norm (t-norm) [7, 8, 9]. T-
norms represent extensions of the intersection operation in the case of fuzzy
subsets and they are functions T : [0, 1]2 7→ [0, 1] such that, ∀a, b, c ∈ [0, 1]:

• T is commutative: T (a, b) = T (b, a).
• T is associative: T (T (a, b), c) = T (a, T (b, c)).
• T is non-decreasing: T (a, b) ≤ T (a, c) whenever b ≤ c.
• 1 is a neutral element: T (a, 1) = a.

There are four fundamental t-norms which are the following ones:

• The minimum3 t-norm: ∀a, b ∈ [0, 1] : TM(a, b) = min(a, b).
• The product t-norm: ∀a, b ∈ [0, 1] : TP (a, b) = ab.
• The Lukasiewicz t-norm: ∀a, b ∈ [0, 1] : TL(a, b) = max(a+ b− 1, 0).
• The drastic t-norm: ∀a, b ∈ [0, 1] : TD(a, b) = min(a, b) if max(a, b) = 1,

and TD(a, b) = 0 otherwise.

It is interesting to mention that ∀a, b ∈ [0, 1] : TM(a, b) ≥ TP (a, b) ≥
TL(a, b) ≥ TD(a, b). Thereby, one can use different t-norms to make the
fuzzy intersections more or less strong and hence, assume different sorts of
relationships between the arguments.

Using t-norms in the decision function described previously, we obtain
the following formula:

µENk = max
1≤i1<...<ik≤N

T (µSi1 , . . . , µSik ). (3)

Next, let us assume that for an alternative x, τ is a permutation of
{1, . . . , N} such that µSτ(1)(x) ≥ µSτ(2)(x) ≥ . . . ≥ µSτ(N)

(x). Since any
T is non-decreasing, thus we have the following property:

max
1≤i1<...<ik≤N

T (µSi1 (x), . . . , µSik (x)) = T (µSτ(1)(x), . . . , µSτ(k)(x)). (4)

In [6], Yager considers all events EN
k with k varying from 1 to N and mix

their respective membership functions using a convex combination. This
approach is named TOWA4 and is defined by the following equation:

TOWAw,T (x) =
∑

1≤k≤N

wkT
(
µSτ(1)(x), . . . , µSτ(k)(x)

)
. (5)

3Also known as the Gödel or the Zadeh product.
4Functions that mix T -norm with Ordered W eighted Averaging operators.
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where w = (w1, . . . , wN) is a weight vector such that 0 ≤ wk ≤ 1 for all
k = 1, . . . , N and

∑
1≤k≤N wk = 1.

2.3. Different behaviors and the attitudinal character index

In TOWA, the membership function “at least k criteria are satisfied” is
weighted with respect to a non-negative value that reflects the importance
of the linguistic quantifier “at least k”. In such a case, different weighting
schemes convey different semantics to the TOWA operator. Particular and
completely opposite cases are the following ones:

• If w1 = 1 and wk = 0 otherwise, then the TOWA function reduces to the
membership function of the event “at least one criterion is satisfied”.

• If wN = 1 and wk = 0 otherwise, then it boils down to the membership
function of “all criteria are satisfied” and this specific approach pertains
to the initial method from Bellman and Zadeh [3].

The former weight vector leads to a complete disjunction over all Sk
resulting in a tolerant behavior. In that case, it is sufficient that only one
criterion is well satisfied for the overall membership value to be high. In
contrast, the latter setting is a complete conjunction which corresponds to a
severe aggregation function. In this context, the degree of satisfaction of all
criteria should be high so as to obtain a high global membership grade.

In between these two cases, one can design more compensatory aggrega-
tion functions by suitably changing the weight vector w. In order to judge
whether a weighting scheme w provides a TOWA closer to a disjunctive or a
conjunctive behavior, Yager adopted in [6] the attitudinal character or orness
measure which was introduced in [10]. This index denoted AC takes as an
argument a weight vector w and it gives as an output a real value in [0, 1].
It is defined as follows:

AC(w) =
∑

1≤k≤N

wk
N − k
N − 1

. (6)

The closer to 1 AC(w) is, the more TOWAT,w tends to a disjunctive be-
havior. Besides, it is noteworthy that a uniform weighting scheme w =
(1/N, . . . , 1/N) has an orness value of 1/2. Accordingly, one can also posi-
tion the behavior of an aggregation operator with respect to this uniformly
balanced case which is equivalent to the arithmetic mean.
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2.4. The OWA function as a particular case of TOWA

TOWA is a generalization of a well-known aggregation function also de-
fined by Yager in [6] which is called OWA5. It corresponds to the situation
where the t-norm T in (5) is set to TM , the minimum operator. In that case

TM

(
µSτ(1)(x), . . . , µSτ(k)(x)

)
= min

(
µSτ(1)(x), . . . , µSτ(k)(x)

)
= µSτ(k)(x) and

thus we have:

OWAw(x) = TOWAw,TM (x)

=
∑

1≤k≤N

wkµSτ(k)(x). (7)

2.5. Towards an extension of the TOWA operator

In the previous paragraphs, we have reviewed the TOWA operator and
some of its basic properties. We end this section by underlying two remarks
that allow us to motivate the approach that we present in the sequel.

On the one hand, as already mentioned, TOWA relies on a maxitive
measure. Indeed, max is the standard union operator for fuzzy subsets and,
as pointed out in [11], simplicity and idempotency are two main reasons that
can explain the particular role played by this operation. Nonetheless, this is
not the sole possibility. For example, one could use any triangular conorm
(t-conorm) for fuzzy unions [7, 8, 9]. In fact, our proposal suggests another
way to deal with fuzzy subsets namely, by means of an additive set function.

On the other hand, the TOWA function given in (5) assumes only one
sort of t-norm T for all fuzzy intersections. But, one could use distinct t-
norms for different subsets of S and thus assume several kinds of interaction
between criteria. This would extend the TOWA operator in an interesting
way. However, this ideal flexibility would not be without a cost. Indeed, in
order to define (5) for all x ∈ X, one should specify, in a rigorous way, a
set of fuzzy intersections for all possible subsets of S. In general terms, this
would require setting 2N t-norms. In contrast, our approach enables us to
define aggregation functions that allow setting different fuzzy intersections
between criteria but without such a heavy computational cost.

5Ordered W eighted Averaging operators.
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3. Aggregation functions based on finitely additive set functions

Similarly to the TOWA function, our approach consists of a convex combi-
nation of membership functions of the propositions EN

k = “at least k criteria
are satisfied” given in (1). Therefore, in general terms, it is defined as follows:

Aw,T =
∑

1≤k≤N

wkµENk , (8)

where w is a weight vector and T is a t-norm (whose role shall be explained
more in details in the sequel).

Nevertheless, despite starting from the same general definition given in
(8), our method is distinct from TOWA.

Indeed, as underlined by Dubois and Prade (see for example [12]), fuzzy
sets can be approached from different viewing angles. In fact, we interpret the
membership function of Si as a likelihood function. From this viewpoint, the
value µSi(x) is a measure of the conditional uncertainty of the following event:
“criterion Ai is satisfied for a given x”. Subsequently, this uncertainty can
be modeled either by a possibility measure which is maxitive or a probability
measure which is additive [12].

In the light of this latter consideration, the underlying framework of the
TOWA approach could be understood as choosing a maxitive measure for
dealing with the uncertainty conveyed by the fuzzy subsets in S (see also [13,
Section 1.4]). In our perspective, we rather assume that the uncertainty is
modeled by a set function that is close to a probability measure. Indeed, we
suppose a set function that is additive. However, as we shall see later on,
this set function does not necessarily lie in the closed unit interval.

By assuming an additive set function instead of a maxitive one, we design
a general scheme which leads to the definition of new kinds of aggregation
operators.

The rest of this section is organized as follows. In Paragraph 3.1, we
give more details about our framework. Then in Paragraph 3.2, we study
the membership functions µENk and we show how they can be determined by

using combinatorial tools. Afterwards, we examine (8) in our setting and
we propose special cases that have interesting properties in Paragraphs 3.3,
3.4 and 3.5. In Paragraph 3.6, we enunciate some other properties that our
proposals also satisfy.
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3.1. Finitely additive set functions and some of their properties

Let S be the algebra of subsets generated by the finite class of fuzzy
subsets S. Henceforth, we assume that µ is a real-valued set function, µ :
S 7→ R. We also suppose that µ is finitely additive and thus:

∀S, S ′ ∈ S, S ∩ S ′ = ∅ : µS∪S′ = µS + µS′ . (9)

Let us denote S, the complement of S which is defined by X−S. In what
follows, we recall well-known properties related to additive set functions.

Firstly, for all S, S in S, we have S ∪ S = X and S ∩ S = ∅. If we
assume µX(x) = 1 for all alternatives x ∈ X, then from (9) we can deduce
the following relation:

∀S, S ∈ S : µS = 1− µS. (10)

Secondly, for all S, S ′ in S, it is clear that S = S ∩ (S ′ ∪ S ′) = (S ∩ S ′)∪
(S ∩ S ′) which are disjoint from each other. As a consequence, it holds:

∀S, S ′ ∈ S : µS∩S′ = µS − µS∩S′ . (11)

Thirdly, one can observe that, for all S, S ′ in S, S ∪ S ′ can be expressed
as (S ∩ S ′)∪ (S ′ ∩ S)∪ (S ∩ S ′) with the latter three subsets being mutually
disjoint. Therefore, by applying the previous relationships, we obtain the
general formulation of the additivity property:

∀S, S ′ ∈ S : µS∪S′ = µS + µS′ − µS∩S′ . (12)

It is worth underlying that (10) and (11) allow us to express the mem-
bership function of a fuzzy subset containing a complement, as a linear com-
bination of membership functions of fuzzy subsets without any complement.
Furthermore, (12) makes it also possible to formulate the membership func-
tion of an union as a linear combination of membership functions of subsets
containing no complement. This property, which represents the core of our
framework, can be generalized to all S in S as we shall explain in the sequel.

Let us use S̃ to indicate either S or S in a generic manner. We define the
set of fundamental intersections as the set of all possible intersections of size
N contained in S that are particular cases of the following generic formula:
S̃1 ∩ S̃1 ∩ . . . ∩ S̃N . There are 2N fundamental intersections and they are all
mutually disjoint. We also introduce the set of positive intersections which
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Figure 1: Venn diagram with S = {S1, S2, S3} respectively represented as solid red, dashed
black and dotted blue circles. The 8 disjoint subsets A,B,C,D,E, F,G,H are the funda-
mental intersections of S: A = S1 ∩ S2 ∩ S3, B = S1 ∩ S2 ∩ S3, . . . , G = S1 ∩ S2 ∩ S3 and
H = S1∩S2∩S3. Examples of positive intersections are A = S1∩S2∩S3, A∪B = S1∩S2

and A ∪B ∪ C ∪ F = S2.

are the elements of S that form fuzzy intersections which do not contain
any complement and which can thus be expressed through the following
formulation: Si1 ∩ . . . ∩ Sik with 1 ≤ i1 < . . . < ik ≤ N and k = 1, . . . , N .

We illustrate these definitions in Figure 1 which is a Venn diagram cor-
responding to the case S = {S1, S2, S3}.

It is easy to see that all S in S can be formulated as a finite union
of fundamental intersections. Then as a consequence of relationships (10)
and (11), any fundamental product S̃1 ∩ S̃1 ∩ . . . ∩ S̃N can be equivalently
formulated as a linear combination of membership functions of positive fuzzy
intersections. Since all fundamental products are mutually disjoint, then all
S in S can also be expressed as a linear combination of membership functions
of positive intersections.

Therefore, in our setting, the finitely additive set function µ is completely
determined by only defining the membership functions of positive intersec-
tions of S which consist of the following elements:

• all fuzzy subsets, {Si}1≤i≤N ,
• all pairwise fuzzy intersections, {Si ∩ Sj}1≤i<j≤N ,
• all triple-wise fuzzy intersections, {Si ∩ Sj ∩ Sk}1≤i<j<k≤N ,
• . . .
• the fuzzy intersection made of the N elementary subsets, {S1∩. . .∩SN}.
From a general perspective, in order to determine the membership func-

tion of any S in S, one can apply the following procedure:
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• Express S as a finite union of fundamental products.

• Replace all Sj by X− Sj.
• Develop the resulting expression for each fundamental product.

• Replace the terms made of intersections of Sj by their respective mem-
bership functions and replace the ∪ symbol by the regular sum.

Example 1. For illustration, let us determine the membership function of
S1 ∪ S2 following the example depicted in Figure 1:

• S1 ∪ S2 = G ∪H = (S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S2 ∩ S3).

• S1 ∪ S2 = ((X−S1)∩ (X−S2)∩S3)∪ ((X−S1)∩ (X−S2)∩ (X−S3)).

• S1 ∪ S2 = (S3−S1 ∩S3−S2 ∩S3 +S1 ∩S2 ∩S3)∪ (X−S1−S2−S3 +
S1 ∩ S2 + S1 ∩ S3 + S2 ∩ S3 − S1 ∩ S2 ∩ S3).

• µS1∪S2
= (µS3 − µS1∩S3 − µS2∩S3 + µS1∩S2∩S3) + (µX− µS1 − µS2 − µS3 +

µS1∩S2 + µS1∩S3 + µS2∩S3 − µS1∩S2∩S3) = 1− µS1 − µS2 + µS1∩S2.

Then in order to compute the membership functions of the positive fuzzy
intersections, we propose to use t-norms. Accordingly, for all k-tuple (i1, . . . , ik)
such that 1 ≤ i1 < . . . < ik ≤ N , we have:

µSi1∩...∩Sik = T (µSi1 , . . . , µSik ). (13)

However, it is important to mention that even though µSi(x) ∈ [0, 1] for
all i = 1, . . . , N and for all x ∈ X, any t-norm does not necessarily allow
the values of µ to lie in the closed unit interval. This is the reason why we
assume µ to be a real-valued set function and not a measure. Such a topic
was studied by Perovic et al in [14]. These authors show that if T is a convex
combination of TM and TP then µ is a probability measure [14, Theorem 2.2].
Otherwise, it is not guaranteed that all membership values lie in [0, 1].

Example 2. To illustrate this matter let us reproduce a counter example
given in [14]. This case amounts to evaluating the membership function of

the event E3
1 = “all criteria are not satisfied”. This membership function

can be firstly expressed as 1− µE3
1

and it can be further expanded as follows
1− (

∑
1≤i≤N µSi −

∑
1≤i<j≤N µSi∩Sj +

∑
1≤i<j<k≤N µSi∩Sj∩Sk). Now, suppose

that an alternative x is such that µS1(x) = µS2(x) = µS3(x) = 1/2, and
we use T = TL(a, b) = max(a + b − 1, 0), the Lukasiewicz t-norm. Then
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µE3
1
(x) = 3/2− 0 + 0 which is greater than 1, and thus µ

E3
1
(x) = −1/2 which

is negative6.

As a result, we need to carefully choose the parameter setting in the
general definition (8) so as to satisfy the definition of an aggregation function.

After having introduced the properties of the set function µ we use in our
work, we focus in the next paragraph on the determination of the membership
functions of the fuzzy proposition EN

k = “at least k criteria are satisfied”.

3.2. Determining µENk using the Jordan formula

First of all, let us notice that when assuming a probability measure,
it is well-known that µENk can be determined by using the Jordan formula

introduced in [15, 16]. This identity generalizes the Poincaré formula which
corresponds to the case k = 1 and which is also known as the inclusion-
exclusion principle or the sieve formula.

The Jordan formula was generalized to real-valued additive set functions
by Takács in [17]. Consequently, we can apply it in our framework. In order
to recall the Jordan formula, let us firstly introduce the following so-called
symmetric sums7, ∀k = 1, . . . , N :

ΣN
k =

∑
1≤i1<...<ik≤N

µSi1∩...∩Sik

=
∑

1≤i1<...<ik≤N

T (µSi1 , . . . , µSik ). (14)

The Jordan formula enables us to determine the membership function of
EN
k as a linear combination of the symmetric sums ΣN

k where the coefficients
are binomial. We have, ∀k = 1, . . . , N :

µENk =
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

)
ΣN
l . (15)

6In contrast, if we choose TM (a, b) = min(a, b) as a t-norm, we will obtain µE3
1
(x) =

3/2− 3/2 + 1/2 = 1/2 and thus µ
E3

1
(x) = 1/2 as well which are all in [0, 1].

7Note that these functions should not be mistaken with the aggregation operators
bearing the same name (see for example [1, 2]).
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Example 3. In order to illustrate this identity, let us take again the example
S = {S1, S2, S3} as described in Figure 1 and let us determine µE3

2
. From

Figure 1, we can see that µE3
2

= A + B + C + D. Using (15), we have

µE3
2

=
(
1
1

)
Σ3

2 −
(
2
1

)
Σ3

3 = Σ3
2 − 2Σ3

3. Next, Σ3
2 = µS1∩S2 + µS1∩S3 + µS2∩S3

and from the Venn diagram this is exactly (A + B) + (A + D) + (A + C) =
3A+B+C+D. Besides, Σ3

3 = µS1∩S2∩S3 which is A. Thus, in this example,
(15) gives 3A+B + C +D − 2A which is the correct solution.

Other particular cases of the Jordan formula are the Poincaré formula
which determines the value of the event “at least one criterion is satisfied”,
and the measure of unanimity which is the value of the proposition “all
criteria are satisfied”. In the former case, µEN1 is given by the alternating

sum ΣN
1 − ΣN

2 + . . . + (−1)N+1ΣN
N . In the latter case which corresponds to

µENN , (15) simply reduces to ΣN
N .

Another kind of subsets that is related to the EN
k is the family of propo-

sitions “exactly k criteria are satisfied” for all k = 1, . . . , N and which are
denoted HN

k . The latter events were studied by Jordan as well and their
membership functions can be determined with an expression similar to µENk
[15, 16]. We have, ∀k = 1, . . . , N :

µHN
k

=
∑
k≤l≤N

(−1)l−k
(
l

k

)
ΣN
l . (16)

Interestingly, the setting we propose allows us to satisfy the following
relationship.

Proposition 1. For all k = 1, . . . , N − 1:

µENk = µHN
k

+ µENk+1
. (17)

Proof. By using the fact that
(
l
k

)
=
(
l−1
k−1

)
+
(
l−1
k

)
, we have:

µENk =
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

)
ΣN
l

=
∑
k≤l≤N

(−1)l−k
((

l

k

)
−
(
l − 1

k

))
ΣN
l

= µHN
k
−
∑
k≤l≤N

(−1)l−k
(
l − 1

k

)
ΣN
l .
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Let us put k′ = k + 1 then it comes:

µENk = µHN
k

+
∑

k′≤l≤N

(−1)l−k
′
(
l − 1

k′ − 1

)
ΣN
l

= µHN
k

+ µEN
k′
.

The Jordan formulas are in accordance with the framework we have dis-
cussed in the previous paragraph. Indeed, these expressions are only based
upon the membership functions of positive intersections of fuzzy subsets in
S. By combining (8) and (15), our method can thus be formulated as follows:

Aw,T =
∑

1≤k≤N

wk
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

)
ΣN
l . (18)

However, determining the membership functions of the EN
k generally leads

to heavy computations because of the combinatorial nature of additive set
functions. In the worst case, µEN1 , we need to determine the membership

functions of 2N fuzzy subsets. Furthermore, as we have underlined at the
end of Paragraph 3.1, we also have to pay attention to the way we set the
parameters of (18) in order to define valid aggregation functions.

In the subsequent paragraphs, we examine some particular cases of (18)
that lead to the definition of valid and interesting aggregation operators.

3.3. Using TM for fuzzy intersections

One first remarkable case is when we apply the minimum t-norm for the
determination of all positive fuzzy intersections in (18).

Firstly, let us state the following relation related to the symmetric sums.

Lemma 1. Let x be an alternative and τ a permutation of {1, . . . , N} such
that µSτ(1)(x) ≥ µSτ(2)(x) ≥ . . . ≥ µSτ(N)

(x). Let T = TM for the determina-
tion of the membership functions of all positive intersections in S. Then for
all k = 1, . . . , N :

ΣN
k =

∑
1≤l≤N−k+1

(
N − l
k − 1

)
µSτ(N−l+1)

. (19)
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Proof. (14) is the sum of all fuzzy intersections made of all possible com-
binations of size k of elements in S. By using TM , one can observe that in
(14), the smallest value µSτ(N)

(x) is added
(
N−1
k−1

)
times (all combinations of

size k involving µSτ(N)
), the second smallest value µSτ(N−1)

(x) is added
(
N−2
k−1

)
times (all combinations of size k involving µSτ(N−1)

(x) but not µSτ(N)
(x)) and

so on. This enumeration is the combinatorial identity known as the hockey
stick which leads to (19).

Secondly, if we apply (19) to determine the membership functions µENk ,
we obtain the following result.

Proposition 2. Under the same conditions stated in Lemma 1, it holds that,
for all k = 1, . . . , N :

µENk (x) = µSτ(k)(x). (20)

Before establishing the proof of Proposition 2, let us first state the fol-
lowing combinatorial identity.

Lemma 2. For all k ≤ N :∑
k≤l≤N

(−1)l−k
(
N

l

)(
l

k

)
= 1k=N , (21)

where 1A equals 1 if the given proposition A is true and it equals 0 otherwise.

Proof. Let us recall that ∀k ≤ l ≤ N :
(
N
l

)(
l
k

)
=
(
N
k

)(
N−k
l−k

)
. By applying this

combinatorial identity, we obtain:∑
k≤l≤N

(−1)l−k
(
N

l

)(
l

k

)
= (−1)−k

∑
k≤l≤N

(−1)l
(
N

k

)(
N − k
l − k

)
= (−1)−k

(
N

k

) ∑
k≤l≤N

(−1)l
(
N − k
l − k

)
.

Let us take l′ = l − k and N ′ = N − k. Moreover, let us recall the binomial
formula: (a + b)N =

∑
0≤l≤N

(
N
l

)
aN−lbl. If a = 1 and b = −1 it holds:

0N =
∑

0≤l≤N(−1)l
(
N
l

)
. By making the variables changes and by applying

the latter relation we have:∑
k≤l≤N

(−1)l−k
(
N

l

)(
l

k

)
= (−1)−k

(
N

k

) ∑
0≤l′≤N ′

(−1)l
′+k

(
N ′

l′

)
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= (−1)−k
(
N

k

)
(−1)k0N

′

= (−1)0
(
N

k

)
0N−k.

From the equation above, one can see that k = N is the only case where we
obtain a non-null value and it equals 1.

We can now establish the proof of Proposition 2.

Proof. From (15) and (19), we have:

µENk (x) =
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

) ∑
1≤m≤N−l+1

(
N −m
l − 1

)
µSτ(N−m+1)

=
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

) ∑
1≤m≤N

(
N −m
l − 1

)
µSτ(N−m+1)

1m≤N−l+1

=
∑

1≤m≤N

µSτ(N−m+1)

∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

)(
N −m
l − 1

)
1l≤N−m+1

=
∑

1≤m≤N

µSτ(N−m+1)

∑
k≤l≤N−m+1

(−1)l−k
(
l − 1

k − 1

)(
N −m
l − 1

)
.

Let us denote l′ = l − 1 and k′ = k − 1. Then by using Lemma 2, it comes:

µENk (x) =
∑

1≤m≤N

µSτ(N−m+1)

∑
k′≤l′≤N−m

(−1)l
′−k′
(
l′

k′

)(
N −m
l′

)
=

∑
1≤m≤N

µSτ(N−m+1)
1k′=N−m.

Finally, we have k′ = N−m iff k = N−m+1 which completes the proof.

Owing to the previous developments, we can enunciate the following the-
orem.

Theorem 1. Let T = TM for the determination of the membership functions
of all positive intersections in S, then Aw,TM = TOWAw,TM = OWAw.

Proof. By using relation (20) of Proposition 2 in the general definition (8),
we obtain Aw,TM =

∑
1≤k≤N wkµSτ(k)(x). Then according to (5), this latter

expression is TOWAw,TM which is also OWAw as stated in (7).
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Corollary 2. Let T = TM for the determination of the membership functions
of all positive intersections in S, then for all weight vectors w, Aw,TM is an
aggregation function.

Therefore, our approach encompasses the OWA function as a special case.
Moreover, using TM allows us to address the combinatorial issue since the
OWA function has a O(N logN) computational cost. Besides, it is interesting
to point out that the OWA function already generalizes other well-known
aggregation operators such as the arithmetic mean and order statistics (see
for example [1, 2]).

Even though the case T = TM is interesting from a theoretical standpoint,
it does not illustrate the innovative aspect of our proposal. In the sequel, we
examine other particular cases which are more appealing in that respect.

3.4. Using TP for fuzzy intersections

In this paragraph, we demonstrate that using another fundamental t-
norm, TP , we obtain other interesting properties. In that case, other combi-
natorial tools allow us to dramatically reduce the computational complexity
of the symmetric sums. Indeed, in this context, we can apply the Newton-
Girard formula (see for example [18]) in order to calculate all ΣN

k effectively.
To this end, let us introduce the following power sums, ∀k = 1, . . . , N :

PN
k =

∑
1≤i≤N

µkSi . (22)

The Newton-Girard formula makes it possible to compute the symmetric
sums in a recursive way by using the power sums. This is stated in the
following proposition.

Proposition 3. Let T = TP for the determination of the membership func-
tions of all positive intersections in S. Then for all k = 1, . . . , N :

kΣN
k =

∑
1≤l≤k

(−1)l−1ΣN
k−lP

N
l , (23)

with the convention that ΣN
0 = 1.

Owing to this result, we can calculate the symmetric sums with a O(N2)
computational cost instead of an exponential one. This implies that the
computational complexity of Aw,TP can be reduced from 2N to O(N2) as
well. It remains to prove that using TP leads to a function satisfying the
requirements given in Definition 1. This is stated in the following result.
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Theorem 3. Let T = TP for the determination of the membership functions
of all positive intersections in S, then for all possible weight vectors w, Aw,TP

is an aggregation function.

Proof. It is evident that Aw,TP (0, . . . , 0) = 0. Next, in order to prove that
Aw,TP (1, . . . , 1) = 1, we show by induction that µENk (1, . . . , 1) = 1 for all k =

1, . . . , N . It is clear that µENN (1, . . . , 1) = 1. Then assume that µENk (1, . . . , 1) =

1 and let us prove that, µENk−1
(1, . . . , 1) = 1 for all k = N, . . . , 2. To this end,

we stated in Proposition 1 that µENk−1
= µHN

k−1
+ µENk . Accordingly, it is

sufficient to show that µHN
k

(1, . . . , 1) = 0 for all k = 1, . . . , N −1. To achieve

this result, one can observe that if µS1(x) = . . . = µSN (x) = 1 then ΣN
k =

(
N
k

)
and in that case:

µHN
k

=
∑
k≤l≤N

(−1)l−k
(
l

k

)(
N

l

)
= 1k=N .

Indeed, this is exactly the relationship given in Lemma 2 and it enables us
to claim that Aw,TP (1, . . . , 1) = 1. Finally, because of [14, Theorem 2.2],
we know that using TP for all positive intersections of S allows µ to be a
probability measure. This implies that all µENk are non-decreasing in each
argument. Therefore, Aw,TP is also non-decreasing in each argument for it is
a convex combination of the µENk .

So far, we have studied our general approach (8) by varying the type of
t-norm one could use to define the membership functions of positive fuzzy
intersections and by letting the weight vector w free of restrictions. In this
latter paragraph, we have studied the product operator TP and this t-norm
not only allows us to reduce the complexity of our method, but it also provides
a new kind of aggregation function. In the following paragraph, we pursue
our work by restraining this time the weight vector w. As we shall see, unlike
the methods we have examined so far, this approach enables us to employ
different t-norms for different positive intersections in an effective manner.

3.5. Using two particular weight vectors

We investigate some particular settings of the weight vector w in (8). Our
goal is twofold. On the one hand, we seek to design aggregation functions
that can reproduce different types of behaviors between severe and tolerant.

18



On the other hand, we aim to reduce the computational cost due to the
combinatorial nature of our framework.

We show that by defining two special weighting schemes, we can address
both aforementioned matters in the same time. The weight vectors that we
restrict our study to, are the following ones:

w↑ =
2

N(N + 1)
(1, 2, . . . , N), (24)

w↓ =
2

N(N + 1)
(N,N − 1, . . . , 1). (25)

The meaning of w↑ can be explained as follows: the importance of the
linguistic quantifier “at least k” linearly increases with respect to k. It is easy
to show that this weighting scheme has an orness value of 1/3 whatever N .
Therefore, the resulting function has a behavior closer to a conjunction than
the uniform weighting scheme. In this case, an alternative needs to have a
great membership value in all fuzzy subsets Si, in order to get a high overall
score.

As far as w↓ is concerned, it can be seen as the dual case. The orness of
w↓ is 2/3 which corresponds to a behavior that is more disjunctive than the
arithmetic mean. Unlike w↑, it is more important that “at least one criterion
is satisfied” in that case, since the highest weight is put on the membership
value of the fuzzy event EN

1 . Then the importance of the linguistic quantifier
“at least k” linearly decreases as k grows.

The former weight leads to a quite severe behavior while the latter one is
rather indulgent. These cases correspond to two behaviors that are opposite
to each other and hence, they address the first point we have raised previously.

In order to address the second point we are concerned with, let us start
by reviewing two combinatorial properties.

Lemma 3. ∑
0≤k≤N

(−1)k
(
N

k

)
= 1N=0, (26)

∑
0≤k≤N

(−1)kk

(
N

k

)
= −1N=1. (27)

Proof. From the binomial formula, (a+b)N =
∑

0≤k≤N
(
N
k

)
aN−kbk, if we take

a = 1 and b = −1 then we have: 0N =
∑

0≤k≤N(−1)k
(
N
k

)
. In that case, if
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N = 0 then 00 = 1 whereas if N > 0 we obtain 0N = 0 which proves (26).
Next from the binomial formula again, we can derived the following relation:
(a − 1)N =

∑
0≤k≤N

(
N
k

)
aN−k(−1)k. Then if we take the derivative with

respect to a we obtain: N(a − 1)N−1 =
∑

0≤k≤N(−1)k(N − k)
(
N
k

)
aN−k−1.

Now, if we set a = 1, it comes the following identity:

N0N−1 =
∑

0≤k≤N

(−1)k(N − k)

(
N

k

)
= N

∑
0≤k≤N

(−1)k
(
N

k

)
−
∑

0≤k≤N

(−1)kk

(
N

k

)
.

In this latter equation, the only case where the left hand side is non-null
is when N = 1. In that context, the left hand side equals 1 and the right
hand side can be simplified since

∑
0≤k≤N(−1)k

(
N
k

)
= 0 thanks to (26). The

resulting relation is (27).

By using w↑ and w↓ in (8), we can in fact reduce the computational cost
of our approach dramatically. This is claimed in the following statement.

Proposition 4. Let w↑ and w↓ be two weighting schemes as defined in (24)8

and (25) respectively. Then it holds:

Aw↑,T =
2

N(N + 1)

( ∑
1≤i≤N

µSi +
∑

1≤i<j≤N

µSi∩Sj

)

=
2

N(N + 1)

( ∑
1≤i≤N

µSi +
∑

1≤i<j≤N

T (µSi , µSj)

)
, (28)

Aw↓,T =
2

N(N + 1)

(
N
∑

1≤i≤N

µSi −
∑

1≤i<j≤N

µSi∩Sj

)

=
2

N(N + 1)

(
N
∑

1≤i≤N

µSi −
∑

1≤i<j≤N

T (µSi , µSj)

)
. (29)

8The aggregation operator Aw↑,T was initially introduce in [19] in the context of
metasearch tasks.
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Proof. Let us recall that w↑ = 2
N(N+1)

(1, 2, . . . , N) and if µ is finitely additive,

then µENk =
∑

k≤l≤N(−1)l−k
(
l−1
k−1

)
ΣN
l . Then we have:

Aw↑,T =
∑

1≤k≤N

w↑kµENk

=
2

N(N + 1)

∑
1≤k≤N

k
∑
k≤l≤N

(−1)l−k
(
l − 1

k − 1

)
ΣN
l

=
2

N(N + 1)

∑
1≤k≤N

k
∑

1≤l≤N

(−1)l−k
(
l − 1

k − 1

)
ΣN
l 1l≥k

=
2

N(N + 1)

∑
1≤l≤N

∑
1≤k≤N

k(−1)l−k
(
l − 1

k − 1

)
ΣN
l 1k≤l

=
2

N(N + 1)

∑
1≤l≤N

∑
1≤k≤l

k(−1)l−k
(
l − 1

k − 1

)
ΣN
l .

Now, let us define k′ = k − 1, l′ = l− 1 and N ′ = N − 1. Then the equation
above can be equivalently formulated as follows:

Aw↑,T =
2

N(N + 1)

∑
0≤l′≤N ′

∑
0≤k′≤l′

(k′ + 1)(−1)l
′−k′
(
l′

k′

)
ΣN ′+1
l′+1

=
2

N(N + 1)

∑
0≤l′≤N ′

ΣN ′+1
l′+1

∑
0≤k′≤l′

(k′ + 1)(−1)l
′−k′
(
l′

k′

)
=

2

N(N + 1)

∑
0≤l′≤N ′

ΣN ′+1
l′+1

∑
0≤k′≤l′

(
k′(−1)l

′−k′
(
l′

k′

)
+ (−1)l

′−k′
(
l′

k′

))

=
2

N(N + 1)

∑
0≤l′≤N ′

ΣN ′+1
l′+1

( ∑
0≤k′≤l′

k′(−1)l
′−k′
(
l′

k′

)

+
∑

0≤k′≤l′
(−1)l

′−k′
(
l′

k′

))
.

Owing to Lemma 3, we can see that the term in brackets in the right hand
side equals (0 + 1) when l′ = 0, then it reduces to (1 + 0) when l′ = 1, and
it is (0 + 0) when l′ > 1. Accordingly, we have shown that:

Aw↑,T =
2

N(N + 1)
(ΣN ′+1

1 + ΣN ′+1
2 ).
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The proof of (29) is similar. One can develop Aw↓ and obtain:

Aw↓,T =
2

N(N + 1)

∑
0≤l′≤N ′

ΣN ′+1
l′+1

(
(N ′ + 1)

∑
0≤k′≤l′

(−1)l
′−k′
(
l′

k′

)

−
∑

0≤k′≤l′
k′(−1)l

′−k′
(
l′

k′

))
.

By using Lemma 3 as well, we can prove that:

Aw↓,T =
2

N(N + 1)
((N ′ + 1)ΣN ′+1

1 − ΣN ′+1
2 ).

From Proposition 4, it is clear that the computational complexities of
Aw↑,T and Aw↓,T can be reduced from 2N to O(N2). It is important to
underline that (28) and (29) only require the membership functions of the
fuzzy subsets {Si}1≤i≤N and {Si ∩ Sj}1≤i<j≤N .

In addition, this result invites us to consider different t-norms for dif-
ferent pairwise fuzzy intersections. Indeed, we propose to extend the result
highlighted in Proposition 4 by setting not one t-norm for all positive inter-
sections, but one t-norm per pairwise intersection {Si ∩ Sj}1≤i<j≤N . Let us
denote by T ∗λ a parametric family of t-norms depending on a real parameter
λ. We also introduce Λ = {λij}1≤i<j≤N , a set of N(N − 1)/2 values all be-
longing to the parameter’s domain of the chosen family. In that case, λij is
the parameter value that determines the membership function of the fuzzy
subsets Si ∩ Sj such that, ∀i, j = 1, . . . , N, i < j:

µSi∩Sj = T ∗λij(µSi , µSj). (30)

Following the results we have detailed previously, we can define the fol-
lowing functions:

Aw↑,T ∗λ ,Λ
=

2

N(N + 1)

( ∑
1≤i≤N

µSi +
∑

1≤i<j≤N

T ∗λij(µSi , µSj)

)
, (31)

Aw↓,T ∗λ ,Λ
=

2

N(N + 1)

(
N
∑

1≤i≤N

µSi −
∑

1≤i<j≤N

T ∗λij(µSi , µSj)

)
. (32)

The next result states that (31) is an aggregation operator.
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Theorem 4. Let w↑ be the weighting scheme as defined in (24). Let T ∗λ be
a parametric family of t-norms and Λ = {λij}1≤i<j≤N a set of N(N − 1)/2
real values all belonging to the domain of the chosen family. Then Aw↑,T ∗λ ,Λ

defined in (31) is an aggregation function.

Proof. It is evident that Aw↑,T ∗λ ,Λ
(0, . . . , 0) = 0. Next, it is easy to show

that Aw↑,T ∗λ ,Λ
(1, . . . , 1) = 1 since when µS1(x) = . . . = µSN (x) = 1 then

T ∗λij(µSi , µSj) = 1 and
∑

1≤i<j≤N T
∗
λij

(µSi , µSj) boils down to N(N − 1)/2.
Finally, Aw↑,T ∗,Λ is non-decreasing since it is a convex combination of non-
decreasing functions.

As far as Aw↓,T ∗λ ,Λ
is concerned, not any t-norm leads to a valid aggrega-

tion function. A simple counter example is the following one.

Example 4. Suppose N = 2 and T ∗λ12 = TD, the drastic t-norm. Let us
take a first alternative x such that µS1(x) = µS2(x) = 1 − ε with ε ≥ 0.
We obtain Aw↓,T ∗λ ,Λ

(x) = (2(2 − 2ε) − 0)/3 = (4 − 4ε)/3. One can observe
that if ε < 1/4 then Aw↓,T ∗λ ,Λ

(x) > 1 which is not in line with Definition 1.
Moreover, Let us assume a second alternative y with the following membership
values µS1(y) = 1 and µS2(y) = 1− ε. In this case, we obtain Aw↓,T ∗λ ,Λ

(y) =
(2(2− ε)− (1− ε))/3 = (3− ε)/3 which is a value lower than the former one.
Consequently, in this example employing the drastic t-norm does not make
Aw↓,T ∗λ ,Λ

non-decreasing.

Nonetheless, we provide below a sufficient condition for Aw↓,T ∗λ ,Λ
to be an

aggregation operator.

Theorem 5. Let w↓ be the weighting scheme as defined in (25). Let T ∗λ
be a parametric family of t-norms which satisfies the Lipschitz condition:
T ∗λ (b, c) − T ∗λ (a, c) ≤ b − a whenever a ≤ b. Let Λ = {λij}1≤i<j≤N be a set
of N(N − 1)/2 real values all belonging to the domain of the chosen family.
Then Aw↓,T ∗λ ,Λ

defined in (32) is an aggregation function.

Proof. It is evident that Aw↓,T ∗λ ,Λ
(0, . . . , 0) = 0 and it is also easy to prove

that, Aw↓,T ∗λ ,Λ
(1, . . . , 1) = 1. We show that if T ∗λ fulfills the Lipschitz condi-

tion then Aw↓,T ∗λ ,Λ
is non-decreasing. Let us formulate Aw↓,T ∗λ ,Λ

as follows:

Aw↓,T ∗λ ,Λ
=

2

N(N + 1)

(
N
∑

1≤i≤N

µSi −
∑

1≤i<j≤N

T ∗λij(µSi , µSj)

)

=
2

N(N + 1)

∑
1≤i≤N

(
NµSi −

∑
i<j≤N

T ∗λij(µSi , µSj)

)
.
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Let gi(µS1 , . . . , µsN ) = NµSi −
∑

i<j≤N T
∗
λij

(µSi , µSj). Then to prove that

Aw↓,T ∗λ ,Λ
is non-decreasing, it is sufficient to prove that, gi(µS1 , . . . , µsN ) is

non-decreasing for all i = 1, . . . , N . To this end let us consider µSi + ε with
ε ≥ 0 and let us prove that, ∀i = 1, . . . , N : gi(µS1 , . . . , µSi + ε, . . . , µsN ) −
gi(µS1 , . . . , µSi , . . . , µsN ) ≥ 0.
Firstly, we have the following relationship:

gi(µS1 , . . . , µSi + ε, . . . , µsN )− gi(µS1 , . . . , µSi , . . . , µsN )

=

Nε−
∑

i<j≤N

(
T ∗λij(µSi + ε, µSj)− T ∗λij(µSi , µSj)

)
.

Secondly, since we assume that T ∗λ satisfies the Lipschitz condition for all λ,
it comes the following inequalities, for all 1 ≤ i < j ≤ N :

T ∗λij(µSi + ε, µSj)− T ∗λij(µSi , µSj) ≤ ε.

Consequently, we obtain:

gi(µS1 , . . . , µSi + ε, . . . , µsN )− gi(µS1 , . . . , µSi , . . . , µsN ) ≥ Nε−
∑
i<j≤N

ε

≥ Nε− (N − 1)ε

≥ 0.

3.6. Other properties of the introduced aggregation functions

We end this section by giving other properties related to aggregation
operators (see for example [1, 2]). We review below the ones that we are
interested in. An aggregation function F is:

• symmetric if ∀τ ∈ PN : F (x1, . . . , xN) = F (xτ(1), . . . , xτ(N)), where PN
denotes the set of all possible permutations of {1, . . . , N},
• strictly increasing if x ≺ y ⇒ F (x) < F (y), where x ≺ y ⇔ (∀i =

1, . . . , N : µSi(x) ≤ µSi(y)) ∧ ∃j ∈ {1, . . . , N} : µSj(x) < µSj(y),

• idempotent if ∀a ∈ [0, 1] : F (a, . . . , a) = a.

It is not difficult to see that the following statements hold:

• Aw,TM is symmetric, strictly increasing and idempotent for all weight
vectors w.
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• Aw,TP is symmetric and strictly increasing for all weight vectors w.

• Aw↑,T ∗λ ,Λ
is strictly increasing for all parametric families T ∗λ and all set

of valid parameter values Λ.

• Aw↓,T ∗λ ,Λ
is strictly increasing for all parametric families T ∗λ and all set of

valid parameter values Λ such that T ∗λ satisfies the Lipschitz property.

• For all sets of parameters Λ1 and Λ2 such that, for all i, j = 1, . . . , N ,
i < j: T ∗

λ1ij
≤ T ∗

λ2ij
, then:

− Aw↑,T ∗
λ1
,Λ1 ≤ Aw↑,T ∗

λ2
,Λ2 ,

− Aw↓,T ∗
λ1
,Λ1 ≥ Aw↓,T ∗

λ2
,Λ2 .

From the latter property, it is noteworthy that these order relations allow
one to design more or less strict aggregation functions from Aw↑,T ∗λ ,Λ

and
Aw↓,T ∗λ ,Λ

, by suitably setting the set of fuzzy intersections Λ.

4. A numerical example

In order to illustrate the interest of our proposals, we use a well-known
problem given by Grabisch and Labreuche in [20]. In this example, we are
provided with the satisfaction degrees of several individuals with respect to
some criteria. The goal is to reproduce a given preference relation over the
set of individuals by means of an aggregation function.

We recall the dean problem in Paragraph 4.1. We particularly review
the fact that this problem cannot be solved by using a Choquet integral.
Then in Paragraph 4.2, we address the dean problem with the aggregation
operators we have introduced previously. To this end, we introduce elicitation
procedures based on mathematical programming, in order to determine the
parameters of the functions. Interestingly, we show that the newly introduced
methods can solve the dean problem.

4.1. The dean’s problem

Four students x1, x2, x3, x4 are assessed with respect to three different
courses: mathematics, physics and literature. These criteria are respectively
denoted A1, A2, A3. The dean wants to decide about the ranking of the
students according to the two following rules:

• For a student good at mathematics, literature is more important than
physics.

• For a student bad at mathematics, physics is more important than
literature.
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The performance table on the continuous scale [0, 1] is given below. In
this example, we interpret the students’ grades as their membership values
in fuzzy subsets Si which are literally defined as “criterion Ai is satisfied”.

Stud. µS1 µS2 µS3

x1 0.75 0.9 0.3
x2 0.75 0.8 0.4
x3 0.3 0.65 0.1
x4 0.3 0.55 0.2

Following the two aforementioned rules, it is easy to see that the dean’s
preference relation over the students is x2 � x1 � x3 � x4 where x � y means
“x is strictly preferred to y”. Grabisch and Labreuche showed in [20] that
it is not possible to achieve this latter linear order by a (unipolar) Choquet
integral9 for there is no capacity that can satisfy the two previous rules given
the values provided in the performance table above.

Indeed, let us denote by ν a capacity over the set of criteria {A1, A2, A3}.
In order to satisfy the expected preference relation, we should have x2 �
x1 and x3 � x4 which translates as follows using a Choquet integral Cν :
Cν(x2) > Cν(x1) and Cν(x3) > Cν(x4). By developing these two constraints
we respectively obtain:

Cν(x2) > Cν(x1) ⇔ 1− ν({A1, A2}) > ν({A2}), (33)

Cν(x3) > Cν(x4) ⇔ 1− ν({A1, A2}) < ν({A2}). (34)

Since the two equations on the right hand sides are incompatible with
each other thus, it is not possible to represent the dean’s preference relation
by a Choquet integral. Besides, as the weighted mean and the OWA aggre-
gation operators are particular cases of the Choquet integral, these classical
aggregation functions cannot solve the problem neither.

Nevertheless, for illustration purpose, let us compute the aggregated val-
ues given by the arithmetic mean and a weighted mean. In this latter case,
let us take the weight vector (0.5, 0.3, 0.2) which somehow reflects the impor-

9However, this goal can be reached by using a bipolar Choquet integral which is based
on a bicapacity introduced by the same authors in [20].
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tance of the different courses. We obtain the following aggregated values:

Stud. 1
3
µS1 + 1

3
µS2 + 1

3
µS3

5
10
µS1 + 3

10
µS2 + 2

10
µS3

x1 0.65 0.705
x2 0.65 0.695
x3 0.35 0.365
x4 0.35 0.355

As expected, the overall scores we obtain do not satisfy the dean’s ranking.
Unlike these classical aggregation operators, we show that the aggregation
operators we have introduced can represent the dean’s preference model.

4.2. Eliciting the dean’s preference model using the proposed aggregation op-
erators

We use the dean example for two purposes. As mentioned previously,
it is our aim to demonstrate the interest of the introduced techniques by
showing that they can solve the dean problem. In addition, we seek to
illustrate the computation and some properties of our proposals. To this
end, we apply an elicitation technique similar to the approach proposed by
Marichal and Roubens in [21] which relies on a linear program. This method
aims at maximizing the difference between the aggregated values of pairs of
individuals that satisfy a strict preference relation.

4.2.1. Application of Aw,TM

To begin with, let us take Aw,TM defined in (8) as the aggregation function.
This implies that we set T = TM for all positive fuzzy intersections in S,
assuming the same strong t-norm between elements in S. The values of the
different symmetric sums are the following ones:

Stud. Σ3
1 Σ3

2 Σ3
3

x1 1.95 1.35 0.3
x2 1.95 1.55 0.4
x3 1.05 0.5 0.1
x4 1.05 0.7 0.2

Then by applying (15), we can compute the membership values of the
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students in the fuzzy subsets EN
k for k = 1, 2, 3 and we get:

Stud. µE3
1

µE3
2

µE3
3

x1 0.9 0.75 0.3
x2 0.8 0.75 0.4
x3 0.65 0.3 0.1
x4 0.55 0.3 0.2

This result allows us to illustrate Proposition 2 since we clearly see that
the obtained values correspond to the non-increasing order of each student’s
values distribution.

Next, following [21], we apply the linear program below in order to de-
termine if there is any aggregation function Aw,TM that can reproduce the
dean’s ranking using the membership values given above.

max δ

subject to


∀x : Fw(x) = Aw,TM (as given in (8)),∑N

j=1wj = 1,

∀x � y : Fw(x)− Fw(y) > δ,
δ > 0.

(35)

As expected, we find that the problem is unfeasible. Indeed, as high-
lighted in Theorem 1, Aw,TM reduces to the OWA function, a sub-case of the
Choquet integral which was shown to be ineffective for the dean problem. In
other words, there cannot be a weight vector w and a strictly positive δ such
that, Aw,TM (x2)− Aw,TM (x1) > δ and Aw,TM (x3)− Aw,TM (x4) > δ.

4.2.2. Application of Aw,TP

We take Aw,TP as the aggregation operator. By setting T = TP we as-
sume the same type of conjunction for the fuzzy subsets in S but this fuzzy
intersection is weaker10 than TM .

In the case of TP , we can use the Newton-Girard formula to calculate all
ΣN
k recursively. To this end, we start by computing the power sums P 3

k given

10We remind that T 1 is weaker than T 2 if for all a, b ∈ [0, 1] : T 1(a, b) ≤ T 2(a, b).
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in (22) for k = 1, 2, 3:

Stud. P 3
1 P 3

2 P 3
3

x1 1.95 1.4625 1.177875
x2 1.95 1.3625 0.997875
x3 1.05 0.5225 0.302625
x4 1.05 0.4325 0.201375

Since Σ3
1 = P 3

1 , by applying Lemma 3, it comes:

Stud. Σ3
1 Σ3

2 Σ3
3

x1 1.95 1.17 0.2025
x2 1.95 1.22 0.24
x3 1.05 0.29 0.0195
x4 1.05 0.335 0.033

By using the Jordan formula (15), we obtain:

Stud. µE3
1

µE3
2

µE3
3

x1 0.9825 0.765 0.2025
x2 0.97 0.74 0.24
x3 0.7795 0.251 0.0195
x4 0.748 0.269 0.033

Once the membership values in the events E3
k are computed, we can apply

the same linear program described in (35).
Unlike the previous case, Aw,TP is not a sub-case of the Choquet integral.

In addition, it is noteworthy that using TP for fuzzy intersections allows
the problem to be solved. Indeed, we find the following optimal solution:
δ∗ = 0.01066 with w∗ = (0.536842, 0, 0.463158). The related aggregated
values are:

Stud. Aw,TP

x1 0.621237
x2 0.631895
x3 0.4275
x4 0.416842

Thereby, Aw,TP can represent11 the dean’s preference model.

11Note that, we also experimented with the aggregation function TOWAw,TP
as de-
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4.2.3. Application of Aw↑,T ∗λ ,Λ

In this paragraph, we use Aw↑,T ∗λ ,Λ
as the aggregation method. The weight

vector w↑ encodes a linear increase from the linguistic quantifier “at least
k” to “at least k + 1”. This corresponds to an orness value of 1/3 which
means that it is a rather severe aggregation operator. However, one remark-
able property of this approach is the possibility to set different t-norms for
different pairwise intersections {Si ∩ Sj}1≤i<j≤N .

Accordingly, in this case, the unknown variable is no longer the weight
vector but the set of t-norms that determine the membership values of all
pairwise intersections {Si ∩ Sj}1≤i<j≤N . In that perspective, we propose
to use the Frank t-norms to model the latter fuzzy intersections but other
parametric families could be used.

Frank t-norms depend on a parameter λ which ranges in [0,∞] and its
definition is, ∀a, b ∈ [0, 1]:

T Fλ (a, b) =


TM(a, b) if λ = 0,
TP (a, b) if λ = 1,
TL(a, b) if λ =∞,
logλ

(
1 + (λa−1)(λb−1)

λ−1

)
otherwise.

(36)

In this context, the elicitation procedure amounts to determining a set of
N(N − 1)/2 values Λ = {λij}1≤i<j≤N such that, µSi∩Sj = T Fλij(µSi , µSj). To
this end, we propose the following optimization problem:

max δ

subject to


∀x : FΛ(x) = Aw↑,TFλ ,Λ

(x) (as given in (31)),

∀i < j : λij ≥ 0,
∀x � y : FΛ(x)− FΛ(y) > δ,
δ > 0.

(37)

Note that, even though (37) is similar in spirit to the previously intro-
duced optimization problem (35), it is not a linear program since the con-
straints are no longer linear.

fined in (5) with T = TP . In that case, the linear program (35) is feasible as well
and we obtained: δ∗ = 0.00956, w∗ = (0.203187, 0, 0.796813) and the aggregated val-
ues 0.344223, 0.353785, 0.14761, 0.138048 for x1, x2, x3, x4 respectively.
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It appears that the application of (37) to the dean problem also leads
to an optimal solution. Indeed, we obtain δ∗ = 0.00314, λ∗12 = 0.0480939,
λ∗13 = 2756.24, λ∗23 = 25686.7 and the aggregated values below:

Stud. Aw↑,TFλ ,Λ

x1 0.494398
x2 0.497537
x3 0.218556
x4 0.215417

Similarly to Aw,TP , the proposed aggregation function can model the
dean’s preference relation. It is worth noticing that despite the fact that
we set the weight vector to w↑, we can solve the dean problem by suitably
setting the t-norms of each pair of criteria and thus by assuming different
sorts of interactions between the fuzzy subsets S1, S2 and S3. The optimal
solution we report, indicates that the t-norm for (S1, S2) should be close to
TP while the type of t-norm for (S1, S3) and (S2, S3) should be much weaker.

4.2.4. Application of Aw↓,T ∗λ ,Λ

In the case of Aw↓,T ∗λ ,Λ
, the weight vector w↓ corresponds to a linear

decrease from w↓k to w↓k+1. Unlike the previous method, the attitudinal char-
acter is 2/3 and hence, we have a rather indulgent function.

We use Frank t-norms again since this family satisfies the Lipschitz prop-
erty as emphasized in Theorem 5. In order to address the example under-
study, we apply the same optimization problem described in (37) but using
Aw↓,TFλ ,Λ

given in (32) for FΛ.
In this case as well, we are able to represent the dean’s preference model

and this outcome demonstrates again the practical interest of our methods.
The optimal solution is δ∗ = 0.00256, λ∗12 = 4531.19, λ∗13 = 0.226158, λ∗23 =
4842.72, and the aggregated values are:

Stud. Aw↓,TFλ ,Λ

x1 0.789405
x2 0.79197
x3 0.507146
x4 0.504581

This overall scores distribution is indeed in agreement with the expected
linear order. Note moreover, that the aggregated values are greater than for
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the previous method which illustrate the fact that this aggregation operator
is more tolerant than the former one.

5. Conclusion

Based on previous works, we have studied decision functions that rely
on the linguistically quantified propositions “at least k criteria are satis-
fied”. Similarly to the TOWA function, our general approach is based on
a convex combination of the membership functions of the aforementioned
fuzzy subsets. But, unlike the TOWA technique which relies on a maxi-
tive measure, we assume a finitely additive set function. In this context,
to determine the membership functions of all fuzzy subsets in S, we only
need the membership functions of positive intersections {Si ∩ Sj}1≤i<j≤N ,
{Si ∩ Sj ∩ Sk}1≤i<j<k≤N , . . . , which serve as a basis in our framework. As-
suming that the membership functions {µSi}1≤i≤N are given, we propose to
use t-norms to compute the membership functions of fuzzy intersections such
as follows: {T (µSi , µSj)}1≤i<j≤N , {T (µSi , µSj , µSk)}1≤i<j<k≤N , . . .

Afterwards, by applying the Jordan formula, we have pointed out a for-
mulation of our general approach that relies on a linear combination of sym-
metric sums. The latter expression, in its basic form, leads to heavy com-
putations because of the combinatorial nature of the suggested framework.
Nonetheless, we have examined particular cases that do not suffer from the
computational cost burden. Then we have presented four particular settings
of this general approach that all yield to valid aggregation functions and
with a complexity that reduces from 2N to O(N logN) or O(N2). The first
technique which uses TM for fuzzy intersections reduces to the well-known
OWA operator. However, the three remaining methods which respectively
use TP , w↑ and w↓ as particular parameters values lead to new types of
aggregation functions. In particular, our techniques make it possible to set
different t-norms for different fuzzy intersections which is a new and partic-
ularly interesting feature.

Eventually, we have studied the application of these four proposals on a
well-motivated problem that is impossible to address using classical aggre-
gation operators such as the Choquet integral. We have illustrated the fact
that all newly introduced aggregation functions can represent the decision
model suggested by this problem and this outcome demonstrates the interest
of our proposals from a practical standpoint.
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Despite this positive empirical result, our proposals do not satisfy the
idempotency property in general while this condition is usually required in
multicriteria decision making. This drawback could limit the use of these
techniques in the latter domain.

Consequently, as for the future, we intend to investigate the application
of our aggregation functions in other fields such as information fusion where
idempotency is not mandatory. From a more theoretical perspective, we also
plan to examine other particular settings of our general framework.
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