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Abstract. We propose a general framework for measuring the proximity
between heterogeneous binary relations. We are particularly interested
in equivalence relations (or partitions, or categorical variables) on the
one hand, and in order relations (or rankings or ranked data) on the
other hand. We study Kendall’s general correlation coefficient that en-
compasses many statistical association measures for both types of binary
relations. Then, we propose a generalization of this approach. Our pro-
posal has several interesting properties. It addresses the case of heteroge-
neous binary relations, it has a well-motivated geometrical interpretation
and it also leads to Euclidean metrics.

1 Introduction

Binary relations (BR) are fundamental mathematical concepts that allow struc-
turing a set of items or objects in intelligent ways. Among the different types of
BR, equivalence relations (ER) and order relations (OR) are ubiquitous. Some
examples of ER are : “is similar to”, “has the same predicate than”, “belongs to
the same group as”, . . . and some illustrations of OR are : “is lower than”, “is
preferred to”, “is ranked above than”, . . .

Such types of data are relational since they encode the relationship between
items unlike more classical representations of objects described by features.
There are many situations where we have to deal with such relational data. For
instance, in the statistical literature, research works in categorical data analysis
study ER while in non-parametric statistics one is interested in the OR un-
derlying quantitative variables. In both topics, association measures have been
proposed in order to compare two ER and two OR.

In this paper, we design a general framework for measuring the proximity
between BR. Our framework addresses heterogeneous BR where ER can have
different numbers of equivalence classes with different cardinals and OR can be
partial and/or with ties. We propose to extend Kendall’s general correlation
coefficient Γ which is a formula used in many ways in order to compare ER and
OR. Our generalization proceeds in two steps. In section 2, after recalling some
basics about BR, we firstly reformulate Kendall’s Γ in the Relational Analysis
(RA) framework. This approach allows us to propose an unifying formula for



both ER and OR which emphasizes the relational nature of such data and which
also relies on the indeterminacy principle. Secondly, in section 3, we extend
Kendall’s Γ in the goal of dealing with heterogeneous BR in a more effective
manner. In that perspective, we introduce a family of proximity measures called
similarity of order t. These measures have a clear geometrical interpretation and
result in Euclidean metrics. Finally, we conclude this paper and sketch some
future work in section 4.

2 Measures for BR using relational matrices

2.1 BR and relational matrices

A binary relation R on a set of objects A = {. . . , i, j, . . .} with |A| = n, is a
couple (A, G(R)), where G(R) called the graph of the relation R, is a subset
of the Cartesian product A2. If (i, j) ∈ G(R), then we say that i is in relation
with j for R. This will be denoted by iRj. We can associate to a BR R, its
complement which is a BR denoted by R and whose graph is defined by, ∀i, j ∈
A : (i, j) ∈ G(R)⇔ (i, j) /∈ G(R). Furthermore, we can derive from R its inverse
(also called its converse) which is also a BR that we denote by R̆ and whose
definition is given by, ∀i, j ∈ A : (i, j) ∈ G(R̆)⇔ (j, i) ∈ G(R).

There are different properties that a BR can satisfy. Some of the most
used ones are : reflexivity, ∀i (iRi); symmetry, ∀i, j (iRj ⇒ jRi); antisymmetry,
∀i, j ((iRj ∧ jRi)⇒ i = j); complete (or total), ∀i 6= j (iRj ∨ jRi); transitivity,
∀i, j, k ((iRj ∧ jRk)⇒ iRk).

The BR we are interested in are defined as follows : ER are reflexive, sym-
metric and transitive; preorders are reflexive and transitive; partial orders are
reflexive, antisymmetric and transitive; total (or linear or complete) orders are
reflexive, antisymmetric, transitive and complete. Concerning OR, total orders
are rankings without missing values and without ties, partial orders are rank-
ings without ties but missing values can occur; complete preorders are rankings
without missing values but with possible ties and preorder are rankings with
possible missing values and ties.

In the RA approach [1, 2, 4], BR are represented by their adjacency matrices
that are called more specifically relational matrices (RM) in this context. We
denote by R the RM of the BR R, which is a binary pairwise comparison ma-
trix whose general term is given by, ∀i, j : Rij = 1 if iRj and Rij = 0 if iRj.

Besides, we will respectively denote by R and R̆ the RM of the complement
and inverse of R. Using RM, the relational properties of BR can be expressed
as linear equations. This is a first interesting feature of RA which allows aggre-
gating binary relations using 0-1 integer linear programming [2, 3]. However, in
this paper, we focus on a second kind of contributions of this approach which
concerns statistical association measures. We review this topic and propose the
first generalization of Kendall’s Γ in the next paragraph.



2.2 Measures based on Kendall’s Γ and RM

In his famous book [5], Kendall proposed a general correlation coefficient in order
to define a broad family of association measures. Even if his proposal initially
aimed at rankings, it can also be adapted to categorical variables. Let x and y
be two given variables of measurements on A. Kendall’s Γ takes the following
general form :

Γ (x,y) =

∑
i,j XijYij√∑

i,j X
2
ij

√∑
i,j Y

2
ij

(1)

where X and Y are two square matrices derived from x and y. This coefficient
is symmetric and both variables are treated the same way. Hereafter, we thus
mention the transformation for x only.

Let us start with ER. In that case, x and y are two categorical variables with
px and py categories and categories sets denoted {1, . . . , px} and {1, . . . , py}.
We denote by nxu the total number of items in category u ∈ {1, . . . , px}. In
[6], Janson and Vegelius suggested to adapt Kendall’s approach to categorical
variables. They particularly showed that when Xij = (n/nxu)− 1 if xi = xj and
Xij = −1 if xi 6= xj , we obtain Tchuprow’s T coefficient. Another interesting
measure, called the J-index, that was proposed by the same authors, is given
by : Xij = px − 1 if xi = xj and Xij = −1 if xi 6= xj .

Suppose now that x and y are quantitative variables. If we compare the
measures assigned to all pairs (i, j) ∈ A2 we obtain two OR of the type “is lower
than”. In [5], Kendall proposed the following setting to measure the dependence
between x and y from a non-parametric perspective : Xij = 1 if xi < xj and
Xij = −1 if xi > xj . In that case,

∑
i,j XijYij is twice the number of concordant

pairs minus twice the number of discordant pairs while
∑

i,j X
2
ij gives n(n− 1).

The resulting coefficient is Kendall’s popular τa. Another famous rank correlation
measure is Spearman’s ρa statistic. In that case, we assume that xi and yi are the
ranks associated to i according to X and Y . Then, ρa is given by Xij = xi−xj .

Let X and Y be the BR implicitly encoded by x and y and let X and Y be
their respective RM. Then, we introduce the notation X̃ which represents the
opposite relation of X in a general way. In our case, X̃ will refer to X if X is
an ER and to X̆ if X is an OR. In other words, if X is an ER (“is in the same
category as”) then we consider its complement (“is not in the same category
as”) as its opposite whereas if X is an OR (“is lower than”) its opposite is its
inverse (“is greater than”). We propose the following expression denoted Λ that

generalizes Kendall’s Γ by explicitly integrating the RM X, Y, X̃ and Ỹ :

Λ(X,Y, µ, µ̃) =

∑
i,j(µ

x
ijXij − µ̃x

ijX̃ij)(µ
y
ijYij − µ̃y

ijỸij)√∑
i,j(µ

x
ijXij − µ̃x

ijX̃ij)2
√∑

i,j(µ
y
ijYij − µ̃y

ijỸij)2
(2)

where ∀i, j ∈ A : µx
ij and µ̃x

ij are non-negative weights for iXj and iX̃j.
There have been many research works about using RM to better understand the



differences between association measures [7–11]. In this paper, (2) follows the
formalism proposed in [12] which underlines the weighted indeterminacy situa-
tion between two BR. This concept was first introduced in [7] and lately studied
in the case of ER in [13]. In order to better understand how (2) generalizes
Kendall’s Γ and the weighted indeterminacy concept as well, it is worth empha-
sizing the roles played by the weights µx

ij and µ̃x
ij . Indeed, µ and µ̃ should be

viewed as mappings reflecting weighting models which, given a RM X and a pair
(i, j), assign a non-negative value to Xij (iXj) and to X̃ij (iX̃j). In our frame-
work, the semantic underlying weighting models is what allows differentiating
coefficients from one to another.

Accordingly, the following results show that (2) indeed encompasses1 famous
coefficients derived from Kendall’s Γ . As for ER, the findings in [6] and [7,
9] enable us to state the following particular cases of Λ : µx

ij = [(
∑

i Xij +∑
j Xij)/2]−1−1/n = [

∑
j Xij ]

−1−1/n and µx
ij = 1/n leads to Tchuprow’s T co-

efficient; µx
ij = 1−1/

∑
i,j [2Xij/(

∑
i Xij+

∑
j Xij)]

2 = 1−1/
∑

i,j [Xij/
∑

j Xij ]
2 =

1−1/px and µx
ij = 1/px gives the J-index; µx

ij = µx
ij = 1 is related to Rand’s in-

dex; µx
ij = 1−

∑
i,j Xij/n

2 and µx
ij =

∑
i,j Xij/n

2 is Pearson’s product-moment
correlation coefficient on a fourfold contingency tables.

Regarding OR, the results provided in [5] and [8, 12], allow establishing the
following cases derived from (2). If X and Y are total orders then Λ with µx

ij =
µ̆x
ij = 1 gives Kendall’s τa and Λ with µx

ij = xi − xj and µ̆x
ij = xj − xi leads to

Spearman’s ρa. However, if X and Y are preorders then the previous weighting
schemes respectively give Kendall’s τb and Spearman’s ρb which were meant
to better take tied ranks into account. As a consequence, what is remarkable
with (2) is that it allows unifying in a unique framework, well-known association
measures for both ER and OR. Moreover, this approach has the particularity to
highlight the relational nature of the variables by explicitly using their RM.

Next, we explain the indeterminacy concept between two BR on which (2) is
based. This concept is different from the statistical independence principle, and
it can be better understood by looking at the numerators of (2) when it is equal
to 0. In such a case we have :∑

(µx
ijXij − µ̃x

ijX̃ij)(µ
y
ijYij − µ̃y

ijỸij) = 0

⇔∑
µx
ijµ

y
ijXijYij︸ ︷︷ ︸
11

+
∑

µ̃x
ij µ̃

y
ijX̃ijỸij︸ ︷︷ ︸
00

=
∑

µx
ij µ̃

y
ijXijỸij︸ ︷︷ ︸
10

+
∑

µ̃x
ijµ

y
ijX̃ijYij︸ ︷︷ ︸
01

(3)
In (3) the left hand side 11 + 00 corresponds to the total weight of agreement
or concordant pairs between the two BR whereas the right hand side 10 + 01
represents the total weight of disagreement or discordant pairs. Typically the
weighted indeterminacy situation is when both total weights are equal. Suppose
the classical case where all µ and µ̃ are uniform, then indeterminacy means
that there are as many agreement pairs as disagreement pairs. Note that the
correlation between x and y is positive if the weighted agreement is greater

1 Due to space restriction, we were not able to give all the details of these properties.



than the weighted disagreement and it is negative otherwise. Therefore, our first
generalization of Kendall’s Γ is based on the weighted indeterminacy concept
which gives a clear interpretation of the correlation between two BR in terms of
the difference between the weighted agreement and the weighted disagreement.

In the next paragraph, we propose to generalize (2) further in order to better
treat heterogeneous BR.

3 Similarity of order t and generalization of Kendall’s Γ

3.1 Weighted Symmetric RM as vectors in an Euclidean space

Our goal now, is to extend the previously introduced Λ measure in order to deal
with heterogeneous BR. Note that this can be partly done using Λ by choosing
adequate weighting schemes. For instance, we previously showed that (2) embeds
Kendall’s τb which better deals with tied ranks. However, we argue that we can
also model such a heterogeneity from a geometrical perspective. To this end,
we introduce the concept of weighted symmetric RM (WSRM) of a variable x,
denoted by X and defined as follows, ∀i, j ∈ A :

Xij = µx
ijXij − µ̃x

ijX̃ij (4)

Moreover, let us denote by Mn, the vectorial space of real valued square matrix
of size n. Given a variable x we can represent its underlying BR by the RM
X, X̃, and by the WSRM X associated with µ and µ̃. All of the latter matrices
are elements of Mn. Furthermore, let us equip Mn with the Frobenius inner
product denoted by 〈., .〉, and defined by, ∀X,Y ∈ Mn : 〈X,Y〉 =

∑
i,j XijYij .

Using WSRM in this geometrical framework, (2) can be written as below :

Λ(X,Y, µ, µ̃) =

∑
i,j XijYij√∑

i,j X
2
ij

√∑
i,j Y

2
ij

=
〈X,Y〉√

〈X,X〉
√
〈Y,Y〉

(5)

In other terms Λ is the cosine of the angular measure between vectors X and
Y. In this context, we argue that ER with different numbers of groups and/or
with different distributions give WSRM with distinct norms. Vectors norms can
even be more different depending on the weighting models µ and µ̃. The same
kind of observation can be made with regard to heterogeneous OR. Indeed, two
vectors X and Y representing two total orders, have the same norm but this is
no longer true when OR are partial and/or with ties. Accordingly, we argue that
in order to deal with the heterogeneity of BR when comparing them, one has
to penalize the difference between the norms of associated WSRM. In the next
paragraph, we introduce a method which takes this point into account.

3.2 Similarity of order t and application to WSRM vectors

We present a family of proximity measures called similarity of order t with t > 0
which was initially introduced in [12] and lately applied to kernels normalization



in [14]. We apply this approach within the framework we have set up previously
and we show how our method defines a family of association measures for het-
erogeneous BR. To this end, we give below the formal definition of similarities
of order t, denoted by St and which are applied to two BR X and Y that were
derived from two variables x and y :

St(X,Y, µ, µ̃) =

∑
i,j(µ

x
ijXij − µ̃x

ijX̃ij)(µ
y
ijYij − µ̃y

ijỸij)[
1
2

([∑
i,j(µ

x
ijXij − µ̃x

ijX̃ij)2
]t

+
[∑

i,j(µ
y
ijYij − µ̃y

ijỸij)2
]t)]1/t

=
〈X,Y〉

Mt(〈X,X〉, 〈Y,Y〉)
(6)

whereMt(a, b) = [12 (at+bt)]1/t is the generalized power mean of order t. In order
to be rigorous regarding the notations, we use St(X,Y) to refer to the similarity
of order t when WSRM are used as inputs such as in the second line of (6). On
the contrary, we use St(X,Y, µ, µ̃) to make explicit the two types of inputs we
initially have i.e. the RM (X,Y) and the weighting models (µ, µ̃). However, the
reader has to keep in mind that St(X,Y, µ, µ̃) is similar to St(X,Y) where X was
determined from X, µ, µ̃, by using (4), beforehand.

In (6), we have introduced the use of generalized power means. Particu-
lar cases of Mt are the following ones : the limit when t → 0 gives the ge-
ometric mean; t = 1 is the arithmetic mean; the limit when t → ∞ gives
the maximum. The reason we consider t positive only is given later on. Be-
fore, we observe that (6) generalizes (5) since the latter equation is the limit
of the former one when t → 0. Next, let us denote by θ(X,Y) and γ(X,Y) =
max(

√
〈X,X〉,

√
〈Y,Y〉)/min(

√
〈X,X〉,

√
〈Y,Y〉) the angular measure and the

norms ratio between X and Y. To simplify the formulas we use the shorthands
θ and γ. Using these geometrical measures, (5) can be equivalently written as
follows [12, 14] :

St(X,Y, µ, µ̃) =
cos θ

Mt(γ, γ−1)
(7)

The semantic of St can be apprehended from (7) by considering the two
geometric features we have introduced. Note that cos θ ∈ [−1, 1] whereas γ ∈
[1,∞[. Therefore, the sign of St is given by the cosine measure. In [12, 14], it
was shown that ∀t > 0 : in the limit case t → 0, γ has no effect on St; St

is monotonically increasing w.r.t. cos θ; if cos θ > 0 then St is monotonically
decreasing w.r.t. γ (converging towards 0); on the contrary if cos θ < 0 then St

is monotonically increasing w.r.t. γ (also converging towards 0). Intuitively, the
norms ratio γ aims at refining the cosine measure in the following sense : given
two vectors, the greater the difference between their norms is, the less significant
the cosine measure is as a similarity value and therefore the lower the amplitude
of the similarity value should be. For instance, in the limit case γ →∞, whatever
the value of cos θ, the proximity measure is close to 0. St enables refining the
cosine index by penalizing it on the basis of the difference between the vectors
norms. Thus, this feature allows St to deal with heterogeneous BR better than Λ.



In this framework, the real parameter t > 0 enables monitoring the strength of
this penalization : as t grows the penalization is stronger and the similarity index
of order t ranges from one limit case t → 0 to the other one t → ∞ which are
respectively given by St→0(X,Y, µ, µ̃) = cos θ and St→∞(X,Y, µ, µ̃) = cos θ/γ.

Moreover, St measures satisfy the following axioms in regard to similarity
indices [12, 14]. We have, ∀t > 0,∀X,Y ∈Mn : boundedness, |St(X,Y)| ≤ 1; max-
imal self-similarity, St(X,X) = 1; symmetry, St(X,Y) = St(Y,X); indiscernibility
of identicals, x = y ⇒ St(X,Y) = 1; identity of indiscernibles2, St(X,Y) = 1 ⇒
x = y; order relation on St, ∀t ≥ t′ > 0 : |St(X,Y)| ≤ |St′(X,Y)|3.

One other attractive property of St indices is given below :

Theorem 1. If t > 0 then the square matrix of general term St(X,Y) is positive
semi-definite.

This result can be proved by using Gershgorin circle theorem [14]. Besides, by
using theorem 6 of [15], we can deduce the following corollary of theorem 1 :

Corollary 1. If t > 0 then the square matrix of general term Dt(X,Y) =√
2−1(1− St(X,Y)) is Euclidean. In other words, the rows X and columns Y

of Dt are points of Mn that can be represented in an Euclidean space such that
Dt(X,Y) are their pairwise Euclidean distance values.

Next, we present another geometrical interpretation of St which brings some
other insights about this method. Let us denote the orthogonal projection of X
on Y by PY(X)Y where PY(X) = 〈X,Y〉/〈Y,Y〉 is called the scalar projection.
The orthogonal projection of X on Y is the best approximation of the former
vector given the latter one according to the least square approach. In that case,
the scalar projection is a real value that expresses an asymmetric proximity
relationship between the two vectors. Similarly, we can use PX(Y) = 〈X,Y〉/〈X,X〉
as another asymmetric measure when comparing X and Y. We can mix scalar
projections in order to have a symmetric coefficient. In that perspective, we can
relate scalar projections with St by the following formula [12, 14], ∀t > 0 :

St(X,Y, µ, µ̃) =M−t (PY(X),PX(Y)) (8)

Regarding OR, it is worth mentioning that when µij = µ̆ij = 1 for all (i, j),
PY(X) is Somers’s asymmetric measure d and S1(X,Y, µ, µ̃) is Kim’s d index.

Finally, we point out the particular weighting models given by, ∀(i, j) ∈ A2 :
µx
ij = 1 and µ̃x

ij = 0. In that case, the opposite relation in (4) vanishes, and the
WSRM X reduces to the RM X in all other following equations. In this case, St

given in (6) is related to some similarity indices for binary vectors. Accordingly,
our framework also encompasses the generalization to BR of measures such as
Ochiäı or Dice indices. Indeed, the two latter measures are given by the limit
case t→ 0 and t = 1. There are plenty similarity indices for binary vectors and
classifying them in order to better understand their differences is a challenge
which is tackled in [16]. The framework we propose can thus partly help in this
research line.
2 Note that the limit case t → 0 (the cosine index) does not satisfy this property.
3 Showing that when t grows the amplitude of St decreases.



4 Conclusion and future work

We have generalized Kendall’s Γ coefficient and proposed an unifying framework
to define association or proximity measures for the comparison of heterogeneous
ER and OR. Our method presents several attractive features that we have shown
from a theoretical viewpoint. Due to space restriction, we were not able to il-
lustrate these properties on practical examples. We will thus target applications
of our method in future work. In that perspective, it is worth noticing that the
metric properties of St allow using classical data analysis tools such as Multidi-
mensional Scaling in order to represent heterogeneous BR in Euclidean spaces.
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fouille de données, RNTI, Cépaduès Editions (2009) 328


