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Abstract. We are interested in objective functions for clustering undi-
rected and unweighted graphs. Our goal is to define alternatives to the
popular modularity measure. To this end, we propose to adapt statis-
tical association coefficients, which traditionally measure the proximity
between partitions, for graph clustering. Our approach relies on the rep-
resentation of statistical association measures in a relational formulation
which uses the adjacency matrices of the equivalence relations underly-
ing the partitions. We show that graph clustering can then be solved
by fitting the graph with an equivalence relation via the maximization
of a statistical association coefficient. We underline the connections be-
tween the proposed framework and the modularity model. Our theoreti-
cal work comes with an empirical study on computer-generated graphs.
Our results show that the proposed methods can recover the community
structure of a graph similarly or better than the modularity.

Keywords: Graph clustering, Community detection, Statistical associ-
ation measures, Modularity.

1 Introduction

Many real-world problems can be designed using graphs where entities of the
studied system are represented as nodes and their relationships as edges between
nodes. In many domains such as biology, ecology, social network analysis . . . ,
graph theory tools are employed as means for representing complex systems.
In this context, graph clustering consists in partitioning nodes into groups such
that vertices belonging to the same group are better interconnected to each
other than to vertices outside of the group. Discovering such clusters can lead to
new and important insights. In biology for example, clustering a protein-protein
interaction network helps to find proteins with the same biological function.
Another example is in social network analysis, where graph clustering leads to
the detection of community structures [1]. Such knowledge can help to better
understand the social system and its related phenomenons.

There exist many graphs clustering techniques. We particularly focus on
methods that optimize an objective function. The benefit criterion aims at
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reflecting the quality of a clustering. In this context, density-based objective
functions are well-known approaches. In these cases, clusters are defined as sub-
graphs with high densities of edges. The modularity measure proposed by New-
man and Girvan in [2] is a popular density-based objective function. It assumes
that two nodes belong to the same community if the number of edges between
them is greater than the expected number of edges under a null random model.

We address the graph clustering task from a viewpoint different from the one
underlying the modularity. We suppose that an undirected and unweighted graph
can be seen as a perturbed equivalence relation and finding groups of nodes can
be interpreted as fitting the graph with a partition. To this end, we need to quan-
tify the proximity between two partitions. In the statistical literature there are
numerous coefficients addressing this exact problem. These criteria are known
as statistical association measures (SAM) between categorical variables or par-
titions. Our proposal is thus to fit a given graph with a partition by maximizing
a SAM. However, using such measures in this context is not straightforward.
Indeed, these coefficients are typically defined by using contingency tables over
the set of categories of the two partitions. Yet, the contingency table between a
given graph (which is not an equivalence relation) and a partition does not ex-
ist. To overcome this drawback, we review the research works of Marcotorchino
who showed in [3, 4], that many SAM can be equivalently expressed through
the adjacency matrices of the equivalence relations underlying the categorical
variables. Based on this approach, we show how we can convert SAM to define
new density-based quality functions for graph clustering.

In section 2, we recall some density-based objective functions for graph clus-
tering. We particularly emphasize the modularity concept. Then, in section 3,
we introduce our framework. We recall SAM both in their contingency and their
relational formulations. Then we show how these measures can lead to graph
clustering methods. Moreover, we study the relationships between the modular-
ity and SAM. Next, in section 4, we empirically examine the behaviors of the
proposed objective functions on artificial graphs and we compare their results
with the ones provided by the modularity. We finally conclude and sketch some
future works in section 5.

2 Related work : modularity optimization

There are several types of density-based benefit functions for graph clustering
[5, 6]. One first family is based on graph cuts measures which iteratively split
the set of nodes of a graph into two, providing that the density of edges be-
tween the two clusters is low. To apply such methods, one can generally use any
max-flow/min-cut algorithm such as the Ford-Fulkerson one. Another method is
spectral clustering which computes the Fiedler eigenvector of the Laplacian of
the graph. Edges cuts criteria and the aforementioned algorithms are particu-
larly used to tackle graph partitioning problems. These tasks are slightly distinct
from graph clustering problems. In graph partitioning, the number of clusters
and their sizes are known and one has to recover the correct partition given
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these pieces of information. In contrast, in graph clustering, we do not assume
any information about the number nor the shape of the communities.

In order to better deal with the graph clustering task, Newman and Girvan
proposed the modularity concept [2]. Their approach has the advantage to better
formalize the concept of community and to avoid setting the number of clusters
manually. This measure is denoted by Q and it can be expressed as follows [7] :
Q = Number of edges within communities− Expected number of such edges.

More formally, let us assume that we are given a graph with n vertices and
m edges. Its adjacency matrix is denoted by A. Let us denote by P the pairwise
matrix of general term Pij which is the expected number of edges between nodes i
and j. Since we are concerned with undirected and unweighted graph, Pij can be
interpreted as the probability to have an edge between i and j. The modularity
can be formulated by the equation below [7] :

Q(A, δ) =
1

2m

n∑
i=1

n∑
j=1

(Aij − Pij) δ(gi, gj) . (1)

where gi is the cluster of i and δ(gi, gj) = 1 if gi = gj and 0 otherwise.
From this general formulation, Newman adopted different assumptions which

led to the definition of a specific null random model. His hypothesis are the fol-
lowing ones [7] : (i) since the graph is undirected then P should satisfy the
relation, ∀i, j : Pij = Pji; (ii) Q should be null when all vertices are in a single
group and thus1

∑
i,j Aij =

∑
i,j Pij = 2m; (iii) the degrees distribution of the

random model should be approximately the same as the one of the given graph
which leads to the following constraint, ∀i :

∑
j Pij = ki where ki =

∑
j Aij is

the observed degree of node i; (iv) edges should be placed at random meaning
that the probability of observing an edge between i and j should be independent
from the probability of observing an edge involving i and the probability of ob-
serving and edge involving j. Under these assumptions, the simplest null random
model is when ∀i, j : Pij = kikj/2m [7]. Accordingly, the following modularity
formulation is the one which is commonly used in the literature :

Q(A, δ) =
1

2m

n∑
i=1

n∑
j=1

(
Aij −

kikj
2m

)
δ(gi, gj) . (2)

It is worthwhile to mention that apart from (2), other coefficients relying on
the modularity concept could be designed from (1). In that perspective, New-
man suggested that the assumptions (i) and (ii) are fundamental and should be
considered as axioms of the modularity framework unlike (iii) and (iv) [7].

Adopting (2), one can optimally solve the graph clustering problem via mod-
ularity maximization with the following integer linear program (see for e.g. [8]) :

max
Y

1

2m

∑
i,j

(
Aij −

kikj
2m

)
(1− Yij) subject to :

{
Yik ≤ Yij + Yjk ∀i, j, k
Yij ∈ {0, 1} ∀i, j .

(3)

1 In order to lighten the notations we write
∑

i,j as a shortcut for
∑n

i=1

∑n
j=1.
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where Yij = 1 if i and j are not in the same cluster and 0 otherwise.
However, optimizing the modularity (and any other objective functions) over

the set of possible partitions is an NP-hard problem. As a result, many research
works have been devoted to approximately maximize the modularity with dif-
ferent strategies and heuristics [5, 6].

The application of modularity to the graph clustering task has demonstrated
good performances both on artificial and real-world networks. However, some
recent works have highlighted certain limits of this method [9]. In particular,
optimizing the modularity tends to split large groups while small communities
below a certain threshold are not correctly detected.

In the next section, we introduce new quality functions for graph clustering
which provide alternatives to the modularity criterion given in (2).

3 The proposed approach : statistical association
measures (SAM) optimization

Density-based techniques typically rely on the definition of a community and use
heuristics to discover sub-graphs satisfying this definition. From our viewpoint,
since clustering a given graph consists in detecting a hidden community struc-
ture, we can interpret the graph as an equivalence relation perturbed by noise.
Thereby, we argue that graph clustering can be thought of as recovering the
real community structure and this can be achieved by fitting the graph with a
partition. This approach assumes there is a way to assess the proximity between
the graph and a partition. In what follows, we introduce some statistical asso-
ciation measures which aim at measuring the similarity between two partitions
by means of contingency tables. Then, we recall the relational formulation of
these coefficients due to Marcotorchino. Using the latter expressions of SAM, we
show how to use these coefficients as benefit functions for the graph clustering
task. In that perspective, we underline some theoretical links between SAM and
the modularity concept in order to bring into light some conceptual similarities
between these two frameworks in the context of graph clustering.

3.1 SAM and their relational representation

Let us assume two categorical variables V k and V l with respectively pk and
pl categories. Note that a categorical variable infers a set of disjoint groups of
items which in turn can be interpreted as a partition or a clustering or an equiv-
alence relation2. In categorical data analysis, in order to analyse the relationship
between two categorical variables, we use the contingency table of dimensions
(pk × pl) denoted by N whose general term is defined by : Nuv = Number of
items belonging to both category u of V k and category v of V l.

Then, a core concept in categorical data analysis is the deviation from the
statistical independence situation which occurs when for all pairs of categories

2 Therefore, we will use these different terms interchangeably.
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(u, v), the probability of jointly observing u and v equals the product between
the probability of observing u and the probability of observing v. Using N, this
principle translates into the following formula3 : ∀(u, v) : Nuv/n = (Nu.N.v)/n2

where Nu. =
∑

v Nuv. In this context, the greater the difference between Nuv

and (Nu.N.v)/n (for all pairs (u, v)), the stronger the relationship between the
categorical variables.

Accordingly, we propose to study the following coefficients :

B(V k, V l) =

pk∑
u=1

pl∑
v=1

(
Nuv −

Nu.N.v

n

)2

. (4)

E(V k, V l) =

pk∑
u=1

pl∑
v=1

(
N2

uv −
N2

u.N
2
.v

n2

)
. (5)

J(V k, V l) =
1

n

pk∑
u=1

pl∑
v=1

(
Nuv

(
Nuv −

Nu.N.v

n

))
. (6)

LM(V k, V l) =

pk∑
u=1

pl∑
v=1

N2
uv

Nu.
− 1

n

pl∑
v=1

N2
.v . (7)

The SAM B, E, J and LM are respectively the Belson [10], Marcotorchino’s
square independence deviation [3], the Jordan4 [11] and the Light-Margolin [12]
criteria. They are all null in case of statistical independence. B and LM can
only have positive values while E and J can be either positive or negative [3].
Given V k, these coefficients achieve their maxima when V l is exactly the same
partition as V k [3].

The contingency representation is the usual way to introduce SAM. How-
ever, there exists an equivalent representation of these coefficients which em-
phasizes the relational nature of categorical variables. Indeed, as we mentioned
beforehand, categorical variables are equivalence relations and such algebraic
structures can be represented by graphs. This point of view was adopted by
Marcotorchino and enabled him to formulate SAM with adjacency matrices5 [3,
4]. Let us denote by Ck the adjacency matrix6 associated to V k. Its general term
is defined by Ck

ij = 1 if i and j belong to the same category and 0 otherwise. Mar-
cotorchino provided correspondence formulas between the contingency table N
on the one hand and the relational representations Ck and Cl on the other hand
[3, 4]. Here are some of these transformation formulas : (i)

∑pk

u=1

∑pl

v=1 N
2
uv =∑n

i=1

∑n
j=1 C

k
ijC

l
ij ; (ii)

∑
u N

2
u. =

∑
i,j C

k
ij ; (iii)

∑
u,v NuvNu.N.v =

∑
i,j((C

k
i.+

3 In order to lighten the notations we write
∑

u as a shortcut for
∑pk

u=1.
4 It is actually an interpretation of Jordan’s measure given by Marcotorchino in [3].
5 The study of association and aggregation of binary relations using graph theory

and mathematical programming led to the Relational Analysis method developed
by Marcotorchino and which has many applications in statistics, data-mining and
multiple-criteria decision making (see for e.g. [13] and references therein).

6 Also called relational matrix in the Relational Analysis framework.
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Ck
.j)/2)Cl

ij ; (iv)
∑

u,v(N2
uv/Nu.) =

∑
i,j(2C

k
ij/(C

k
i. + Ck

.j))C
l
ij where Ck

i. =∑
j C

k
ij and Ck

i. = Ck
.i since Ck is symmetric.

Applying these correspondence formulas enables the following expressions of
SAM in terms of Ck and Cl :

B(Ck, Cl) =

n∑
i=1

n∑
j=1

(
Ck

ij −
Ck

i.

n
−
Ck

.j

n
+
Ck

..

n2

)
Cl

ij . (8)

E(Ck, Cl) =

n∑
i=1

n∑
j=1

(
Ck

ij −
Ck

..

n2

)
Cl

ij . (9)

J(Ck, Cl) =
1

n

n∑
i=1

n∑
j=1

(
Ck

ij −
1

2

(
Ck

i.

n
+
Ck

.j

n

))
Cl

ij . (10)

LM(Ck, Cl) =

n∑
i=1

n∑
j=1

(
2Ck

ij

Ck
i. + Ck

.j

− 1

n

)
Cl

ij . (11)

It is noteworthy that the different formulations of the statistical independence
deviation with contingency tables in (4), (5), (6) and (7), translate into different
types of deviation concepts in the relational representation (8), (9), (10) and
(11). Such properties were examined in [14] and led to the formalization of the
central tendency deviation principle in cluster analysis. Indeed, one can observe
the following central tendencies : in (9) Ck

../n
2 is the mean average over all the

terms of Ck; in (10) (Ck
i. + Ck

.j)/2n is the arithmetic mean of Ck
i./n and Ck

.j/n
and in (11) 1/n is the mean average over all terms of the matrix of general term
2Ck

ij/(C
k
i. + Ck

.j) (which is equivalent to Ck
ij/C

k
i.). Regarding (8), the central

tendency concept is of geometrical nature. Since Ck is a dot product matrix (or
Gram matrix) the transformation of Ck

ij into Ck
ij−Ck

i./n−Ck
.j/n+Ck

../n
2 is known

as the double centering (or Torgerson) transformation. This operation results in
dots products between vectors centered with respect to the mean vector.

Now that we have provided the expression of SAM using the graph relations
underlying partitions, we show in the next paragraph how to employ such criteria
for clustering graphs.

3.2 Graph clustering by maximizing SAM

We interpret a given undirected and unweighted graph as a perturbed equiv-
alence relation and clustering the graph can be seen as attempting to recover
the real partition. To solve the graph clustering task, we thus propose to fit
the graph encoded by its adjacency matrix A with an equivalence relation by
maximizing one of the SAM introduced previously. In other words, we want to
find the partition that is the most similar to A according to a given SAM. More
formally, we introduce the following benefit functions for clustering graphs :

B(A,X) =

n∑
i=1

n∑
j=1

(
Aij −

(
Ai.

n
+
A.j

n
− A..

n2

))
Xij . (12)
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E(A,X) =

n∑
i=1

n∑
j=1

(
Aij −

A..

n2

)
Xij . (13)

J(A,X) =
1

n

n∑
i=1

n∑
j=1

(
Aij −

1

2

(
Ai.

n
+
A.j

n

))
Xij . (14)

LM(A,X) =

n∑
i=1

n∑
j=1

(
2Aij

Ai. +A.j
− 1

n

)
Xij . (15)

where X is the adjacency matrix of the partition we want to recover and whose
general term is Xij = 1 if nodes i and j are in the same cluster and 0 otherwise.

X represents an equivalence relation which, from an algebraic standpoint, is
a binary relation with the following properties : (i) reflexivity (Xii = 1,∀i); (ii)
symmetry (Xij = 1 ⇔ Xji = 1,∀i, j) and (iii) transitivity (Xij = 1 ∧ Xjk =
1⇒ Xik = 1,∀i, j, k). Marcotorchino and Michaud showed that these relational
properties can be formulated as linear constraints through X [15] and this finding
allowed them to model the clustering problem as an integer linear program :

max
X

∆(A,X) subject to :


Xii = 1 ∀i
Xij −Xji = 0 ∀i, j
Xij +Xjk −Xik ≤ 1 ∀i, j, k
Xij ∈ {0, 1} ∀i, j

. (16)

where, in our case, ∆(A,X) is either (12) or (13) or (14) or (15).
It is important to mention that this integer linear program allowed Marco-

torchino to design the maximal association model for clustering data described by
categorical variables. In Marcotorchino’s works, A was considered as an equiva-
lence relation [15] or the sum over several equivalence relations [16]. Our proposal
can thus be understood as the extension of the maximal association framework
to graph clustering by considering A to be a general adjacency matrix without
any particular property (except being undirected).

Before moving to the section dedicated to the experiments, we establish some
interesting relationships between the modularity framework and our proposal
based on SAM.

3.3 Some relationships between modularity and SAM

Firstly, using the notations introduced previously, the standard modularity de-
fined in (2) can be reformulated as below :

Q(A,X) =
1

A..

n∑
i=1

n∑
j=1

(
Aij −

Ai.A.j

A..

)
Xij . (17)

In addition to the correspondence formulas given in paragraph 3.1, let us intro-
duce the following identity : (v)

∑
v(
∑

u Nu.Nuv)2 =
∑

i,j C
k
i.C

k
.jC

l
ij [4]. From

this equation, if we identify Ck and Cl to A and X respectively and if we assume
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A and X to be partitions associated to two categorical variables V k and V l, we
can easily show that the modularity given in (17) can be expressed by means of
a contingency table as follows :

Q(V k, V l) =
1∑pk

u=1 N
2
u.

 pk∑
u=1

pl∑
v=1

N2
uv −

1∑pk

u=1 N
2
u.

 pl∑
v=1

(
pk∑
u=1

Nu.Nuv

)2
 .

(18)
Then, one can easily check that Q(V k, V l) is null in case of statistical indepen-
dence between V k and V l. This outcome shows the potential application of the
modularity measure in categorical data analysis.

Let us now place the SAM in the context of the modularity concept developed
by Newman. Let us formally introduce the following central tendencies : µQ

ij =

Ai.A.j/A..; µ
B
ij = Ai./n+A.j/n−A../n

2; µE
ij = A../n

2; µJ
ij = Ai./(2n)+A.j/(2n)

and µLM
ij = 1/n. In that case, (17), (12), (13), (14) and (15) can all be refor-

mulated as : α
∑n

i=1

∑n
j=1(Aij − µZ

ij) with Z ∈ {Q,B,E, J, LM}, α = 1 when
Z ∈ {B,E,LM}, α = 1/A.. when Z = Q, α = 1/n when Z = J and by substi-

tuting Aij with Âij = 2Aij/(Ai. +A.j) when Z = LM . This expression of SAM
better underlines the connections between the general modularity framework
given in (1) and cluster analysis methods based on the central tendency devia-
tion principle [14]. Furthermore, one can easily check that Newman’s axioms we
recalled in section 2 are both satisfied by all SAM under study except the LM
method : (i) ∀i, j : µZ

ij = µZ
ji for Z ∈ {B,E, J, LM}; (ii)

∑
i,j Aij =

∑
i,j µ

Z
ij for

Z ∈ {B,E, J}. As a result, B, E and J fit in the modularity model. However,
hypothesis (iii) and (iv) are not satisfied by any SAM under study except B for
which we have (iii) ∀i :

∑
j µ

B
ij = ki = Ai..

In such a context, it is also interesting to notice that the SAM E given in (13)
corresponds to another suggested modularity model which assumes a Bernoulli
distribution for Pij in (1) and which boils down to the following constant7,
Pij = A../n

2, ∀i, j [7].
After having introduced the proposed objective functions and some properties

about the relationships between the modularity concept and SAM, we examine
in the next section if our proposals lead to interesting graph clustering methods
from an empirical standpoint. Another goal of these experiments is to enable
us to initiate a comparison between the modularity framework and SAM based
optimization with regard to the hypothesis underlying each method.

4 Experiments

Our experiments are based on computer-generated graphs of different sizes. We
give below the details about the algorithm we used to maximize the different
density-based objective functions presented previously. We explain the tool we

7 Note that in the case of E, we assume that the graph is reflexive unlike Q. In the
latter case, the constant is A../(n(n− 1)).
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employed and the parameters we set to generate the artificial graphs. We then
analyse the quality of the graph clustering results obtained with the different
techniques.

4.1 Greedy optimization by agglomerative hierarchical clustering

The optimization problems given in (16) and (3) are NP-hard8, and thus, numer-
ous heuristics attempting to provide sub-optimal solutions have been proposed
(see for e.g. the surveys [5, 6, 1]). In our experiments, we used the greedy op-
timization algorithm proposed by Newman in [17] in order to maximize the
modularity criterion given in (2).

This heuristic is based on a simple agglomerative hierarchical clustering strat-
egy. It starts with n distinct clusters and at each iteration it merges the two
clusters that allow the best improvement of the modularity value. The merging
process goes on until there is no pair of clusters whose fusion enables increas-
ing the modularity value. This heuristic has the advantage to avoid fixing the
number of clusters as a parameter.

This algorithm can be applied to other kinds of quality measures and in order
to provide a fair comparison between the different objective functions, we thus
used this technique to maximize (12), (13), (14) and (15) as well.

4.2 LFR benchmark graphs

The computer-generated graphs we analyzed in our experiments rely on the
LFR benchmarks proposed by Lancichinetti, Fortunato and Radicchi in [18,
19]. These benchmarks aim at providing the research community with graphs
whose properties reflect real-world cases. Indeed, observed complex networks are
characterized by heterogeneous distributions both for node degrees and cluster
sizes. As a consequence, the authors developed a model that generates graphs
which satisfy these features. They also implemented a freely available tool9 that
we used to conduct our empirical work.

Their approach is based on the planted l-partition model in which node
degrees follow a power law distribution with exponent τ1 and clusters size a power
law distribution with exponent τ2. Overall the parameters of their model are :
(i) n the number of nodes; (ii) the average degree of nodes; (iii) the maximum
degree of nodes; (iv) τ1; (v) τ2 and (vi) µ ∈ [0, 1] the mixing parameter. The
latter parameter µ is the one that allows gradually monitoring the presence or the
absence of a community structure in the graph. It represents the percentage of
edges that a node shares with vertices that do not belong to its group. Therefore,
as µ grows, the community structure progressively degrades and the limit case

8 Note that the constraints in (16) and in (3) are equivalent : the former models the
properties of an equivalence relation while the latter models the properties of the
complementary of an equivalence relation which is a distance relation satisfying the
triangle inequality constraint.

9 http://santo.fortunato.googlepages.com/inthepress2
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µ = 1 corresponds to the situation where edges are totally placed randomly.
Typically, we assume that there is a strong community structure within the
graph as long as µ < 0.5.

4.3 Experiments settings and results

We studied graphs of different sizes : 500, 1000 and 2000 nodes. We used the same
parameters values as in [19] : the average degree was set to 20; the maximum
degree to 50; τ1 = 2; τ2 = 1 and we vary µ from 0 to 0.7 with a 0.1 step.

The LFR benchmark graphs also provide a built-in community structure
which allowed us to compare the clustering results with the real partition. To
assess the proximity between the found partition and the ground-truth, the nor-
malized mutual information (NMI) measure was used. Let us denote by V k the
clustering output of our algorithm with pk clusters and by V l the real clustering
with pl groups. Let P (V k = u, V l = v) = P (u, v) = Nuv/n be the probability
of jointly observing u and v and let P (u) = Nu./n and P (v) = N.v/n be the
probability of observing u and v respectively. The mutual information measure
between V k and V l denoted by I(V k, V l) is defined as follows : I(V k, V l) =∑pk

u=1

∑pl

v=1 P (u, v) log(P (u, v)/(P (u)P (v))). Its normalized version denoted by
NMI(V k, V l) is then given by NMI(V k, V l) = 2I(V k, V l)/(H(V k) + H(V l))
where H(V k) = −

∑
u P (u) log(P (u)) is the entropy of V k. The NMI measure

ranges from 0 and 1. It equals 1 when V k = V l and it is null when V k and V l

are statistically independent. Note that we used the NMI coefficient to assess
our clustering models because this measure is often used in the graph clustering
literature (see for e.g. [19]). In that way, we can also position our contributions
with respect to other papers and graph clustering techniques.

To have a better estimation of the performances, we generated 5 different
graphs for each distinct parameter setting and we took the median value. The
experimental results obtained for NMI measures are shown in the first row of
Fig. 1. We also computed the number of clusters found by each method in order
to examine if the different techniques are able to recover the right number of
clusters. In this case, we also took the median over the 5 trials. These results
are shown in the second row of Fig. 1.

The first row of Figure 1 allows us to compare the quality of the clustering
outputs found by the different methods. We claim the following outcomes : (i) as
expected, all the methods have their quality diminishing as µ grows; (ii) the LM
coefficient dominates the modularity Q and other methods and this superiority
seems to grow with the size of the graphs; (ii) B and J perform similarly than
Q whatever the size of the graphs; (iii) E is the less good approach and it
particularly performs the worst when µ ∈ [0.3, 0.7].

Concerning the number of clusters found, we can make the following observa-
tions from the second row of Fig. 1 : (i) the number of real communities provided
by the LFR benchmarks is stable and varies around 20, 40 and 80 for graphs of
size 500, 1000, 2000 respectively; (ii) except for E with graphs of size 500, all
the techniques produce less clusters than the correct number of groups; (iii) as µ
grows the number of clusters decreases for all the methods and beyond a certain
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Fig. 1. First row : NMI values (vertical axis) versus mixing parameters µ (horizontal
axis). Second row : Number of clusters found (vertical axis) versus mixing parameters
µ (horizontal axis). We show the curves for each objective function. From left to right,
the plots correspond to graphs with 500, 1000 and 2000 nodes respectively.

point (approximately 0.6 for Q, B, LM ; 0.5 for J and 0.3 for E), it tends to
either grow or stabilize; (iv) the LM criterion tends to produce more clusters
than Q, B and J .

Overall, B and J are comparable to Q while LM is clearly a better objective
function than the other ones. One reason that could explain the superiority of
LM is the fact that it implicitly transforms the binary matrix A into a non
negative one, Â whose general term is Âij = 2Aij/(Ai. + A.j). Then its related
central tendency scheme, µLM

ij = 1/n, gives the same value for all pairs of nodes
(i, j). Such an approach is indeed different from the other quality functions
we examined, since they all keep the binary matrix but what changes from
one function to the other is the underlying central tendency scheme µZ , Z ∈
{Q,B, J,E} as we underlined in paragraph 3.3.

Moreover, our experimental results invite us to further analyze the hypothesis
underlying the different objective functions. Regarding Newman’s assumptions
for the modularity given in (2), it is interesting to notice that B and J perform
similarly than Q despite the fact they do not satisfy all the hypothesis assumed
by the latter criterion. More importantly, LM violates most of Newman’s hy-
pothesis but outperforms all other methods including Q.

5 Conclusion

We have proposed new objective functions for clustering undirected and un-
weighted graphs. Our method consists in maximizing SAM represented in their
relational representation, in order to fit the given graph with a partition. Our
empirical study on artificial graphs has shown encouraging results. Most of the
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proposed SAM perform equivalently or better than the modularity criterion.
In particular, the Light-Margolin coefficient dominates the latter approach. As
for future work, we plan to develop the analysis provided in paragraph 3.3 and
leverage the empirical results presented previously by further comparing the
modularity concept and SAM from a theoretical viewpoint. We also plan to ex-
tend our experiments on larger graphs both for computer-generated cases and
for real-world networks in order to further validate our findings.
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