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Abstract. Association criteria used for measuring the relationship between cat-
egorical variables or partitions, are mainly applied and studied using contingency
tables. There is another way for representing categorical variables : the Relational
Analysis representation which uses binary pairwise comparison matrices and which
has many properties. There exist correspondence formulas that allow to get from
the contingency representation to the relational representation. By using these
formulas, we show in this paper how Relational Analysis allows to unify many as-
sociation criteria such as Rand, Tchuprow, Belson criteria and others. This unified
framework allows also to have a better understanding of the main differences be-
tween those association criteria. In that context, we also present different kinds of
independence : statistical, geometrical and “logical”.
Keywords: Relational Analysis, Association criteria, Independence, Nominal cat-
egorical variables, Partitions comparison.

1 Introduction

Relational Analysis1 (RA in the rest of the paper) is concerned with the
analysis of binary relations2 and it has many applications in different math-
ematical fields [MM79], [MM80], [MM81]. Particularly, this approach repre-
sents binary relations as pairwise comparison matrices (also called relational
matrices), and it is basically related to different concepts from graph theory,
statistics and linear programming. The most usual application domains of
RA are data analysis and multicriteria decision making which are respectively
based upon the aggregation of equivalence and order relations.

In this paper, we are particularly interested in the applications of RA in
the analysis of association criteria between nominal categorical variables (or
partitions). There are already many results in that context see for example
[Mar84a], [Mar84b], [Mar85], [Mar86a], [Mes89], [NI00], [YS04]. This paper

1 see for example [MAP] for a recent overview of this theory
2 their aggregation, their association measures

Julien Ah-Pine is now at :
Xerox Research Centre Europe
6, Chemin de Maupertuis
38240 Meylan, France
(e-mail: julien.ah-pine@xrce.xerox.com)



2 Ah-Pine and Marcotorchino

recalls some of these results and it also presents some other extensions [AP07].

There are, in the literature, numerous works that have studied different
methods for measuring the relationship between partitions see for example
[Zah64], [Ran71], [FM83], [HA85], [JV92], [Mir96]. The RA approach in this
context aims at having a better understanding of the main differences be-
tween several of these methods.

In that perspective, the different goals of the present paper are the fol-
lowing ones :

• We want to show different properties that the relational representation
allows compared to the contingency representation. Indeed, we can for-
mally unify 7 different association criteria found in the literature by show-
ing that they can be deduced from a general Bravais-Pearson like corre-
lation coefficient. In their relational representation, we show that the
main differences between these association criteria, can be expressed us-
ing three parameters.

• In their contingency representation, many association criteria are based
upon the statistical independence deviation concept whereas in their re-
lational representation, they are mainly related to the geometrical inde-
pendence deviation concept. We want to underline also, another kind of
independence called the “indetermination” situation which has a “logi-
cal” aspect as it is also encountered in voting theory.

This paper is organized as follows :

• In section 2, we recall basics of the contingency and relational repre-
sentations, the different association criteria we are going to analyze and
the correspondence formulas that allow us to express those association
criteria from their contingency representation to their relational repre-
sentation.

• In section 3, we give a general formula which is similar to the Bravais-
Pearson correlation coefficient. This formula has three parameters : a
transformation function of the relational matrices, and two central trends.
We show that many association criteria can be deduced from this general
equation when using particular parameters.

• When using the contingency representation or the relational representa-
tion, there is a duality between the statistical independence and the ge-
ometrical independence concepts. In section 4, we try to strengthen this
property by showing a particular relationship between Belson’s criterion
and Janson-Vegelius’ criterion. Moreover, we give some comparisons to
Mirkin’s classification of association criteria.

• In section 5, we recall the “indetermination” situation concept and its
“logical” foundations. Then we suggest some extensions by defining a
parametric normalized coefficient based on this concept.
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2 From contingency representation to relational
representation

We assume that we have N objects, {Oi; i = 1, . . . , N}. For these objects, let
V k and V l be two nominal categorical variables with respectively pk and pl

classes. The sets of classes will be respectively denoted by {Dk
u;u = 1, . . . , pk}

and {Dl
v; v = 1, . . . , pl}. One can represent each of these variables by binary

assignment matrices. For example, in the case of V k, we have the following
(N × pk) matrix :

Kk
iu =

{
1 if Oi belongs to the class Dk

u

0 else

From Kk and Kl, we can deduce the following contingency table denoted
by nkl with dimensions (pk × pl) :

nkl = tKk ·Kl

where tKk is the transpose matrix associated to Kk and · the matrix multi-
plication.

We have the following notations and interpretations, ∀u = 1, . . . , pk and
∀v = 1, . . . , pl :

• nkl
uv =Number of objects belonging both to the class Dk

u of V k and Dl
v

of V l,
•

∑pl

v=1 nkl
uv = nkl

u. =Number of objects belonging to the class Dk
u of V k,

•
∑pk

u=1 nkl
uv = nkl

.v =Number of objects belonging to the class Dl
v of V l,

•
∑pk

u=1

∑pl

v=1 nkl
uv = N = Total number of objects.

We will study the following association criteria : Belson (B) [Bel59],
Lerman (L) [Ler81], χ2 of Tchuprow (T ), Jordan (J) [Jor27], Rand (R)
[Ran71], and Janson-Vegelius (JV ) [JV92]. We first recall the definitions of
these criteria in their contingency representation. We precise that the Rand
criterion and the Lerman criterion that we mention, are modified versions
according to [Mar84b] and [NI00].

B(V k, V l) =
pk∑

u=1

pl∑
v=1

(
nkl

uv −
nkl

u.n
kl
.v

N

)2

(1)

L(V k, V l) =

∑
u,v(nkl

uv)2 −
∑

u
(nkl

u.)
2
∑

v
(nkl

.v)2

N2√(∑
u(nkl

u.)2
(
1−

∑
u

(nkl
u.)

2

N2

)) (∑
v(nkl

.v)2
(
1−

∑
v

(nkl
.v)2

N2

))(2)
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T (V k, V l) =

∑
u,v

1
nkl

u.n
kl
.v

(
nkl

uv −
nkl

u.n
kl
.v

N

)2

√
(pk − 1)(pl − 1)

(3)

J(V k, V l) =
1
N

∑
u,v

(
nkl

uv

(
nkl

uv −
nkl

u.n
kl
.v

N

))
(4)

R(V k, V l) =
2

∑
u,v(nkl

uv)2 −
∑

u(nkl
u.)

2 −
∑

v(nkl
.v)2 + N2

N2
(5)

JV (V k, V l) =
pkpl

∑
u,v(nkl

uv)2 − pk

∑
u(nkl

u.)
2 − pl

∑
v(nkl

.v)2 + N2√
(pk(pk − 2)

∑
u(nkl)2u. + N2) (pl(pl − 2)

∑
u(nkl

.v)2 + N2)
(6)

We also have the following expression for the Janson-Vegelius criterion :

JV (V k, V l) =
pkpl

∑
u,v

(
nkl

uv −
[
nkl

u.

pl
+ nkl

.v

pk
− N

pkpl

])2

√
(pk(pk − 2)

∑
u n2

u. + N2) (pl(pl − 2)
∑

u n2
.v + N2)

(7)

RA is another way for representing nominal categorical variables. This
representation uses pairwise comparison matrices also called relational ma-
trices.

Let Ck and Cl be the relational matrices of dimension (N × N), repre-
senting the variables V k and V l. We can obtain Ck and Cl by using the
assignment matrices Kk and Kl :

Ck = Kk · tKk and Cl = Kl · tKl

In general terms, let R be a binary relation among a set of N objects
O1, . . . , ON . If C is the relational matrix for R then we have, ∀i, i′ =
1, . . . , N :

Cii′ =
{

1 if Oi is in relation with Oi′

0 else

In our context, we deal with equivalence relations or partitions. As a
result we have, for instance for V k :

Ck
ii′ =

{
1 if Oi and Oi′ belong to the same class according to V k

0 else

Furthermore, the relational matrix Ck represents an equivalence relation.
Thus, it respects the following relational properties which can be expressed
as linear equations :
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• reflexivity : Ck
ii = 1 ∀i = 1, . . . , N ,

• symmetry : Ck
ii′ − Ck

i′i = 0 ∀i, i′ = 1, . . . , N ,
• transitivity : Ck

ii′ − Ck
i′i′′ + Ck

ii′′ ≤ 1 ∀i, i′, i′′ = 1, . . . , N .

There are different correspondence formulas that exist between the con-
tingency representation and the relational one. We give in Table 1 some of
the most useful ones.

Contingency ↔ Relational
representation representation∑pk

u=1

∑pl

v=1
(nkl

uv)2 =
∑N

i=1

∑N

i′=1
Ck

ii′C
l
ii′

∑
u
(nkl

u.)
2 =

∑
i,i′ Ck

ii′∑
v
(nkl

.v)2 =
∑

i,i′ Cl
ii′

∑
u,v

(nkl
uv)2

nkl
u.n

kl
.v

=
∑

i,i′
Ck

ii′Cl
ii′

Ck
i.

Cl
i.

∑
u,v

nkl
uvn

kl
u.n

kl
.v =

∑
i,i′

Ck
i.+Ck

.i′
2

Cl
ii′

∑
u,v

(nkl
uv)2nkl

u. =
∑

i,i′
Ck

i.+Ck
.i′

2
Ck

ii′C
l
ii′

∑
u,v

(nkl
uv)2

nkl
u.

=
∑

i,i′
Ck

ii′
Ck

i.

Cl
ii′

∑
v

(∑
u
nkl

u.n
kl
uv

)2
=

∑
i,i′ Ck

i.C
k
.i′C

l
ii′

∑
u,v

(nkl
u.)

2(nkl
.v)2 =

∑N

i,i′ Ck
..C

l
ii′

where nkl
u. =

∑
v
nkl

uv and Ck
i. =

∑
i′ Ck

ii′

Table 1. Correspondence formulas between contingency representation and rela-
tional representation
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In [NI00], the author uses these formulas, in order to obtain the symmetric
relational expression of Rand (modified version), Janson-Vegelius, Lerman,
and Tchuprow criteria. We extend these results by giving in addition, the
symmetric expression of Belson and Jordan criteria. The related definitions
are given below.

B(Ck, Cl) =
N∑

i=1

N∑
i′=1

(
Ck

ii′ −
Ck

i. + Ck
.i′

N
+

Ck
..

N2

) (
Cl

ii′ −
Cl

i. + Cl
.i′

N
+

Cl
..

N2

)
(8)

L(Ck, Cl) =

∑
i,i′

(
Ck

ii′ −
∑

i,i′
Ck

ii′
N2

) (
Cl

ii′ −
∑

i,i′
Cl

ii′
N2

)
√∑

i,i′

(
Ck

ii′ −
∑

i,i′
Ck

ii′
N2

)2 ∑
i,i′

(
Cl

ii′ −
∑

i,i′
Cl

ii′
N2

)2
(9)

T (Ck, Cl) =

∑
i,i′

(
Ck

ii′

Ck
i.

− 1
N

) (
Cl

ii′

Cl
i.

− 1
N

)
√∑

i,i′

(
Ck

ii′

Ck
i.

− 1
N

)2 ∑
i,i′

(
Cl

ii′

Cl
i.

− 1
N

)2
(10)

J(Ck, Cl) =
1
N

∑
i,i′

(
Ck

ii′ −
Ck

i.

N

) (
Cl

ii′ −
Cl

i.

N

)
(11)

R(Ck, Cl) =
1

N2

∑
i,i′

(
Ck

ii′C
l
ii′ + C

k

ii′C
l

ii′

)
(12)

JV (Ck, Cl) =

∑
i,i′

(
Ck

ii′ − 1
pk

) (
Cl

ii′ − 1
pl

)
√∑

i,i′

(
Ck

ii′ −
1
pk

)2 ∑
i,i′

(
Cl

ii′ −
1
pl

)2
(13)

where C
k

ii′ = 1−Ck
ii′ , C

k
= UN −Ck and UN is the (N ×N) square matrix

where all terms equal 1.

We also have the following equation for the modified Rand criterion that
will be called the symmetric modified Rand criterion, R′(Ck, Cl) :

R′(Ck, Cl) = 2R(Ck, Cl)− 1

=

∑
i,i′

(
Ck

ii′ − 1
2

) (
Cl

ii′ − 1
2

)√∑
i,i′

(
Ck

ii′ −
1
2

)2 ∑
i,i′

(
Cl

ii′ −
1
2

)2
(14)
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The relational representation of the studied association criteria can easily
be proved by using the correspondence formulas given in Table 1. Besides,
the different proofs for these correspondence formulas are given in [Mar84b].

3 A unifying relational approach for many association
criteria

Using the relational representation, one can express the different association
criteria that we have recalled, as particular cases of a general criterion similar
to a Bravais-Pearson correlation coefficient3 between transformed relational
matrices [NI00], [AP07] :

∆(Ck, Cl, f, µk, µl) =
∑

i,i′(f(Ck
ii′ )−µk)(f(Cl

ii′ )−µl)√∑
i,i′(f(Ck

ii′
)−µk)2 ∑

i,i′(f(Cl
ii′

)−µl)2 (15)

According to (15), we can see that the main differences between the stud-
ied criteria are based upon :

• the transformation function f applied to the terms of the relational ma-
trices,

• the central trends µk and µl, which are given parameters.

We give in Table 2, different values to the parameters (f, µk, µl), which
define particular coefficients. The latter are related to the association criteria
recalled previously. Therefore, we also give the relationship type that exists
between the defined coefficient and its corresponding association criterion.

In this table, we mention the Torgerson transformation [Tor52]. We recall
that it is an operation used in multidimensional scaling which, given a scalar
products matrix between objects, gives as output the scalar products matrix
between centered objects :

f(Ck
ii′) = Ck

ii′ −
Ck

i. + Ck
.i′

N
+

Ck
..

N2
= 〈Oi

k −Gk, Oi′

k −Gk〉

{Oi
k; i = 1, . . . , N} are (pk × 1) binary vectors where [Oi

k]u = Kk
iu;u =

1, . . . , pk and Gk = 1
N

∑N
i=1 Oi

k.

The RA approach allows to have a better understanding of the main differ-
ences between the studied association criteria. Moreover, in their relational

3 similar coefficients for measuring the relationship between square matrices were
considered in [Esc73] and in [HL75]. These coefficients were respectively defined
as RV coefficients and Γ statistics
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f(Cii′) µk µl Related criteria Relation with
the related criteria

f(Cii′) 0 0 Belson Normalized
= Belson

Cii′ −
Ci.+C.i′

N
+ C..

N2

(Torgerson transf.)

f(Cii′) = Cii′ Ck
../N

2 Cl
../N

2 Lerman Lerman

f(Cii′) = Cii′/Ci. 1/N 1/N Tchuprow Tchuprow

f(Cii′) = Cii′ Ck
i./N Cl

i./N Jordan Normalized
Jordan

f(Cii′) = Cii′ 1/2 1/2 Modified Symmetric
Rand modified Rand

f(Cii′) = Cii′ 1/pk 1/pl Janson-Vegelius Janson-Vegelius

Table 2. Correspondence between correlation coefficient and association criteria

expressions all these association criteria are related to the geometrical inde-
pendence deviation concept. Indeed, we can also express the general equation
(15) using the Frobenius scalar product between two relational matrices :

〈Ck, Cl〉F =
N∑

i=1

N∑
i′=1

Ck
ii′C

l
ii′ = Trace(tCk · Cl)

Then, we can see that ∆(Ck, Cl) = 0 ⇔ 〈f(Ck)−µkUN , f(Cl)−µlUN 〉F = 0

In [Mir96], Mirkin gives four different classes for classifying association
criteria :

• structural association approach,
• contingency modeling approach,
• geometrical approach,
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• cross-classificational approach.

Regarding this classification, our results would give more emphasis to the
contingency modeling approach and to the geometrical approach. The first
one is related to the contingency representation and to the statistical inde-
pendence deviation concept whereas the second one is related to the relational
representation and to the geometrical independence deviation concept. We
will study in more details those two different approaches in the following sec-
tion.

Moreover, our approach underlines the geometrical approach more than
the definition given in [Mir96] does. Indeed, in [Mir96], only the Tchuprow
criterion is considered as belonging to the geometrical approach4. Using
the relational representation, we can show that the equivalence match cri-
terion given in [Mir96] is exactly Marcotorchino’s version of Rand criterion
[Mar84a]. Regarding equation (15) and Table 2, this last criterion is related
to the parameters (f = Id, µk = 1/2, µl = 1/2) which leads to the symmetric
modified Rand criterion with range values [−1, 1]. In a more general per-
spective, we have shown that many other association criteria which are not
considered5 in [Mir96] can also be expressed using the geometrical correlation
coefficient given in (15).

Finally, unlike the contingency representation, the relational representa-
tion allows to express the differences between the studied association criteria
using three clearly defined parameters.

4 Statistical and geometrical independence concepts

In the contingency representation, we say that two nominal categorical vari-
ables V k and V l are statistically independent if their joint probabilities, nkl

uv

N ,

equal the product of their marginal probabilities, nkl
u.

N
nkl

.v

N :

V k ⊥S V l ⇔ nkl
uv

N
=

nkl
u.

N

nkl
.v

N
∀(Dk

u, Dl
v) : Dk

u ∈ V k, Dl
v ∈ V l (16)

Many of the studied association criteria are based upon this concept when
using contingency representation. Indeed, we clearly see, that Belson, Ler-
man, Tchuprow and Jordan criteria are null if V k and V l are statistically
independent.

On the contrary, in the relational representation, all studied association
criteria are related to the geometrical independence deviation concept6. We
4 see also [Mir01]
5 Belson, Lerman, Jordan, Janson and Vegelius criteria
6 notice that the (non symmetric) Rand criterion, R(Ck, Cl), equals 1/2 in case of

geometrical independence
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say that two nominal categorical variables are geometrically independent if
we have the following relation :

V k ⊥G V l ⇔ ∆(Ck, Cl, f, µk, µl) = 0 (17)

⇔
∑
i,i′

(
f(Ck

ii′)− µk
) (

f(Cl
ii′)− µl

)
= 0

Regarding statistical / geometrical independence, we now focus on a par-
ticular relationship between two of the recalled association criteria : the
Belson criterion and the Janson-Vegelius criterion’s numerator. This rela-
tionship can be stated as follows :

• The Belson criterion, in its contingency representation, is based on the
statistical independence whereas in its relational representation, it is
based on a geometrical independence associated to the Torgerson trans-
formation.

• On the contrary, the Janson-Vegelius criterion’s numerator, in its contin-
gency representation, is based on the geometrical independence associ-
ated to the Torgerson transformation whereas, in its relational represen-
tation, it is related to the statistical independence with an equiprobability
assumption.

We summarize the Belson / Janson-Vegelius criteria relationship in Ta-
ble 3.

Deviation from Geometrical independence
statistical independence based on Torgerson

transformation

Belson
∑

u,v

(
nkl

uv −
nkl

u.n
kl
.v

N

)2 ∑
i,i′

(
Ck

ii′ −
[

Ck
i.

N
+

Ck
.i′
N
− Ck

..
N2

])
(
Cl

ii′ −
[

Cl
i.

N
+

Cl
.i′
N
− Cl

..
N2

])

Janson-Vegelius
∑

i,i′

(
Ck

ii′ − 1
pk

)(
Cl

ii′ − 1
pl

) ∑
u,v

(
nkl

uv −
[

nkl
u.

pl
+

nkl
.v

pk
− nkl

..
pkpl

])2

(numerator)

Table 3. Dual relationship between Belson and Janson-Vegelius criteria due to the
contingency / relational representation duality
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We give below more details about our interpretations of the independence
concepts underlying the relational and the contingency representations of
Janson-Vegelius criterion’s numerator, which show the duality property be-
tween the latter and Belson criterion.

First, if we consider the Janson-Vegelius criterion’s relational representa-
tion, we can interpret the term (Ck

ii′ − 1
pk

), as a deviation from the statistical
independence situation in an equiprobability context. Let P (Ck

ii′) be, symbol-
ically, the probability for two objects Oi and Oi′ , belonging to the same class
of V k. Let us assume moreover, that the different classes Dk

u;u = 1, . . . , pk;
are equiprobable. This implies that the probability for an object to belong
to any class of V k equals 1/pk. Then, in case of probability independence,
we have :

P (Ck
ii′) =

∑pk

u=1 P (“Oi and Oi′ belong to the class Dk
u”)

=
∑pk

u=1 P (“Oi belongs to the class Dk
u”)P (“Oi′ belongs to the class Dk

u”)
=

∑pk

u=1
1
pk

1
pk

= 1
pk

Second, if we consider the Janson-Vegelius criterion’s contingency rep-
resentation, we can interpret the term (nkl

uv −
[
nkl

u.

pl
+ nkl

.v

pk
− nkl

..

pkpl

]
), as the

Torgerson transformation of the (N × 1) binary vectors {Dk
u;u = 1, . . . , pk}

and {Dl
v; v = 1, . . . , pl} where [Dk

u]i = Kk
iu; i = 1, . . . , N . Indeed, we have

nkl
uv = 〈Dk

u, Dl
v〉 and the following relation :

nkl
uv −

nkl
u.

pl
− nkl

.v

pk
+

nkl
..

pkpl
= 〈Dk

u −Gk, Dl
v −Gl〉 ∀(Dk

u, Dl
v) ∈ V k × V l

where Gk = 1
pk

∑
Dk

u∈V k Dk
u and Gl = 1

pl

∑
Dl

v∈V l Dl
v.

5 A “logical” independence concept : the
“indetermination” situation

Despite the general geometrical independence deviation concept underlying
the relational representations of the studied association criteria, we can dis-
tinguish another kind of independence which has a “logical” aspect. This
concept was defined in [Mar84a] and was called the situation of “indetermi-
nation”. It is related to Condorcet criterion defined in voting theory [Con85].
In that context, we have an “indetermination” situation when the number of
voters in favor of a candidate equals the number of voters against this candi-
date. This criterion which measures the relationship between order relations
was extended to the case of equivalence relations [MM79]. This extension
allows to link the Condorcet criterion to the modified Rand criterion as we
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formally have :

R(Ck, Cl) =
Condorcet(Ck, Cl)

N2
(18)

In order to introduce the “indetermination” situation concept we first
introduce the four-fold / tetrachoric7 table given in its relational represen-
tation. Indeed in that case, the nominal categorical variables through their
relational matrices Ck and Cl, can be interpreted as 0/1 variables. As a
result, we can consider the (2× 2) table given in Table 4.

Cl C
l

Margin

Ck 11kl =
∑

i,i′ Ck
ii′C

l
ii′ 10kl =

∑
i,i′ Ck

ii′C
l
ii′

∑
i,i′ Ck

ii′

C
k

01kl =
∑

i,i′ C
k
ii′C

l
ii′ 00kl =

∑
i,i′ C

k
ii′C

l
ii′

∑
i,i′ C

k
ii′

Margin
∑

i,i′ Cl
ii′

∑
i,i′ C

l
ii′ N2

Table 4. Agreements and disagreements between relational matrices

We say that two nominal categorical variables are in an “indetermination”
situation if we have the following relation :

V k ⊥L V l ⇔ 11kl + 00kl − 10kl − 01kl = 0 (19)

⇔
∑
i,i′

Ck
ii′C

l
ii′ +

∑
i,i′

C
k

ii′C
l

ii′ −
∑
i,i′

Ck
ii′C

l

ii′ −
∑
i,i′

C
k

ii′C
l
ii′ = 0

⇔
∑
i,i′

(
Ck

ii′ − C
k

ii′

) (
Cl

ii′ − C
l

ii′

)
= 0

⇔ 4
∑
i,i′

(
Ck

ii′ − 1/2
) (

Cl
ii′ − 1/2

)
= 0

7 this table is equivalent to the four-fold / tetrachoric table given in [Mir96] but
the latter only uses the contingency representation. However, when using the
relational representation the following notations 11kl, 01kl, 10kl and 00kl are
straightforward unlike for the contingency representation. Finally this allows us
to naturally apply other coefficients such as the odds-ratio as we suggest in (20)
or other similarity indexes between 0/1 vectors
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Using the notations given in Table 4, we can define the number of agree-
ments between two categorical variables as 11kl + 00kl and the number of
disagreements as 10kl + 01kl. These last quantities are exactly the equiva-
lence match and equivalence mismatch criteria given in [Mir96]. Finally, we
have an “indetermination” situation when the number of agreements equals
the number of disagreements. This situation means that the variables are
neither “concordant” nor “discordant”.

Using Table 4, we can formally characterize the “indetermination” sit-
uation concept compared to the statistical independence deviation concept.
Indeed, when considering 0/1 variables, we can use the odds-ratio measure
in order to determine if two variables are statistically independent or not :

V k ⊥S V l ⇔ OR(Ck, Cl) = 11kl00kl/10kl01kl = 1 (20)
⇔ 11kl00kl − 10kl01kl = 0

Using correspondence formulas, we can easily show that the modified Lerman
criterion, L(Ck, Cl), is null if and only if the odds-ratio measure, OR(Ck, Cl),
equals one.

Comparing equation (19) to (20), we can see that the “indetermination”
situation concept is related to an additive model, 11kl + 00kl − 10kl − 01kl,
whereas the statistical independence deviation concept is related to a multi-
plicative model, 11kl00kl − 10kl01kl.

Similarly to equation (15), we propose to extend the “indetermination”
situation concept to a more general parametric family by assigning different
weights to agreements and disagreements quantities :

V k ⊥L V l ⇔ µk
1µl

111kl + µk
0µk

000kl − µk
1µl

010kl − µk
0µl

101kl = 0 (21)

Then, we introduce the following general formula which defines a normal-
ized coefficient, Λ, that measures the deviation from the weighted “indeter-
mination” situation between two nominal categorical variables :

Λ(Ck, Cl, µk
1 , µk

0 , µl
1, µ

l
0) =

∑
i,i′

(
µk

1Ck
ii′−µk

0C
k

ii′
)(

µl
1Cl

ii′−µl
0C

l

ii′
)√∑

i,i′

(
µk

1Ck
ii′
−µk

0C
k

ii′
)2 ∑

i,i′

(
µl

1Cl
ii′
−µl

0C
l

ii′
)2

(22)
We give below the formal relationship between the geometrical indepen-

dence and the “indetermination” situation in the relational representation :

Λ(Ck, Cl, µk
1 , µk

0 , µl
1, µ

l
0) = ∆

(
Ck, Cl, Id,

µk
0

µk
1 + µk

0

,
µl

0

µl
1 + µl

0

)
(23)
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This result shows that the symmetric modified Rand criterion8 is null
when we have an “indetermination” situation associated to uniform weights :
µk

1 = µk
0 = µl

1 = µl
0.

Another example is the Janson-Vegelius criterion which is null when we
have an “indetermination” situation associated to the following parameters :
µk

1 = (pk − 1), µk
0 = 1, µl

1 = (pl − 1), µl
0 = 1.

Finally by using equation (23), we could also enrich Table 2, by adding
some other Λ coefficients associated to particular weight systems.
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