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Abstract. In some multi-criteria decision making problems, it is more
convenient to express the decision maker preferences in bipolar scales.
In such cases, the bipolar Choquet integral with respect to bi-capacities
was introduced. In this paper, we address the problem of eliciting a bipo-
lar Choquet integral with respect to a 2-additive bi-capacity. We assume
that we are given a set of examples with (i) their scores distribution in
regard to several criteria and (ii) their overall scores. We propose two
types of optimization problems that allow identifying the parameters of
a 2-additive bi-capacity such that the inferred bipolar Choquet integral
is consistent with the given examples as much as possible. Furthermore,
since the elicitation process we study has many relationships with prob-
lems in statistical machine learning, we also present the links between
our models and concepts developed in the latter field.

Keywords: 2-additive bi-capacity identification, Bipolar Choquet inte-
gral, Preference elicitation

1 Introduction

Multi-criteria decision making (MCDM) aims at representing the preferences of
a decision maker (DM) over a set of options (or alternatives) and in regard to
several criteria. It then seeks to formalize the DM’s decision process through
mathematical tools in order to help him make decisions over the set of alterna-
tives. The DM’s decision process is assumed to be guided by the importance and
the relationships he wants to take into account regarding the criteria. Concern-
ing the preferences representations, one possible model is the Multi-Attribute
Utility Theory (MAUT) which assumes that each attribute (or criterion) pro-
vides a utility value (or score) over the set of alternatives. Then, an aggregation
function is used to combine, for each option, its scores distribution (or profile)
in an overall score. The latter global utility values are then employed to make
decisions. There are many types of aggregation functions to model a decision pro-
cess. The Choquet integral has been proved to be a versatile tool to construct
overall scores (see for example [1–4]). This aggregation function is intimately
based on the concept of a capacity (or fuzzy measure). In particular, it assumes
that partial utilities belong to non-negative or unipolar scales.
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Unipolar scales are not always appropriate to represent the DM’s preferences
(see the motivating example in [5]). In some problems, bipolar scales are more
convenient. This type of scales is typically composed of a negative, a positive and
a neutral part which respectively allow representing a negative, a positive and
a neutral affect towards an option. To apply the Choquet integral in the case of
bipolar scales, the bipolar Choquet integral (BCI) was introduced in [6] and [7].
In this paper, we particularly focus on BCI which use the concept of a bi-capacity
(BC) introduced in [6] and which was further studied in [8, 9] and in [10, 11]. The
BCI typically requires the DM to set 3n − 1 values where n is the number of
attributes. When n exceeds some units, it is impossible for the DM to set all
parameters of his decision model. In order to better cope with this combinatorial
burden, the BCI with respect to (w.r.t.) a 2-additive bi-capacity (2A-BC) was
introduced in the following papers [12, 10]. The 2-additivity property implies
that only the interactions between at most two criteria are taken into account in
a BC, and it enables reducing the number of parameters from 3n− 1 to 2n2 + 1.
This has facilitated the use of this aggregation function in practice.

Even though there have been many papers studying 2A-BC, most of them
have focused on theoretical aspects. In this contribution, we study the practical
problem of identifying the parameters of a 2A-BC on the basis of information
provided by the DM. This problem is also known as preference elicitation. There
are different contexts in which we can proceed to the elicitation of the preference
model of a DM. In our case, we assume that the DM provides the bipolar scores
for a subset of (real or fictitious) options w.r.t. all criteria of the decision problem.
In addition, he provides the overall bipolar scores of the same set of alternatives.
These evaluated examples constitute the only data we have at our disposal. Then,
the elicitation model consists in inferring the parameters of a 2A-BC such that
the associated BCI is consistent with the preferences given by the DM on these
examples. We propose optimization models that address this kind of preference
elicitation problems.

Eliciting preference models is a research topic that has been studied by many
researchers (see for example [13, 14]). However, the BCI w.r.t. 2A-BC has not
been studied very much so far. To our knowledge, the only paper that addressed
this exact problem is [15]. Yet, in the latter paper, the authors assumed an
elicitation process in which the DM was asked to provide cardinal information
on trinary actions. This setting is different from the one considered in this paper.
Our approach is also in line with the work detailed in [14]1 about the preference
elicitation using unipolar Choquet integrals with mathematical programming.
In this latter work, the authors also assume that the only information provided
are examples evaluated by the DM.

The elicitation process we deal with has many relationships with the prob-
lems addressed in statistical machine learning. The interconnections between
preference elicitation on the one hand and machine learning on the other hand
were highlighted in [16]. There has been a growing interest for the last years
about cross-fertilizing these two domains by studying how the concepts devel-

1 And with the papers cited therein.
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oped in one field can be applied in the other one. In line with this research topic,
we also discuss the links between the concepts of these two domains that our
models involve.

The rest of the paper is organized as follows. We recall in section 2 some
basic definitions about BC and the properties of 2A-BC by using the bipolar
Möbius transform defined by [10]. We then propose in section 3 two identification
methods of a 2A-BC using linear programming and quadratic programming. In
order to illustrate our proposals, we apply the different methods to a numerical
example. Next, in section 4, we underline the relationships of our approaches
with concepts developed in the field of machine learning. We finally conclude
this paper and sketch some future works in section 5.

2 Bi-capacities and bipolar Choquet integrals

Let us denote by N = {1, . . . , n} a finite set of n criteria and X = X1×· · ·×Xn

the set of possible alternatives, where X1, . . . , Xn represent the attributes. For
all i ∈ N , the function ui : Xi → R is called a utility function. Given an element
x = (x1, . . . , xn), we denote by U(x) = (u1(x1), . . . , un(xn)), the element’s profile
or its scores distribution. We will often write ij, ijk instead of {i, j} and {i, j, k}
respectively.

2.1 2-additive bi-capacities

Let us denote by 2N := {S ⊆ N} the set of subsets of N and 3N := {(A,B) ∈
2N×2N : A∩B = ∅} the set of couples of subsets ofN with an empty intersection.
We define on 3N the following relation v, ∀(A1, A2), (B1, B2) ∈ 3N :

(A1, A2) v (B1, B2)⇔ [A1 ⊆ B1 and B2 ⊆ A2]

Definition 1 (Bi-capacity (BC) [9], [5]) A function ν : 3N → R is a BC
on 3N if it satisfies the following two conditions :

ν(∅, ∅) = 0 (1)

∀(A1, A2), (B1, B2) ∈ 3N : [(A1, A2) v (B1, B2)⇒ ν(A1, A2) ≤ ν(B1, B2)] (2)

Note that (2) is called the monotonicity condition.
In addition, a BC is said to be normalized if it satisfies :

ν(N, ∅) = 1 and ν(∅, N) = −1 (3)

A BC is also said to be additive if the following relation holds :

∀(A1, A2) ∈ 3N : ν(A1, A2) =
∑
i∈A1

ν(i, ∅) +
∑
j∈A2

ν(∅, j) (4)

An additive BC assumes that the attributes are independent from each other
and this kind of BC boils down to linear decision models.
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In order to better formalize some of the properties of BC, the following
definition of a (bipolar) Möbius transform2 of a BC was proposed.

Definition 2 (Bipolar Möbius transform of a bi-capacity [10, 17]) Let ν
be a BC on 3N . The bipolar Möbius transform of ν is a set function b : 3N → R
defined for any (A1, A2) ∈ 3N by :

b(A1, A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

(−1)|A1\B1|+|A2\B2|ν(B1, B2) (5)

=
∑

(∅,A2)v(B1,B2)v(A1,∅)

(−1)|A1\B1|+|A2\B2|ν(B1, B2)

Conversely, for any (A1, A2) ∈ 3N , it holds that :

ν(A1, A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

b(B1, B2). (6)

Note that using b, (1) is equivalent to :

b(∅, ∅) = 0 (7)

BC on 3N generally require 3n−1 parameters. In order to reduce this number,
[8, 9] and [5] proposed the concept of k-additivity of a BC. This concept translates
as follows in terms of the bipolar Möbius transform.

Proposition 1 ([17]) Given a positive integer k < n, a BC ν is k-additive if
and only if the two following conditions are satisfied :

∀(A1, A2) ∈ 3N : |A1 ∪A2| > k ⇒ b(A1, A2) = 0 (8)

∃(A1, A2) ∈ 3N : |A1 ∪A2| = k ∧ b(A1, A2) 6= 0 (9)

To avoid a heavy notation, we use the following shorthands for all i, j ∈ N ,
i 6= j :

• νi| := ν(i, ∅), ν|j := ν(∅, j), νi|j := ν(i, j), νij| := ν(ij, ∅), ν|ij := ν(∅, ij),
• bi| := b(i, ∅), b|j := b(∅, j), bi|j := b(i, j), bij| := b(ij, ∅), b|ij := b(∅, ij).

Whenever we use i and j together, it always means that they are different.
Using the above definitions, we propose the following properties of a 2A-BC

ν and its bipolar Möbius transform b :

Proposition 2

2 Note that [12] was the first paper to define the Möbius transform of a BC. Their
definition is different from the one given in [10]. However, there is a one-to-one
correspondence between the two Möbius transform definitions. This equivalence was
established in [11].
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1. Let ν be a 2A-BC and b its bipolar Möbius transform. For any (A1, A2) ∈ 3N

we have :

ν(A1, A2) =
∑
i∈A1

bi| +
∑
j∈A2

b|j +
∑

i ∈ A1
j ∈ A2

bi|j +
∑

{i,j}⊆A1

bij| +
∑

{i,j}⊆A2

b|ij (10)

2. If the coefficients bi|, b|j, bi|j, bij|, b|ij are given for all i, j ∈ N , then the
necessary and sufficient conditions to get a 2A-BC generated by (10) are :

∀(A,B) ∈ 3N ,∀k ∈ A : bk| +
∑
j∈B

bk|j +
∑
i∈A\k

bik| ≥ 0 (11)

∀(A,B) ∈ 3N ,∀k ∈ A : b|k +
∑
j∈B

bj|k +
∑
i∈A\k

b|ik ≤ 0 (12)

3. The inequalities (11) and (12) can be respectively reformulated in terms of
the BC ν as follows :

∀(A,B) ∈ 3N ,∀k ∈ A :
∑
j∈B

νk|j+
∑
i∈A\k

νik| ≥ (|B|+|A|−2)νk|+
∑
j∈B

ν|j+
∑
i∈A\k

νi|

∀(A,B) ∈ 3N ,∀k ∈ A :
∑
j∈B

νj|k+
∑
i∈A\k

ν|ik ≤ (|B|+|A|−2)ν|k+
∑
j∈B

νj|+
∑
i∈A\k

ν|i

Proof. (Sketch of)

1. Because ν is 2-additive, the proof of (10) is given by using the relation (6)
between ν and b.

2. The proof of the second point is based on the expression of ν(A1, A2) given
in (10) and on these equivalent monotonicity properties (which are easy to
check) : ∀(A,B) ∈ 3N and ∀A ⊆ A′,
(a) ν(A,B) ≤ ν(A′, B)⇔ {∀k ∈ A : ν(A \ k,B) ≤ ν(A,B)};
(b) ν(B,A′) ≤ ν(B,A)⇔ {∀k ∈ A : ν(B,A) ≤ ν(B,A \ k)}.

3. These inequalities are obtained departing from (11) and (12) and by using
the relation (6) between ν and b.

ut

Hence, according to proposition 2 and (10), the computation of a 2A-BC ν
only requires the values of b on the elements (i, ∅), (∅, i), (i, j), (ij, ∅), (∅, ij),
∀i, j ∈ N . However, in order to satisfy the monotonicity condition given in (2) a
2A-BC should also satisfy the inequalities (11) and (12). Moreover, we have the
following conditions in order to obtain a normalized 2A-BC :

νN | =
∑
i∈N

bi| +
∑

{i,j}⊆N

bij| = 1 and ν|N =
∑
i∈N

b|i +
∑

{i,j}⊆N

b|ij = −1 (13)
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2.2 Bipolar Choquet integral w.r.t. a 2-additive bi-capacity

Definition 3 (Bipolar Choquet integral (BCI) (w.r.t. a BC) [9]) Let ν
be a BC on 3N and x = (x1, . . . , xn) ∈ Rn. The expression of the BCI of x
w.r.t. ν is given by

Cν(x) :=

n∑
i=1

|xσ(i)|
[
ν(Nσ(i)∩N+, Nσ(i)∩N−)−ν(Nσ(i+1)∩N+, Nσ(i+1)∩N−)

]
(14)

where N+ = {i ∈ N |xi ≥ 0}, N− = N \ N+, Nσ(i) := {σ(i), . . . , σ(n)} and σ
is a permutation on N such that |xσ(i)| ≤ |xσ(i+1)| ≤ . . . ≤ |xσ(n)|.

We also have the following equivalent expression of the BCI w.r.t. b, given
by [11] :

Cb(x) =
∑

(A1,A2)∈3N
b(A1, A2)

( ∧
i∈A1

x+i ∧
∧
j∈A2

x−j

)
(15)

where

{
x+i = xi if xi > 0
x+i = 0 if xi ≤ 0

and

{
x−i = −xi if xi < 0
x−i = 0 if xi ≥ 0

.

Note that Cν(x) = Cb(x) and the subscript is meant to clarify whether it is
ν or b which is used in the calculation. Besides, the BCI of x w.r.t. a 2A-BC
represented by b reduces to :

Cb(x) =

n∑
i=1

bi| x
+
i +

n∑
i=1

b|i x
−
i +

n∑
i,j=1

bi|j (x+i ∧ x
−
j ) (16)

+
∑

{i,j}⊆N

bij| (x+i ∧ x
+
j ) +

∑
{i,j}⊆N

b|ij (x−i ∧ x
−
j )

We have introduced the basic tools related to 2A-BC. In the next section,
we focus on the problem of identifying a 2A-BC.

3 Identifying a 2-additive bi-capacity

We establish mathematical programming problems that enable the identification
of a 2A-BC. First, we detail the type of elicitation process we are concerned
with. Next, we state all the constraints that allow the representation of a 2A-
BC. Then, we define objective functions that reflect the quality of the identified
2A-BC in regard to the information provided by the DM. We end this section
by illustrating the results obtained with the proposed models on a numerical
example.

3.1 Elicitation process

In MCDM, there are two types of paradigms for elicitation processes : direct and
indirect methods. In the former case, the DM is able to provide the parameters
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of his decision model directly. However, when using a BCI w.r.t. a BC, the
direct method is infeasible if the number of attributes n exceeds some units
(typically 4), since a BC requires 3n − 1 values to be set. We argued in the
introduction that in order to reduce this complexity, 2A-BC were introduced.
Nevertheless, this latter case cannot be applied in practice neither since, even if
the number of parameters reduces to 2n2 + 1, the complexity remains very high.
Moreover, a BC is a too complex aggregation operator to ensure that a DM will
understand the influence of each parameter on the final result. Even with more
simple aggregation rules, it has been shown that there is no clear link between
the parameters values provided by the DM and the way these values are used in
the decision model [18].

Therefore, we follow the indirect paradigm. In that case, the DM does not give
information about his decision model, instead, he provides information on the
outputs of his decision model. In our setting, we suppose that the DM gives for
some examples x ∈ X ′ ⊆ X, their partial utilities for all criteria (U(x)) and also
their overall scores (S(x)). We then assume, that there is no further interaction
with the DM. Given the judged examples, we have to infer a decision model based
on the BCI w.r.t. a 2A-BC. The estimated BCI should predict overall scores,
Cb(x), that are consistent with the preference relations provided by the DM. In
other words, if S(x) ≥ S(x′), which means that x is preferred or equivalent to
x′, then the inferred decision model should also satisfy Cb(x) ≥ Cb(x′).

However, it might happen that this condition is not fulfilled for some pairs
(x, x′). There are two main reasons for such situations : either the judgements
provided by the DM himself are not consistent or the restriction of the decision
model to 2A-BC does not allow fitting the DM preferences correctly. In MCDM,
inconsistencies are usually treated in an interaction loop with the DM. It is
assumed that the DM preferences can change in order to fix these incoherences
when they are encountered. In our setting, the interaction loop is not permitted.
Consequently, in order to cope with incoherences, we propose two versions of our
models : the first one does not deal with inconsistencies and thus will return that
the problem is infeasible if any incoherence is encountered whereas the second
one allows inconsistencies and attempts to infer a model that minimizes errors
due to such situations as much as possible.

3.2 Mathematical programming problems

We propose two types of optimization problems to identify a 2A-BC in the
context we have described in the previous paragraph. We base our work on some
of the elicitation methods detailed in [14] in the case of unipolar Choquet integral.
Before introducing the objective functions of our optimization problems, we start
by enumerating the different sets of constraints that need to be satisfied.

We represent the unknown 2A-BC ν, via its associated bipolar Möbius trans-
form b. There are two reasons for this. Firstly, equations (5) and (6) state that
it is equivalent to work with either ν or b. Secondly, since we restrict the BC to
be 2-additive and since this property, given in (8) and (9), is defined in terms of
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b, it is thus necessary to use the latter representation in our optimization prob-
lems. However, we do not take (9) into account in our set of constraints. This
equation ensures that ν is exactly 2-additive and by discarding it, we explicitly
allow b to be either 2-additive or simply additive. To summarize this first set
of constraints, we need to integrate the following relations in our optimization
problems in order to have a normalized 2A-BC in terms of b : (7), (8) with k = 2,
(11), (12) and (13).

Next, we have to take into account the preference relations provided by the
DM on the subset of examples X ′. If S(x) ≥ S(x′) then the BCI should be in
concordance with this inequality. Accordingly, we have the following second set
of constraints :

∀x, x′ ∈ X ′, x 6= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc (17)

where δc is a non-negative indifference threshold which is a parameter of the
model. Note that this set of constraints does not allow incoherences. Indeed, the
inferred 2A-BC b could not be flexible enough to satisfy Cb(x)− Cb(x′) ≥ δc for
some pairs (x, x′). In that case the optimization problem is infeasible.

As discussed previously, in order to overcome this drawback, we transform
the previous constraints as follows :

∀x, x′ ∈ X ′, x 6= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc − ξxx′ (18)

where ξxx′ are non-negative slack variables which allow inconsistencies. However,
we want ξxx′ to be has low as possible and thus there should be a term in
the objective function seeking to minimize

∑
x,x′:S(x)≥S(x′) ξxx′ . Note that when

the latter term is null, it means that the inferred model does not produce any
incoherence. On the contrary, if for some pairs (x, x′), ξxx′ > δc then the optimal
solution has not been able to satisfy the preference relations on these pairs.

The third set of constraints is related to the computation of the BCI. Indeed,
in (17) or (18), we need to calculate Cb(x) for each x ∈ X ′. As a consequence, we
need to add the constraints provided by (16) in our models. Note that despite the
fact that the latter equations involve the minimum function, we can pre-compute
the terms (x±i ∧ x

±
j ) since they are parameters of the models. Consequently, the

constraints (16) are linear equations.
The fourth set of constraints is optional. It simply consists in adding upper

and lower bounds for the BCI values :

∀x ∈ X ′ : lb ≤ Cb(x) ≤ ub (19)

where lb and ub are two real parameters.
After having introduced the constraints, we now focus on the different ob-

jective functions and the resulting optimization problems.
We propose two kinds of optimization models. In the first approach, we ex-

tend the maximum split method introduced in [19]. This model assumes the
following constraints in place of (17) :

∀x, x′ ∈ X ′, x 6= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc + ε (20)
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where ε is a variable of the problem unlike δc which is a parameter. The objective
function consists in maximizing ε. In other words, we want to maximize the
difference (split) Cν(x)−Cν(x′) for any x 6= x′ ∈ X ′ such that S(x) ≥ S(x′). We
refer to the following optimization problem as the split method : max ε subject
to (7), (8) with k = 2, (11), (12), (13), (16), (19) and (20).

However, the split model does not address incoherences. Hence, as explained
previously, we propose the split flex approach which uses the following third set
of constraints instead of (20) :

∀x, x′ ∈ X ′, x 6= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc + ε− ξxx′ (21)

More formally, the split flex model is defined by : max ε−
∑
x,x′:S(x)≥S(x′) ξxx′

subject to (7), (8) with k = 2, (11), (12), (13), (16), (19) and (21). Note that the
split and split flex optimization problems have linear objective functions and
linear constraints. Therefore, there are linear programs.

We now present the second type of model for 2A-BC identification. This
approach is a regression-like method and yields to quadratic programs. We
propose to minimize the sum of square errors between S and Cb which re-
sults in the following objective function : min

∑
x,x′∈X′(S(x) − Cb(x))2. Ac-

cordingly, we named rss (for Residual Sum of Square) the following problem :
min

∑
x,x′∈X′(S(x)−Cb(x))2 subject to (7), (8) with k = 2, (11), (12), (13), (16)

and (17). Similarly to split, the rss method does not permit incoherences.
As a consequence, we introduce a flexible version of rss that we call rss flex

and which is given by : min
∑
x,x′∈X′(S(x)−Cb(x))2 +

∑
x,x′:S(x)≥S(x′) ξxx′ sub-

ject to (7), (8) with k = 2, (11), (12), (13), (16) and (18).

3.3 An illustrative example

We applied the four different mathematical programming problems defined pre-
viously on a numerical example taken from [14]. It concerns the grades (utilities)
obtained by 7 students (alternatives) for n = 5 subjects (attributes) : statistics
(S), probability (P), economics (E), management (M), and English (En). The
grades globally belong to [0, 20] but in this example, the scores only vary in
[11, 18]. In our perspective, we transformed them in order to have a bipolar scale
by simply applying a translation of −14 to the original scores. Therefore, in this
bipolar scale, the scores belong to [−3, 4]. Suppose that a student is delivered
his diploma with honors providing that his overall grade is greater or equal to
14. Hence, the translated scores in the bipolar scale allow us to deal with the
decision problem of delivering honors as follows : the student is attributed the
honors if and only if his overall grade in the bipolar scale is non-negative.

The performance table is given in Table 1 (a). In Table 1 (b), the first column
S corresponds to the (translated) overall grades as given in [14]. Then, in the
subsequent columns of Table 1 (b), we show the different estimated scores. Note
that for all models we set δc = 0.5, lb = −3 and ub = 4. For split and split flex,
even if the inferred overall scores are not the same, the two solutions are actually
equivalent since they give the same objective function value (the problem is not
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Student S P E M En

a 4 -3 -3 -3 4
b 4 -3 4 -3 -3
c -3 -3 4 -3 4
d 4 4 -3 -3 -3
e -3 -3 4 4 -3
f -3 -3 4 -3 -3
g -3 -3 -3 -3 4

S

1
0.5
0

-0.5
-1

-1.5
-2

split

1.68
1.04
0.41
-0.23
-0.86
-1.5
-2.14

split
flex

1.02
0.38
-0.25
-0.89
-1.53
-2.16
-2.8

rss

1
0.5
0

-0.5
-1

-1.5
-2

rss
flex

1
0.5
0

-0.5
-1

-1.5
-2

S′

1
0.5
0

-0.5
-1

-1.5
0.5

split

.

.

.

.

.

.

.

split
flex

0.22
-0.28
-0.78
-1.28
-1.78
-2.28
-0.78

rss

.

.

.

.

.

.

.

rss
flex

1.12
0.62
0.12
-0.5
-1

-1.5
0.12

(a) (b) (c)
Table 1. (a) Performance table; (b) Results obtained with the original (translated)
overall score S; (c) Results obtained with the modified overall score S′ that presents
inconsistencies.

strictly concave). However, in terms of decisions, the sign of the overall grade
for c is not the same for the two models. This example exhibits some limits
of this type of model. Besides, we precise that in split flex outputs, all slack
variables ξxx′ are null which means that there is no inconsistency. Regarding rss
and rss flex, we obtain a null objective function value and in the latter case,
the slack variables are also all null as expected.

To illustrate the case with incoherences, we modified the overall score S into
S′. We simply change the global grade of g from −2 to 0.5. This new score is an
example of inconsistent preferences provided by the DM since his decision model
is not monotonic in that case. Indeed, if we compare the profiles of c and g in
regard to their overall score S′(c) and S′(g), we can observe that g is preferred
to c while the scores distribution of the former student is Pareto dominated by
the latter one. This situation is not consistent with a rational decision. Table 1
(c) presents the estimated BCI. As expected, split and rss returned an infeasible
problem. On the contrary, split flex and rss flex provide interesting results. In
both cases, we precise that ξgc = 0.5 while the other slack variables are null.

We present in Table 2 the elicited bipolar Möbius transform b for each opti-
mization problem when S is the targeted overall grades vector. In Table 3, it is
the estimated b for the split flex and rss flex methods when S′ is put in place
of S, which are shown. Notice that an empty cell in these two tables means that
the solver returned a null value for the corresponding elements.

We show the bipolar Möbius transform b and not the 2A-BC ν because the
latter set function requires 35 − 1 = 242 non-null values which represents a too
large table. In contrast, because ν is 2-additive, we have at most 2× 52 + 1 = 51
values for its related bipolar Möbius transform b.

The utility of presenting Tables 2 and 3, is that they allow one to check that
the constraints (7), (8) with k = 2, (11), (12), (13) are indeed satisfied. We thus
obtain a 2A-BC. However, it is difficult to interpret the bipolar Möbius transform
b with regard to the underlying elicited preference model. Moreover, from this
illustrative example, it is not straightforward to understand the impact of taking
into account inconsistencies either when we compare the regular and the flex
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split split flex rss rss flex

A1 A2 bA1|A2
bA2|A1

bA1|A2
bA2|A1

bA1|A2
bA2|A1

bA1|A2
bA2|A1

∅ ∅
∅ S 0.26 -0.145 -0.039 0.077 0.056
∅ P -0.077 0.038 -0.056
∅ E 0.145 -0.038 0.077 0.056
∅ M -0.08 0.038
∅ En -0.066 -0.039 0.008 -0.056

∅ SP -0.56 -0.33 -0.24
∅ SE -0.076 0.11 -0.004 0.11 0.19
∅ SM -0.21 -0.008
∅ SEn -0.29 0.48 0.43 0.039 0.47 0.53
∅ PE -0.29 -0.43
∅ PM -0.03
∅ PEn -0.008
∅ EM -0.42 -0.23 0.004
∅ EEn 0.26 0.32 -0.14 0.23 -0.056 0.17
∅ MEn -0.17

S P
S E -0.07 -0.039 -0.056
S M 0.145 0.004 -0.02
S En 0.039 0.039 0.056
P E
P M 0.039
P En 0.038 0.056
E M 0.004
E En -0.145 -0.039 0.034
M En 0.066 0.073

Table 2. Values of the elicited bipolar Möbius transform b when S is the overall score.

versions of split and rss models in Table 2, or when we look at the obtained b
for S in Table 2 and the one estimated for S′ in Table 3. Accordingly, further
experiments should be undertaken in order to have a better understanding of
the behaviors of the elicited ν and b for each proposed optimization problem but
such an experimental study is out of the scope of this paper.

4 Relationships with machine learning

The preference elicitation problem have many common points with supervised
learning problems (SL) in statistical machine learning (ML). In the latter field,
we are given a training set which consists of items described in a feature space
and each element also comes with a value in regard to a target variable. In ML,
the goal of SL is to infer from the training set a mapping from the feature space
to the target variable. This description if similar to the preference elicitation
setting we have described previously : the set of examples with their profiles
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split flex rss flex

A1 A2 bA1|A2
bA2|A1

bA1|A2
bA2|A1

∅ S -0.077 0.47
∅ P -0.19 -0.53 0.077
∅ E -0.077 0.023
∅ M 0.031 -0.14 0.077
∅ En -0.031 0.19

∅ SP -0.26 0.077 0.09
∅ SE 0.19 0.263
∅ SM 0.73
∅ SEn -0.16 0.055 -0.018
∅ PE
∅ PM 0.14
∅ PEn 0.031 -0.077
∅ EM
∅ EEn -0.24 -0.39 -0.023
∅ MEn -0.16 -0.077

S P 0.06
S E
S M -0.031 -0.33
S En
P E
P M 0.14
P En 0.19 -0.077 0.31
E M
E En 0.077
M En -0.077

Table 3. Values of the elicited bipolar Möbius transform b when S′ is the overall score
with incoherences.

U(x) and their overall scores S(x) are the equivalent of the training set in ML
and identifying the parameters of the decision model in order to reproduce the
preference relations given by the DM is the same as inferring a mapping from
a feature space (X) and a target variable (S). Despite these straightforward
similarities, the roots of these two domains are distinct, and it is only recently,
that there has been a growing interest in applying concepts or/and techniques
developed in MCDM to ML problems and vice-versa [16].

To contribute in that direction, we discuss the relationships between our work
and some concepts defined in ML.

Firstly, in MCDM, incoherences are not generally allowed from the DM view-
point who has to fix them during the course of the elicitation procedure. In ML,
on the contrary, such situations are typically observed in real-world applica-
tions. Thus, the models split and rss are typical of MCDM whereas split flex
and rss flex are closer to SL problems.
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Secondly, it is noteworthy that the restriction to 2A-BC can be interpreted as
an explicit regularization of the decision model based on the BCI. Indeed, in SL,
regularization is a concept that aims at dealing with the bias-variance trade-off
of predictive models. Typically, in order to avoid an over-fitting effect, we allow
the estimated predictive model to make more errors on the training set (bias) but
in return we want it to be less variable (variance). The goal of regularization is
to enhance the ability of the inferred model to predict correctly the overall score
of observed examples (the training set) but also and in particular the global
score of unseen examples (the test set). In our case, 2A-BC are less flexible
than unconstrained BC and this could lead to more inconsistencies as explained
beforehand. However, the 2-additivity property makes the BC less complex and
we intuitively expect 2A-BC to be less variable than unconstrained BC.

Thirdly, we stated that the constraint (9) ensuring that ν is exactly 2-additive
was not part of our set of constraints. In that case ν could thus be either 2-
additive or simply additive. We can make the correspondence between this ap-
proach and the Occam’s Razor principle often used in ML. This concept states
that one should prefer simpler models than more complex ones because they
allow a better understanding of the phenomenon under study. In our case, we
can transpose this statement as follows : if an additive BC fits better the DM
judgements than a 2A-BC then we should go for the former one. By discarding
(9) from our constraints we make the latter statement possible. However, if it
happens that a 2A-BC and an additive BC yield to the same optimal objective
function value then it is not guaranteed that the optimization solver will provide
the simplest solution.

Finally, in order to make the models split and rss more flexible regarding
inconsistencies, we have proposed to integrate slack variables in the constraints
and in the objective function as well. Our approach is inspired from the Support
Vector Machine (SVM) method developed in SL in order to deal with non lin-
early separable cases in binary classification [20]. However, it is noteworthy that
the UTA (UTilités Additives) framework is a MCDM methodology that also ad-
dresses inconsistencies by integrating overestimation and underestimation error
variables in the elicitation model (see for example [21]). This approach is similar
to adding slack variables.

5 Conclusion

We have proposed optimization problems that allow the identification of the pa-
rameters of a 2A-BC. The decision model is inferred from examples that the DM
evaluated both regarding their partial utilities and their global scores. We have
considered the traditional preference elicitation setting where no inconsistency is
allowed. But, we have also extended the models to the more flexible case where
we have to cope with such incoherences. In this context, we have emphasized
the relationships between our approaches and concepts in ML.

In our future work, we intend to integrate other kinds of information provided
by the DM such as the importance of criteria and the interactions between them.
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Moreover, as pointed out previously, additional experiments should be conducted
in order to better characterize the elicited bipolar Möbius transform b and its
associated 2A-BC ν, we obtain for each type of mathematical program.

As regard to our ongoing work, we are investigating optimization problems for
preferences learning that integrate other concepts developed in the ML literature.
We are currently working on objective functions that involve a penalty term that
favors sparse BC. Such an approach adds a trade-off between the accuracy of the
model and its simplicity (Occam’s Razor principle). The expected advantage is
to elicit preference models that are easier to interpret and such a feature is of
great importance in MCDM.
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