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Abstract. This paper is concerned with the problem of unsupervised rank aggregation in the context of metasearch in information
retrieval. In such tasks, we are given many partial ordered lists of retrieved items provided by many search engines and we want
to define a way for aggregating those lists in order to find out a consensus. One classical approach consists in aggregating, for
each retrieved item, the scores given by the different search engines. Then, we use the resulting aggregated scores distribution
in order to infer a consensus ordered list. In this paper we investigate whether aggregation operators defined in the fields of
multi-sensor fusion and multicriteria decision making are of interest for metasearch problems or not. Moreover, another purpose
of this paper is to introduce a new aggregation operator, its foundations and its properties. We finally test all these aggregation
operators for metasearch tasks using the Letor 2.0 dataset. Our results show that among the studied aggregation functions, the

ones which are more compensatory outperform the baseline methods CombSUM and CombMNZ.

Keywords: Aggregation operator, fuzzy results merging, data fusion, metasearch, unsupervised rank aggregation

1. Introduction

Data fusion problems arise when, for a given task,
there are several experts or information sources that
give different opinions, or scores with respect to a set
of alternatives or strategies. These opinions or scores
can correlate or not and we are faced with the problem
of combining them in order to figure out a consensus.

That kind of problem can be encountered in many
different contexts. First, in social choice theory which
encompasses voting theory and welfare economics, ag-
gregating preference relations is a central problem. In-
deed, in an election for example, we have to aggregate
the votes or preferences of many voters in order to elect
a consensual candidate.

Another example is the multicriteria decision mak-
ing field. In that case, the decision maker is given a set
of alternatives and a set of criteria. Each alternative is
given a degree of satisfaction according to each crite-
rion. But, the criteria are often conflicting. Thus, the
decision maker needs to find a way to come up with a
compromise.

Next, in the multi-sensor fusion field, the aim is
to combine information coming from distinct sources
in order to achieve a resulting information that is ex-
pected to be more accurate than the ones provided by
one source only.

Lately, in information retrieval field, there have been
several tasks for which aggregating information com-
ing from different sources is beneficial. In [12] for ex-
ample, the authors investigate the use of unsupervised
rank aggregation to tackle the problem of web spam.
In that case, combining the results obtained by sev-
eral search engines allows to filter spam. Indeed, au-
thors of web pages that attempt to enhance the ranking
of their own pages by analyzing the drawbacks of one
search engine cannot do it for all search engines. Apart
from web spam filtering, there are many other appli-
cations in the information access domain where aggre-
gation techniques play a crucial role [16]. In that con-
text, tools such as multimedia search engines or rec-
ommender systems are examples that make use of data
fusion techniques.

In this paper, we are concerned with the metasearch
problems in information retrieval. In that case, the goal
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is to combine the results given by different search en-
gines into a single consensus list of items which is ex-
pected to be more relevant than any of the search en-
gines results if they were considered individually.

Accordingly our first aim is to investigate if some
aggregation operators defined in the fields of multi-
sensor fusion and multicriteria decision making can be
applied to solve metasearch problems. Next, our sec-
ond goal is to introduce a new aggregation operator
and to compare its results with other techniques in the
context of metasearch problems. This paper is an ex-
panded version of the conference paper [2].

The rest of the paper is organized as follows. In
section 2, we recall some previous works that address
metasearch problems and we also introduce some no-
tations. In section 3, we explain the pre-processing
step which is necessary before applying any aggrega-
tion operators. The latter consists in normalizing each
scores distributions so that their values become com-
parable. Then in section 4, we recall some famous ag-
gregation functions that are studied in different con-
texts namely, weighted quasi-arithmetic means, trian-
gular norms and conorms and triangular norms ordered
weighted averaging operator (TOWA). Next, in sec-
tion 5, we introduce a new aggregation operator, its
set-based foundations and its combinatorial properties.
We tested all the aforementioned approaches for meta-
search tasks using the Letor 2.0 dataset [21]. We report
and we analyse the results we obtained in section 6.
Finally we conclude and sketch some future work in
section 7.

2. Related work and notations

Basically, we suppose there are M experts (the
search engines) and N alternatives (the documents).
Each expert gives an ordered list of those N objects
according to their own preferences (or scores).

However, when dealing with information retrieval
tasks there are some particular points that are worth
noticing (see [14] for more details). In general, the
number of objects of the collection N is much larger
than the number of search engines M. In voting theory
for example, this is indeed the contrary: there are more
voters (“experts”) than candidates (“alternatives™). Be-
sides, given a query, each search engine attempts to
give in its top-list the most relevant objects. Therefore,
the goal of search engines is not to score every ob-
jects in the collection. Furthermore, we can also as-
sume that after a certain position, let say 100, objects

that are ranked beyond are not relevant. Consequently,
each search engine gives a partial ranking of the ob-
jects.

The top-lists provided by the M search engines are
not mutually disjoint: there are overlaps between them.
Thus, one can assume that objects that appear in many
top-lists are more likely to be relevant. Accordingly,
the problem we address is to find a single consensus
list which combines the M rankings in order to achieve
a more consistent list.

In the literature, there are different kinds of method
to address the unsupervised rank aggregation problem.
According to [26,14], we can notice two broad families
of approaches:

— positional methods: for each object, we consider
the scores given by each expert (the object’s pro-
file), we then aggregate these scores using dif-
ferent techniques and we finally re-rank the ob-
jects using the aggregated scores. The first posi-
tional method was proposed by Borda [5] but lin-
ear combination such as the weighted arithmetic
mean is for instance, one of these methods [15].
Example of more recent approaches are the fol-
lowing ones [19,10]. In [19], it is proposed to
learn the weight assigned to any search engine
in an unsupervised manner. In [10], the authors
apply aggregation functions based on ordered
weighted averaging functions' (OWA), originally
designed in the domain of multicriteria decision
making, to metasearch problems.

— majoritarian methods: these methods use pair-
wise comparisons matrices of objects and are
mostly based upon order relations aggregation
techniques using association criteria such as Con-
dorcet’s criterion [9,23,24] or distance criteria
such as Kendall distance [22,13]. Other meth-
ods have also been proposed using Markov chain
models [12]. Lastly, outranking methods which
were introduced in multicriteria decision prob-
lems have also been adapted for information re-
trieval tasks [27,14].

In this paper we are exclusively concerned with ap-
proaches that belong to the positional family. Before
introducing the most popular techniques used in this
context, we first give some basic notations:

'We particularly recall the triangular norm ordered weighted av-
eraging function in subsection 4.3.
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— S,(i) is the normalized score expert j assigns to
object ¢ (see the next section for details about the
normalization step).

— L(3) is the ordered list of expert j.

— Ly (j) is the first k& objects of L£(j) or the top-
k list of expert j. We will also denote L, =
{Lr(j);5=1,..., M} the set of all top-k lists.

-U= Uj\il L.(7) is the union set of the M top-k
lists. We will also denote K = #U, the number
of elements in U.

- Vi € U: NZ(i, L) is the number of top-£ lists in
which object ¢ appears.

Using these notations, we can define below the gen-
eral linear combination which represents the baseline
methods for unsupervised rank aggregation problems
in information retrieval [15], Vi € U:

M
Comby, (i) = NZ(i, Ly,)" Y w; S (i) (1)

J=1

where v is an integer and w a weight vector.
In this kind of approach, the most usually employed
cases are the following ones [15], Vi € U:

M
CombSUM(i) = _ (i) 2)
j=1
M
CombMNZ(i) = NZ(i, Li) Y _ S;(i) 3)
j=1

CombSUM is the aggregated score given by the sum
over the experts scores. CombMNZ weight the lat-
ter with respect to the number of experts who have
ranked the element in their top-k list. According to
CombMNZ, the greater NZ(i,Ly), the higher the ag-
gregated score. The NZ factor amounts to reinforc-
ing the aggregated score on the basis of the num-
ber of times an object reaches a top-k list among
the search engines. Suppose that for two objects ¢
and i, CombSUM(i) = CombSUM(:’) than the
CombMNZ approach would rank higher the object
that appears most often in the top-k lists.

As mentioned previously, some methods have been
proposed for learning the weight vector w in an un-
supervised manner. In [19] for example, an unsuper-
vised learning algorithm is suggested. However, this
approach is a linear combination of scores. In our case,
we rather focus on non-linear aggregation operators.

3. Normalization step

The normalization step is inherent to any positional
method. Indeed, each expert may have its own particu-
lar score distribution which belongs to a certain range
of values. As a result, before applying any aggrega-
tion function, we have to normalize each distribution if
we want them to be mutually comparable. There exist
several normalization methods [25]. However, most of
the aggregation operators we are going to introduce in
sections 4 and 5 use different tools taken from fuzzy
logic. In other words, they manipulate truth measures
that belong to [0, 1]. Thus, we propose to normalize the
experts scores as follows.

Let us denote by V;(4), the original score value the
expert j assigns to object ¢. Then, its associated nor-
malized score denoted by S,(i) is given by, Vj =
1,..., M;¥i € Ly(j):

S5 (i) @)
Vi (i) — minic g, () {V5(7)}
maXi’eLk(j){Vj(i’)} - minileﬁk(j){‘/.j(i/)}

With respect to expert j, the previous normalization
formula is given for all objects belonging to the ex-
pert’s top-k list, L (j). We still need to assign normal-
ized scores to objects that belong to U — L (). The
only thing we can assume about these latter objects is
that they are not preferred to any of the objects be-
longing to L (j). Consequently, Vj = 1,... , M;Vi €
U — Li(j), we set: S;(i) = 0.

4. Recalling some aggregation operators

Many aggregation functions have been defined in
the field of information fusion and multicriteria de-
cision making (see for example [4,6,11]). We re-
call some of them namely weighted quasi-arithmetic
means, triangular norms, triangular conorms and trian-
gular norm OWA operators.

4.1. Weighted quasi-arithmetic means

Weighted quasi-arithmetic means, also called weighted

generalized f-means, are functions that generalize
the classical weighted arithmetic mean by using a
transformation function f. In our case, we consider
f:10,1] = [—o00,00]. f must be continuous, strictly
monotonic, and it must also respects the following
conditions: {f(0), f(1)} # {—o0,00}. The quasi-
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arithmetic mean associated to f is denoted M ;. Given
a sequence of M values (ay,...,ap) € [0,1]M and a
system of weights (or a weight vector) (w1, ..., was)
such that Zjle wj = 1, the weighted quasi-arithmetic
mean is defined by:

M
My (ar,...,an) = [ [ D w; flay)
j=1

We will consider more particularly, the case of
power functions f(a) = aP with p € R which are
strictly monotonic functions. In that case, these opera-
tors are also called weighted power means.

1/p

M
M, (a1, ... an) = | > wila;)? ©)
j=1

We can notice that CombSUM is equivalent to the
arithmetic mean given by p = 1 associated to a uni-
form weight distribution. Weighted power means are
non-decreasing with respect top,V—o0o < p < p’' <
+00:

Mp(al,.. .,aM) S Mp/(al,.. .,aM)

Furthermore, they are lower bounded by the mini-
mum function min(as, . .., aps) which corresponds to
the limit case p — —oo. Likewise, they are upper
bounded by max(aq,...,an) which corresponds to
the dual limit case p — +o0.

Other famous particular cases are the weighted har-
monic, geometric and quadratic means which are re-
spectively given by p = —1, the limit case p — 0 and
p=2.

The weighted power mean is compensatory in the
sense that its values are bounded by the minimal and
the maximal values of its arguments. Particularly, as p
grows, the averaged value tends to the maximum and
we say that the limit value of the power mean has a
disjunctive behavior. On the contrary, when p tends to
—o00, we say that the limit value of the power mean
reflects a conjunctive behavior. These considerations
will become clearer with the following subsection.

4.2. Triangular norms and conorms

Triangular norms (t-norms) are binary operations
T : 0,12 — [0, 1] which are associative, commuta-
tive, non decreasing in each argument and such that
T(a,1) = a, Ya € [0,1]. They are special functions
used in probabilistic metric spaces [28], and fuzzy
logic [18].

In fuzzy logic particularly, these operations extend
the conjunction from the binary case to the multi-
valued case. Let A and B be two events and u(A) = a
and p(B) = b their associated truth values in [0, 1].
Typically, in our case, atomic events are: “object 7 is
relevant for expert 5. Then, T'(a, b) measures the truth
value of the conjunction A N B2. As t-norms are asso-
ciative and commutative, they can be extended easily
for measuring the conjunction of more than two events.
We have for example: T'(a,b,c) = T(T(a,b),c) and
SO on.

T-norms are aimed at measuring the conjunction of
events provided by different sources. However, the dis-
junction measures of events are also of interest. Then,
departing from a t-norm 7', we can define its related
triangular conorm 7 (t-conorm) as follows:

T*(a,b)=1-T(1 —a,1—b) (6)

Similarly to t-norms, t-conorms allow one to extend
the disjunction to the multi-valued case.

There exist non-parametric and parametric t-norms
and t-conorms. The four fundamental non-parametric
ones are:

— the minimum t-norm and its related t-conorm:
T (a,b) = min(a, b)
Ty (a,b) = max(a,b)

the product t-norm and its related t-conorm:
Tp(a,b) = ab
Th(a,b)=a+b—ab

the Lukasiewicz t-norm and t-conorm:
Tw(a,b) = max(a+b—1,0)
Ty (a,b) = min(a + b, 1)

the drastic product and its related t-conorm:

o if (a,b) € [0,1[2
Tp(a,b) = {min(a, b) otherwise
1 if (a,b) €]0,1]2

Th(et) = {

Ty and Tp are respectively, upper and lower
bounds for t-norms. Thus, if 7" is a t-norm, we have

V(a,b) € [0,1]?:
TD (av b) < T(av b) < TIM (av b) (7)

max(a, b) otherwise

2With a set-based view of events.
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Ty gives the highest value for the conjunction of
two events: it assumes that one event is included in the
other one and thus a strong relationship between them.
T’p gives the conjunction value of two events assuming
that the latter are independent. On the contrary, Ty
which is lower than T'p, supposes that there is a rather
low dependence between the events. Finally, Tp gives
a zero value to the conjunction of two events unless
one of the two has a truth value 1.

Similarly, Ty, and T7, are respectively, lower and
upper bounds for t-conorms. Thus, if 7™ is a t-conorm,
we have V(a,b) € [0,1]*

Tir(a,b) < T(a,b) < Tp(a,b)

There also exist numerous parametric t-norms and t-
conorms. However, we will introduce only one pair of
them: the Schweizer-Sklar family for which the non-
parametric t-norms and conorms are particular cases.

The Schweizer-Sklar t-norm is given by, VA €
[—o0, 00

Tr(a,b) A= —o0
T4s(a,b) = { Tp(a,b) A =0
Tp(a,b) A= o0

Tds(a,b) = (max(a* +b* —1,0))*
Its corresponding t-conorm is as follows:

Tr(a,b) A= —o0
T5(a,b) A =0
T} (a,b) A =00

, 00

and for \ €] — oo, 0[U]0

ng (aa b) =

[, we have:

Tid(a,b) =1 — (max((1 — a)* + (1 —

T-norms or t-conorms can be used as aggregation
operators. In that case they represent two extreme point
of views which are respectively the conjunction and
the disjunction over all their arguments. In our case,
this would be the truth value of “object ¢ is relevant
for all experts” and the truth measure of “object i is
relevant for at least one expert”.

4.3. Triangular norm ordered weighted averaging
operators (TOWA)

Ordered weighted averaging operators (OWA) are
well-known aggregation techniques that were intro-
duced by R.R. Yager in the field of multicriteria deci-
sion making in [30].

wA—1mn%

In the basic case, OWA operators aggregate a set
of values (ai,...,aps) with respect to a system of
weights (w1, ..., wy) such that w; € [0,1];5 =

1,...,Mand Z]A/i1 w; = 1. Letdenote (o(1),. ..
a permutation of (1,..., M) that satisfies:
Uy(1) 2 Ag(2) 2 -+ 2 Qo (M)
Then the OWA operator is defined as follows:
M
OWA(al,... ,llM) = ijag(j) (8)
j=1

As far as the weighted arithmetic mean is concerned,
we can see that the system of weights attributes dif-
ferent measures of importance to the different experts
j. On the contrary, OWA functions rather focus on the
position with respect to the non-increasing order of the
values. In other words, independently of the expert,
OWA operators assign the same weight w; to the gth
greatest value, Ao (5)s in the sequence of measures to
combine.

It is easy to see that OWA functions generalize or-
der statistics. It is a compensatory aggregation opera-
tor bounded by the minimum and the maximum of its
arguments, unlike t-norms and t-conorms but such as
weighted power means.

In [31,32], the authors consider a particular exten-
sion of OWA functions by mixing t-norms and OWA
functions. The resulting triangular norm OWA opera-
tor (TOWA) is defined below:

TOWAT(al, ey a]\y) (9)

M
=Y w;T(aoq),- - a0 ())
j=1

where 7' is a t-norm as described in the previous sub-
section.

TOWA functions generalize OWA operators since
the latter correspond to the former when T = T7,. In-
deed, in Eq. (9), Tar (a0 (1), - - - » Go(j)) reduces to aq )
which leads to the classical OWA function.

TOWA allows one to take into account two different
aspects that are of interest when combining data. First,
using different t-norms enables one to consider differ-
ent kinds of conjunctive relationship between subset
of values based upon their position with respect to the
non-increasing order. Second, the weight vector allows
one to model fuzzy linguistic concepts such as “for
all” or “at least m”. Regarding those two latter exam-
ples, the corresponding weight systems would be: on

,o(M))
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the one hand, w; = 0;Vj # M and wys = 1; on the
other hand, w; = 0;Vj # m and wy,, = 1.

It is easy to see that the case w; = 0;Vj # M and
wps = 1 reduces to the conjunction over all values
given by the t-norm since we obtain
TOWAT(al, e ,aM) = T((J,l7 . ,aM). As a re-
sult, TOWA~(ay,...,ap) is lower bounded by
T(ai,...,ap ) unlike OWA(ay,...,ap ) whose lower
bound is min(aq,...,ay ). However, both functions
are upper bounded by max(ay, ..., anr).

The distribution of weights allows one to control the
compensatory degree (also called orness or andness
degrees) of the TOWA functions. A general approach
for computing the weights w;;j = 1,..., M, consists
in using fuzzy quantifiers. The most used method is
based upon regular increasing monotone (RIM) func-
tions denoted @@ [30]. The latter are functions from
[0,1] to [0,1] such that Q(0) = 0, Q(1) = 1 and
a<b= Qa) < Q(b). Q(a) gives the degree of sat-
isfaction for the decision maker, when a% of the cri-
teria is fulfilled. Assuming that @) is a RIM function is
the same as assuming that the more criteria fulfilled,
the greater the satisfaction.

Given @), one can define a weight vector as follows,
Vi=1,...,M:

wealf)o()

In that case, w; represents the marginal satisfaction
a decision maker gets from having j — 1 criteria to j
criteria fulfilled.

Power functions, Q(a) = a? with ¢ > 0 are exam-
ples of RIM functions. In that case, the greater g, the
more the TOWA operator has a conjunctive behavior.

4.4. Some basic properties of aggregation operators

Let us now replace ourselves in the context of
metasearch problems and consider the notations intro-
duced in section 2,

Then, in section 3, we have presented the normal-
ization step which is aimed at making the scores be-
tween the different search engines comparable. With
respect to Eq. (4), we propose to normalize the score
of elements ¢ between 0 and 1, for each search engine
j. The resulting normalized score, denoted S; (i), is a
non-negative measure and we proposed to interpret the
latter as a truth measure. As a result, all of the aggre-
gation operators that we have recalled previously can
be employed.

Let us denote C any of the aggregation functions
we have introduced so far. They are all functions from
[0, 1]™ to [0, 1]. Furthermore, they all respect the fol-
lowing basic properties (see for example [7] for a list
of basic conditions for aggregation operators):

— Identity when unary:
C(51(i)) = S (i)

— Boundary conditions:
C(0,...,0)=0and C(1,...,1) =1

— Non-decreasing:
{Vi=1,...,M:5;(3) <S;@@")}

= C(51(3),..., (1)) < C(S1(i), ..., Sm(i"))
— Symmetry (or commutativity):
C(S51(2), .-, Sm(i) = C(Se() (i), - -, So(an) (1))

where o is a permutation of (1,2,..., M).

Moreover, it is worth mentioning again the dif-
ferent kinds of behavior that an aggregation oper-
ator can have: conjunctive (t-norms), disjunctive (t-
conorms) and compensatory (weighted power means
and TOWA). This can be underlined following the re-
lations below:

0<T<min<M, <max<T* <1
0<T<TOWA7r <max<T*<1

5. A new consensus aggregation operator

In addition to the previous aggregation functions,
we introduce a new approach for data fusion. Unlike
t-norms and t-conorms which are not compensatory
functions and which represent complete conjunctive
and disjunctive behaviors, the method we are going
to introduce is more compensatory. Thus, it is compa-
rable to weighted quasi-arithmetic means and TOWA
functions. After having introduced our proposal, we
will particularly underline the relationships it has with
the TOWA method.

5.1. Basic concepts and theoretical framework

Let us denote by S;(i) the event: “object ¢ is
relevant for expert j5”. Then for each object i, we
consider the following set of atomic events X; =
{S1(4),...,Snm (i)} and o(X;) a o—algebra over X;,.
In other words, o(X;) is the set of events generated by
X that is closed under set operations.

We give in Fig. 1 a Venn diagram representing the
case M = 3. Each circle corresponds to an atomic
event. The more irregular regions corresponding to dif-
ferent numbers are mutually disjoint events given by:
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5

I 81(1) NSa(6) N300
2 5,() NS1(i) N Sall)
3 S3(i) NS1(d) N Sa(2)
4 $1(0) 1a(0) NS0
5 51() NS3(i) N Ss()
6 Sg(l) n Sg(l) N Sl(l)
7 81(i) N Sa(1) N Ss i)
8 S1(i) NS, (i) N Ss(i)

Our assumption is that (X;, 0(X;)) is a measurable
space’ and for all atomic events Sj(i);5=1,..., M,
we are given a positive measure (S; (7)) > 0. Since
is a measure it then satisfies the o-additivity property:
if A and B are two incompatible events (disjoint sets)
then p(A UB) = u(A) + u(B).

If we consider all M experts, we can define the fol-
lowing event: “object ¢ is relevant for at least m ex-
perts among M”. We will denote this event EM (7).
Formally, we can define the latter from a set viewpoint
as follows,Vvm=1,..., M;Vi=1,...,K:

EM (i) (11)

= U (NG Sm)

1<j1<...<jm<M

Given the measures, £(S;(¢));j7 = 1,...,M, of

event S;(i);j = 1,..., M, we are interested in com-
puting the measure of the events EM (i) for m =
1 M.

yeeny

This is a combinatorial problem which generalizes
Poincaré’s formula* also known as the “inclusion-
exclusion principle”. Since p is a measure, we can
show [17,1] that u(E (7)) can be expressed as a lin-
ear combination of the following quantities, Vi =
1,...,K:

31t is not in general a probabilistic space since we cannot guaran-
tee that the probabilities of the disjoint sets, depicted in Fig. 1 for
example, always sum to 1.

4Poincaré’s formula corresponds to the case m = 1.

- forl =1:
M
S (i) = u(S;(i) (12)
j=1
—forl=2,...,.M
S0 (13)

- ¥

1<j1<...<jI<M

W (Sjl(l) n...N Sﬂ(l))

This linear combination is related to Jordan’s com-
binatorial formulas [17,8], and we have, Vm =
1,...,M;Vi=1,...,K:

M

(e ) =Y o ()7 st as

l=m

where (Z) = ﬁip)!, are binomial coefficients.
We also have the following formulation [1]:

mwwzfQjme ()

l=m

where (7"') = (_")(_"_1;'1”(_"_”“), are the nega-
tive binomial coefficients.

5.2. Designing a consensus aggregation operator

Now that we have introduced the consensus mea-
sures u(EM):m = 1,..., M, we make the follow-
ing assumption on which our aggregation function is
based: the greater the number of experts who find ob-
ject ¢ relevant, the higher the aggregated score corre-
sponding to object i must be’ [20].

In a literal formulation, our aggregation function
could be defined as follows: we weight by m the mea-
sure that object ¢ is relevant for at least m experts
then we sum over m from 1 to M and we normal-
ize this aggregated score according to Zf\le m =
M (M + 1)/2. As the proposed method gives increas-
ing weights when m, the number of considered ex-
perts, grows, it is a method that satisfies the assump-
tion we have mentioned beforehand.

We denote our consensus aggregation function A.
It is formally defined by the following equation, Vi =

SNotice that baseline methods given in Eq. (1) pursue the same
goal by weighting by NZ(7, Ly )" the experts score sum. However,
our proposal is different in spirit and corresponds to a non-linear and
smoother way to reinforce the aggregated scores. See subsection 5.3
for more details.



8 J. Ah-Pine / On data fusion in information retrieval using different aggregation operators

1,...,K:
) M
A(i) = M(M+1) Z mps(Ey, (i) (16)
m=1

In its original formulation given by equations Eqs.
(14) and (13), the computational cost of A(%) is very
expensive. Indeed, in order to compute SM (i) in Eq.
(13), we need to enumerate (') combinations which
grows exponentially. But, as we will show in the fol-
lowing paragraph we can reduce the computational
cost of A(i) to O(M?) by using combinatorial proper-
ties.

5.3. The combinatorial “trick”

From Eq. (16) which has an exponential compu-
tational cost, we can prove the following statement
which enables us to significantly reduce the computa-
tional cost of the proposed consensus aggregation op-
erator, Vi =1,..., K:

A (i) a7

. ijvi1 1(S;(2)) + Z1§j<j/gM 1(S;(i) NS; ()
- M(J\24+1)

Proof. In order to prove the property given in Eq. (17),
we will use the two following combinatorial identi-

ties®:
S (g) 10y ()
p=0
> o (=nptt (Z)p =11 (19)
p=0

SFor identities and properties referring to binomial coefficients
and Pascal’s triangle, a good reference is the following website
http://binomial.csueastbay.edu/.

where 1(py is the indicator function which equals 1 if
proposition P is true; 0 otherwise. We first have:

l
M M l 1
=33 m(=1)tm 1 SM (1) L{m<y
=1 m=1
M l
I—1
— _1 l—m M
5252 m(-) (ml)s (i)

Then we denote m’ = m — 1;1' =1 —1and M’ =
M — 1. Using these variables we obtain:

M(J\g+ I)A(i)
-3 S e (s
=0m’'=

4

s S (1)

m’=0

M’ v v
- Z Sﬁﬁ# Z (_l)l - (m’)

m’=0

-3 )

m'=

Next, if we enumerate a bit this latter expression we
can see that using the combinatorial identities given
in Egs. (18) and (19): we obtain S (i) for I’ = 0;
S (i) for I’ = 1 and we obtain a null quantity, for " >

1. This finally shows that MA( ) = SM(i) +
S]M ( ) ]

We give in Fig. 2, an illustration of the property for
M = 3.
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3 experts
+
x3

+
-

o ,
+

+ {:y

Fig. 2. Illustration of the combinatorial “trick” with 3 experts

Given Eq. (17), we can see that our proposal goes
beyond a simple sum’ since the introduced aggregation
function allows us to take into account pairwise con-
junctions between experts. Particularly, we can specify
the type of relationship between pairs of experts by us-
ing conjunction operations. The following subsection
focuses on this aspect.

5.4. Conjunction measures and properties of the new
aggregation operator

Given an object ¢, the only data we are provided
with are the normalized scores given by each search
engine (or experts) (S1(¢),...,Sn(4)). As S;(i) is a
non-negative measure, we propose to set ((S;(i)) =
Si(@);vVi=1,...,.M\Vi=1,...,N

From these inputs, we need to compute pairwise
conjunction measures to apply our aggregation func-
tion A according to Eq. (17). Since we interpret S;(¢)
as a truth value, we propose to use t-norms to evaluate

7 As the first part is similar to CombSUM or the arithmetic mean.

the conjunction measures between pairs of experts:
1(8;(2) NSy (1))
=T (u(S; (1)), n(Sy (7))
=T(8;(4), Sy (1)) (20)
where T is a t-norm such as described in subsection
4.2.
In the unsupervised case we use the same t-norm

T for each pair of experts. Therefore we will use the
notation A and we have:

Ar(i) 21

I S50 + Cieyeyrens T(S3(), 850 (0))
- M(M+1)
2

Providing that we use t-norms as conjunction func-
tions, we can precise the basic properties that our pro-
posal satisfies. It is easy to see that A respect the fol-
lowing conditions (see subsection 4.4):

Identity when unary
Boundary conditions
Non-decreasing

Symmetry (or commutativity)

Besides, we have the following relation:

0< min
4,1<j<j’'<M

T(S;(i), S (1)) < A < max < 1

From a more general perspective, one could set for
each pair of experts a specific kind of t-norm and even
a particular conjunction operator. This is possible if we
have any a priori information on the relationships be-
tween experts. However, since we focus on unsuper-
vised rank aggregation tasks, we do not assume that
we have such expertise and we rather use the approach
given by Eq. (21).

5.5. The relationship between A and TOWA

In [31,32], the link between TOWA functions and
multicriteria decision functions based upon previous
works detailed in [3,29] is pointed out. In that frame-
work, decision functions are based on events such as
“alternative ¢ fulfills at least m criteria among M.
From a set viewpoint, the latter are basically the same
as the consensus events we have introduced in Eq. (11).

More formally, if we replace the notations given in
[32] with the ones used in this paper, a decision func-
tion D (an aggregation operator actually) that scores
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an alternative ¢ with respect to a set of M criteria, is
defined as follows:

M
D(i) = Y wnv(EN (i) (22)

m=1

where w,, € [0,1];Ym =1,...,M; an\f:lwm =1
and v is a fuzzy measure.

This is very close to our proposal given in Eq. (16).
In fact, there are two main differences between Yager’s
approach and ours:

1. In [31,32], the measure of the event EM (i) relies
on the possibility paradigm for which, the fuzzy
measure of the disjunction between two events A
and B is given by ¥(A UB) = max(v(A), v(B))
whether A or B are disjoints or not. On the con-
trary, we have made in section 5.1, the assump-
tion that the measure p respects the classical
measure paradigm that is to say the o-additivity
property. In that case, we rather have the follow-
ing relation: p1(A UB) = p(A) + u(B) if A and
B are disjoints and; p(A UB) = p(A) 4+ p(B) —
(A N B) otherwise.

2. There are two kinds of parameter for the TOWA:
on the one hand, the t-norm(s)® for measuring
the conjunction between nested subsets of ex-
perts ranked, for each object, according to the
non-increasing order of their scores; on the other
hand, the weight vectors (wq, ..., wps) such as
presented in subsection 4.3. In our case, we defi-
nitely set the weight vector to

since

1 2 M
(M(M+1)/2’ MAII1)/20 " " M(M+1)/2)
this is a reasonable choice to define a consensus

aggregation operator. Thus, the weight vector is
not a parameter to set anymore. The only type of
parameter(s) to set is the t-norm(s)° for measur-
ing the conjunction measures of pairs of experts.

Regarding the first point, we can notice that the pos-
sibility axiom has the advantage to avoid the com-
plexity issue. Indeed, t-norms are monotonic functions
such that, for all m-uple (a;1,...,ajm):

T(a5(1); Qo (2); - -+ > Go(m)) < T(aj1,a50,. .., a5m)

8Possibly M different t-norms.
9Possibly M (M — 1)/2 different t-norms.

As a consequence we don not have to enumerate all
combinations to compute v(E) since we have:
v(EM)

m

- 1§J’1<r.r.l.z§§m§M T(Sj1(2), - -5 Sjm (1))

= T(Sa(l) (2)7 SU(Q) (Z), ey Sa’('m,) (Z)) (23)

One can see that if we replace the previous relation
in Eq. (22) we obtain the definition of TOWA operator
given in Eq. (9).

In comparison to Eq. (23) which relies on the possi-
bility paradigm, the o-additivity axiom leads to com-
binatorial issues as we can see by considering Jordan’s
combinatorial formula given in Eq. (14) and our defi-
nition of aggregation function given in Eq. (16). How-
ever, by assuming a reasonable condition concerning
the weight vectors, as aforementioned in the second
point, we have proved in section 5.3, that we can avoid
the complexity problem of such an approach. More
than a simple combinatorial “trick”, the resulting form
of our aggregation operator A given in Eq. (17) has
an interesting semantic. It explicitly enables one to
take into account the relationships between experts by
considering conjunction measures between each pair
of experts. Thus, despite similar basic concepts based
on consensus events, our approach finally leads to
a really different aggregation techniques in compari-
son to TOWA. In our method, we model the relation-
ships between experts by considering pairs whereas
for TOWA, the relationships between experts is rather
based upon nested subsets that depend on the non-
increasing order of their scores.

6. Experiments and discussion

In this section, using numerical examples, we show
that the proposed aggregation operators can perform
better than baseline approaches. We first describe the
settings of the experiments we made. Then we report
and discuss the results we obtained.

6.1. Experimental results

We tested the different methods introduced previ-
ously, on the three different datasets of the Letor 2.0
package [21]:

— OHSUMED dataset (subset of MEDLINE, a
database of medical publications): 106 queries,
25 different ranking features (the experts)
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— TREC 2003 web track (topic distillation task): 50
queries, 44 different ranking features (the experts)
— TREC 2004 web track (topic distillation task): 75
queries, 44 different ranking features (the experts)

For each dataset, we have different queries (topics)
and for each ranking feature, we are given a distribu-
tion of scores among a set of objects (medical publi-
cations or html files). The ranking features are either
low-level or high-level content features, between each
judged query-document pairs. The reader can consult
[21], for a more detailed description of the character-
istics of these datasets and for the definition of the fea-
tures that were extracted.

The Letor 2.0 package was initially constituted to
benchmark “learning to rank” methods. In that context
the goal is to learn, from a training set, how to com-
bine the different experts. In our case, we are in an un-
supervised context and we only use the relevance file
for measuring a posteriori the performances of the pro-
posed methods.

First, we normalized the data using the score nor-
malization'® given by Eq. (4) with & = 1000. Then,
we computed the following aggregation functions:

CombSUM (equivalent to M,, with p = 1 and
with uniform weights), CombMNZ (with similar
settings than CombSUM).

T-norms and t-conorms T3; = min and T}, =
max.

the power-mean M, with p = 2 and p = 3 and
since we don not suppose any a priori information
on the importance of each search engine, we took
w; =1/M;Vj=1,...,M.

The TOWA 1 approach with T' = T, Tp and
T§‘S with A = 6 and with w; = (ﬁf — (%)5
Regarding Eq. (10) this corresponds to take () as
a power function with ¢ = 5. We chose this set-
ting following the work presented in [10] that in-
vestigates the application of the TOWA technique
(and other OWA based methods) to metasearch
problems on similar datasets. In [10], ¢ = 5 per-
formed better than other settings. Besides, we re-
call that the case T" = T, is the same as the clas-
sical OWA function given in Eq. (8).

— The new aggregation method Ap using either
non-parametric t-norms 7, T'p or the parametric
t-norm 1" = Té‘s with A = 6.

10We found that it may happen that for some features, a unique
value is assigned to all objects. In that case, we replaced this value
by 0.

For measuring and comparing the performances
of the different aggregation methods, we used the
trec_eval tool'! and we retained the mean average
precision (MAP) and the precision at 10 (P@10) mea-
sures. The results are given in Tables 1, 2 and 3. In
italic are the baseline results given by CombSUM. We
put in bold the two best results among the aggregation
operators we tested.

Table 1
Results for the OHSUMED dataset

Method MAP P@10
CombSUM 39.52%  44.81 %
CombMNZ 38.68% 4434 %

Quadratic mean 4037 %  47.36 %
Cubic mean 40.65 % 4745 %
Ty 0.82 % 0.38 %
Ty 3971 % 49.25 %
TOWA_ with Ty  3721% 41.79 %
TOWA  with Tp 40.89 %  47.55 %
TOWA 1 with Tg g 4050%  48.68 %
A with Ty 3849 %  43.96 %
A1 with Tp 39.44% 4491 %
Ap with TS g 4038% 4793 %
Table 2

Results for the TREC 2003 dataset

Method MAP P@10
CombSUM 16.83%  13.20 %
CombMNZ 1542 %  12.40 %

Quadratic mean 16.57 %  13.60 %
Cubic mean 1733 %  14.60 %

T 0.51 % 1.0 %
Ty 0798 %  07.20 %
TOWA 1 with Ty 13.03% 1140 %
TOWA  with Tp 1738 %  14.60 %
TOWA 7 with TS,  18.18%  14.60 %
A with Ty 15.86 % 11.80 %
A with Tp 16.81 % 13.20 %
A with Tgs 1852 %  15.40 %

6.2. Discussion

The first conclusion we can draw out from Ta-
bles 1, 2 and 3, is that the t-norm 7Tj; and the t-

U ef. http://trec.nist.gov/
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Table 3
Results for the TREC 2004 dataset

Method MAP P@10
CombSUM 26.81 %  16.53 %
CombMNZ 23.09%  14.53 %

Quadratic mean 2941 % 1693 %
Cubic mean 2948 % 17.33 %

T 0.03 % 0.0 %
Ty 0793 %  04.80 %
TOWA  with T 1859% 1293 %
TOWA with Tp 30.76 %  17.73%
TOWA 1 with TSS 2833% 1640 %
A with Ty 22.63% 1533 %
Ar withTp 26.78 %  16.40 %
A with Tgs 2990 % 16.53 %

conorm Ty, perform very badly compared to the
baseline'?. This is not surprising since, as we men-
tioned earlier, they represent extreme point of views
and their behavior are too conjunctive or too dis-
junctive. They are not well-adapted for metasearch
tasks. Furthermore, one could have tried to have a
trade-off between the t-norm and the t-conorm such
as the so-called convex-linear compensatory opera-
tor defined in [33] as (1 — 8)T(S1(3),...,Snm(9)) +
BT*(S1(i),...,Snm(i)). But we can see that this
would not work out neither.

As a consequence, and this is confirmed from our
results, we need more compensatory aggregation oper-
ators when dealing with metasearch problems. Indeed,
the other aggregation techniques namely the power
mean, the TOWA and our proposal can all perform bet-
ter than the baseline given by CombSUM.

Nevertheless, the results between all three afore-
mentioned techniques are very close to each other and
from our experiments we cannot conclude that one ap-
proach consistently outperforms the other ones. This is
even true as each of them has different parameters to
tune. Finally the three techniques offer three different
models.

First the weighted quasi-arithmetic means allow one
to assign different weights to experts that must reflect
the importance of the latter. However, they do not per-
mit one to model the relationships between them. Fur-
thermore, it is not an easy task to set the function f
or even the parameter p in the case of power means,

120ther t-norms or t-conorms perform similarly as T; and Ty

since there is no particular semantic associated to such
functions.

On the contrary, TOWA 1 and A allow us to take
into account different kinds of relationships between
experts on the basis of consensus events and this is
done by using t-norms among subsets of experts. For
TOWA operators, these subsets of experts are differ-
ent for each object and they are given by the non-
increasing order of the scores. In the case of A, these
subsets are constituted of all pairs of experts and are
independent of any object. Finally, despite quite sim-
ilar results, both methods are different and further ex-
periments need to be pursued to better understand the
pros and cons of those two techniques.

7. Conclusion

In this paper, we have addressed data fusion prob-
lems. We have been particularly concerned with un-
supervised rank aggregation tasks or metasearch tasks
in information retrieval field. The general aim of this
work is to investigate the use of some aggregation op-
erators defined in information fusion and multicrite-
ria decision making fields in the context of metasearch
problems. We have recalled and tested classical ag-
gregation operators such as weighted quasi-arithmetic
means, t-norms, t-conorms and TOWA functions. We
have moreover introduced a new aggregation method
A, its logical foundations and its combinatorial prop-
erties.

Our experiments using the Letor 2.0 package show
that t-norms and t-conorms are not good aggregation
operators for that kind of tasks since they are not com-
pensatory. On the contrary, more compensative opera-
tors such as weighted quasi-arithmetic means, TOWA
and A functions can improve the baseline results. The
two latter approaches allow to consider the relation-
ships between search engines through two different
manners. Because of this general property we think
that they are interesting techniques to further study.

As far as our future work is concerned, we intend
to apply the studied aggregation operators to “learn-
ing to rank” tasks which correspond to supervised
rank aggregation problems in information retrieval. In-
deed, the different approaches that we have proposed
to tackle the metasearch problems in information re-
trieval need all some paramaters to be tuned. In this
paper, we have been in an unsupervised setting and we
have set the parameters arbitrarily but to increase the
performances of the different non-linear aggregation
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models, one could estimate their respective parame-
ters by using a training set and machine learning tech-
niques. In that perspective and regarding the different
models we have proposed in this paper, one could bet-
ter capture the efficiency of the search engines or eval-
uate the relationships between experts and use those
pieces of information to better fit the models to the par-
ticular data and tasks a user would need to deal with.
Thereby, in our future work, we intend to work on the
concepts of search engines reliability on the one hand,
and learning to model the relationships between search
engines on the other hand. Furthermore, more exper-
iments in that context would help us to better com-
pare the different aggregation operators from a practi-
cal viewpoint.

References

[1] J. Ah-Pine. Sur des aspects algébriques et combinatoires de
I’Analyse Relationnelle. PhD thesis, University of Pierre and
Marie Curie (Paris 6), 2007.

[2] J. Ah-Pine. Data fusion in information retrieval using con-
sensus aggregation operators. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelli-
gence, 2008.

[3] R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy
environment. Management Science, 17:141-164, 1970.

[4] I. Bloch. Information Combination Operators for Data Fusion:
A Comparative Review with Classification. IEEE Transactions
on Systems, Man, and Cybernetics, 26(1):52-67, 1996.

[5] J. Borda. Mémoire sur les élections au scrutin. Histoire de
I’ Académie Royale des Sciences, 1781.

[6] B. Bouchon-Meunier and J. Kacprzyk, editors. Aggregation
and Fusion of Imperfect Information. Physica-Verlag, 1998.

[7] T. Calvo, A. Kolesarova, M. Komornikov4, and R. Mesiar. Ag-
gregation operators: properties, classes and construction meth-
ods. In Aggregation operators: new trends and applications,
pages 3—104. Physica-Verlag GmbH, Heidelberg, Germany,
Germany, 2002.

[8] L. Comtet. Analyse Combinatoire, tome 1 et tome 2. Presses
Universitaires de France, 1970.

[9] M. M. d. Condorcet. Essai sur l’application de I’analyse a la
probabilité des décisions rendues a la pluralité des voix. Paris,
1785.

[10] A. De, E. D. Diaz, and V. V. Raghavan. On fuzzy result merg-
ing for metasearch. In FUZZ-IEEE, pages 1-6, 2007.

[11] D. Dubois and H. Prade. On the use of aggregation opera-
tions in information fusion processes. Fuzzy Sets and Systems,
142(1):143-161, 2004.

[12] C.Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggre-
gation methods for the web. In WWW, pages 613-622, 2001.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists.
SIAM Journal on discrete mathematics, 17:134-160, 2003.

[14] M. Farah and D. Vanderpooten. An outranking approach for
rank aggregation in information retrieval. In Proceedings of
the 30th annual international ACM SIGIR Conference, 2007.

[15] E. Fox and J. Shaw. Combination of multiple searches. In
Proceedings of the 3rd NIST TREC Conference, pages 105—
109, 1994.

[16] E. Herrera-Viedma, J. L. Gijén, S. Alonso, J. Vilchez, C. Gar-
cfa, L. Villén, and A. G. Lépez-Herrera. Applying aggrega-
tion operators for information access systems: An application
in digital libraries. Int. J. Intell. Syst.,23(12):1235-1250, 2008.

[17] C. Jordan. Problemes de la probabilité des épreuves répétées
dans le cas général. Bulletin de la S.M.F., 67:223-242, 1939.

[18] E.Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer
Academic Pub, 2000.

[19] A.Klementiev, D. Roth, and K. Small. An unsupervised learn-
ing algorithm for rank aggregation. In Proceedings of the Eu-
ropean Conference on Machine Learning (ECML), September
2007.

[20] J. H. Lee. Analyses of multiple evidence combination. SIGIR
Forum, 31(SI):267-276, 1997.

[21] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. Letor: Bench-
mark dataset for research on learning to rank for information
retrieval. In LR4IR 2007 in conjunction with SIGIR 2007, 2007.

[22] J. Marcotorchino and P. Michaud. Optimisation en analyse
ordinale des données. Masson, 1978.

[23] P. Michaud and J. Marcotorchino. Modeles d’optimisation en
analyse des données relationnelles. Mathématiques et Sciences
Humaines, 17(67):7-38, 1979.

[24] M. Montague and J. A. Aslam. Condorcet fusion for improved
retrieval. In CIKM ’02: Proceedings of the eleventh interna-
tional conference on Information and knowledge management,
pages 538-548, New York, NY, USA, 2002. ACM.

[25] M. Renda and U. Straccia. Web metasearch : rank vs score
based rank aggregation methods. In Proceedings of the 2003
ACM symposium on applied computing, pages 841-846, 2003.

[26] W.Riker. Liberalism against populism. Waveland Press, 1982.

[27] B. Roy. The outranking approach and the foundations of
ELECTRE methods. Theory and decisions, 31:49-73, 1991.

[28] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-
Holland, 1983.

[29] R.R. Yager. General multiple-objective decision functions and
linguistically quantified statements. Int. J. Man-Mach. Stud.,
21(5):389-400, 1984.

[30] R.R. Yager. On ordered weighted averaging aggregation oper-
ators in multicriteria decision making. IEEE Trans. Syst. Man
Cybern., 18(1):183-190, 1988.

[31] R. R. Yager. Extending multicriteria decision making by mix-
ing t-norms and owa operators. Int. J. Intell. Syst., 20(4):453—
474, 2005.

[32] R.R. Yager and L. Troiano. On some properties of mixing owa
operators with t-norms and t-conorms. In EUSFLAT Conf.,
pages 1206-1212, 2005.

[33] H. Zimmermann and P. Zysno. Latent connectives in human
decision making. Fuzzy Sets and Systems, 4:37-51, 1980.



