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Association criteria used for measuring the relationship between categorical variables or partitions, are mainly applied and studied using contingency tables. There is another way for representing categorical variables : the Relational Analysis representation which uses binary pairwise comparison matrices and which has many properties. There exist correspondence formulas that allow to get from the contingency representation to the relational representation. By using these formulas, we show in this paper how Relational Analysis allows to unify many association criteria such as Rand, Tchuprow, Belson criteria and others. This unified framework allows also to have a better understanding of the main differences between those association criteria. In that context, we also present different kinds of independence : statistical, geometrical and "logical".

Introduction

Relational Analysis1 (RA in the rest of the paper) is concerned with the analysis of binary relations2 and it has many applications in different mathematical fields [START_REF] Michaud | Modèles d'optimisation en analyse des données relationnelles[END_REF], [START_REF] Marcotorchino | Optimisation en analyse ordinale des données[END_REF], [START_REF] Marcotorchino | Heuristic approach of the similarity aggregation problem[END_REF]. Particularly, this approach represents binary relations as pairwise comparison matrices (also called relational matrices), and it is basically related to different concepts from graph theory, statistics and linear programming. The most usual application domains of RA are data analysis and multicriteria decision making which are respectively based upon the aggregation of equivalence and order relations.

In this paper, we are particularly interested in the applications of RA in the analysis of association criteria between nominal categorical variables (or partitions). There are already many results in that context see for example [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie I[END_REF], [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie II[END_REF], [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie III[END_REF], [START_REF] Marcotorchino | Cross association measures and optimal clustering[END_REF], [START_REF] Messatfa | Unification relationnelle des critères et structures optimales des tables de contingences[END_REF], [START_REF] Idrissi | Contribution à l'unification de critères d'association pour variables qualitatives[END_REF], [START_REF] Youness | Some measures of agreement between close partitions[END_REF]. This paper recalls some of these results and it also presents some other extensions [START_REF] Ah-Pine | Sur des aspects algébriques et combinatoires de l'Analyse Relationnelle[END_REF].

There are, in the literature, numerous works that have studied different methods for measuring the relationship between partitions see for example [START_REF] Zahn | Approximating symmetric relations by equivalence relations[END_REF], [START_REF] Rand | Objective criteria for the evaluation of clusterings methods[END_REF], [START_REF] Fowlkes | A method for comparing two hiearchical clusterings[END_REF], [START_REF] Hubert | Comparing partitions[END_REF], [START_REF] Janson | The j-index as a measure of association for nominal scale response agreement[END_REF], [START_REF] Mirkin | Mathematical classification and clustering[END_REF]. The RA approach in this context aims at having a better understanding of the main differences between several of these methods.

In that perspective, the different goals of the present paper are the following ones :

• We want to show different properties that the relational representation allows compared to the contingency representation. Indeed, we can formally unify 7 different association criteria found in the literature by showing that they can be deduced from a general Bravais-Pearson like correlation coefficient. In their relational representation, we show that the main differences between these association criteria, can be expressed using three parameters. • In their contingency representation, many association criteria are based upon the statistical independence deviation concept whereas in their relational representation, they are mainly related to the geometrical independence deviation concept. We want to underline also, another kind of independence called the "indetermination" situation which has a "logical" aspect as it is also encountered in voting theory.

This paper is organized as follows :

• In section 2, we recall basics of the contingency and relational representations, the different association criteria we are going to analyze and the correspondence formulas that allow us to express those association criteria from their contingency representation to their relational representation. • In section 3, we give a general formula which is similar to the Bravais-Pearson correlation coefficient. This formula has three parameters : a transformation function of the relational matrices, and two central trends.

We show that many association criteria can be deduced from this general equation when using particular parameters. • When using the contingency representation or the relational representation, there is a duality between the statistical independence and the geometrical independence concepts. In section 4, we try to strengthen this property by showing a particular relationship between Belson's criterion and Janson-Vegelius' criterion. Moreover, we give some comparisons to Mirkin's classification of association criteria. • In section 5, we recall the "indetermination" situation concept and its "logical" foundations. Then we suggest some extensions by defining a parametric normalized coefficient based on this concept.

From contingency representation to relational representation

We assume that we have N objects, {O i ; i = 1, . . . , N }. For these objects, let V k and V l be two nominal categorical variables with respectively p k and p l classes. The sets of classes will be respectively denoted by {D k u ; u = 1, . . . , p k } and {D l v ; v = 1, . . . , p l }. One can represent each of these variables by binary assignment matrices. For example, in the case of V k , we have the following (N × p k ) matrix :

K k iu = 1 if O i belongs to the class D k u 0 else
From K k and K l , we can deduce the following contingency table denoted by n kl with dimensions (p k × p l ) :

n kl = t K k • K l
where t K k is the transpose matrix associated to K k and • the matrix multiplication.

We have the following notations and interpretations, ∀u = 1, . . . , p k and ∀v = 1, . . . , p l :

• n kl uv =Number of objects belonging both to the class We will study the following association criteria : Belson (B) [START_REF] Belson | Matching and prediction on the principle of biological classification[END_REF], Lerman (L) [START_REF] Lerman | Classification et analyse ordinale de données[END_REF], χ 2 of Tchuprow (T ), Jordan (J) [START_REF] Ch | Les coefficients d'intensité relative de korosy[END_REF], Rand (R) [START_REF] Rand | Objective criteria for the evaluation of clusterings methods[END_REF], and Janson-Vegelius (JV ) [START_REF] Janson | The j-index as a measure of association for nominal scale response agreement[END_REF]. We first recall the definitions of these criteria in their contingency representation. We precise that the Rand criterion and the Lerman criterion that we mention, are modified versions according to [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie II[END_REF] and [START_REF] Idrissi | Contribution à l'unification de critères d'association pour variables qualitatives[END_REF].

D k u of V k and D l v of V l , •
B(V k , V l ) = p k u=1 p l v=1 n kl uv - n kl u. n kl .v N 2 (1) 
L(V k , V l ) = u,v (n kl uv ) 2 -u (n kl u. ) 2 v (n kl .v ) 2 N 2 u (n kl u. ) 2 1 -u (n kl u. ) 2 N 2 v (n kl .v ) 2 1 -v (n kl .v ) 2 N 2
(2)

T (V k , V l ) = u,v 1 n kl u. n kl .v n kl uv - n kl u. n kl .v N 2 (p k -1)(p l -1) (3) J(V k , V l ) = 1 N u,v n kl uv n kl uv - n kl u. n kl .v N (4) R(V k , V l ) = 2 u,v (n kl uv ) 2 -u (n kl u. ) 2 -v (n kl .v ) 2 + N 2 N 2
(5)

JV (V k , V l ) = p k p l u,v (n kl uv ) 2 -p k u (n kl u. ) 2 -p l v (n kl .v ) 2 + N 2 (p k (p k -2) u (n kl ) 2 u. + N 2 ) (p l (p l -2) u (n kl .v ) 2 + N 2 ) (6)
We also have the following expression for the Janson-Vegelius criterion :

JV (V k , V l ) = p k p l u,v n kl uv - n kl u. p l + n kl .v p k -N p k p l 2 (p k (p k -2) u n 2 u. + N 2 ) (p l (p l -2) u n 2 .v + N 2 ) (7) 
RA is another way for representing nominal categorical variables. This representation uses pairwise comparison matrices also called relational matrices.

Let C k and C l be the relational matrices of dimension (N × N ), representing the variables V k and V l . We can obtain C k and C l by using the assignment matrices K k and K l :

C k = K k • t K k and C l = K l • t K l
In general terms, let R be a binary relation among a set of N objects O 1 , . . . , O N . If C is the relational matrix for R then we have, ∀i, i = 1, . . . , N :

C ii = 1 if O i is in relation with O i 0 else
In our context, we deal with equivalence relations or partitions. As a result we have, for instance for V k :

C k ii = 1 if O i and O i belong to the same class according to V k 0 else
Furthermore, the relational matrix C k represents an equivalence relation. Thus, it respects the following relational properties which can be expressed as linear equations :

• reflexivity : C k ii = 1 ∀i = 1, . . . , N , • symmetry : C k ii -C k i i = 0 ∀i, i = 1, . . . , N , • transitivity : C k ii -C k i i + C k ii ≤ 1 ∀i, i , i = 1, . . . , N .
There are different correspondence formulas that exist between the contingency representation and the relational one. We give in Table 1 some of the most useful ones.

Contingency ↔ Relational representation representation p k u=1 p l v=1 (n kl uv ) 2 = N i=1 N i =1 C k ii C l ii u (n kl u. ) 2 = i,i C k ii v (n kl .v ) 2 = i,i C l ii u,v (n kl uv ) 2 n kl u. n kl .v = i,i C k ii C l ii C k i. C l i. u,v n kl uv n kl u. n kl .v = i,i C k i. +C k .i 2 C l ii u,v (n kl uv ) 2 n kl u. = i,i C k i. +C k .i 2 C k ii C l ii u,v (n kl uv ) 2 n kl u. = i,i C k ii C k i. C l ii v u n kl u. n kl uv 2 = i,i C k i. C k .i C l ii u,v (n kl u. ) 2 (n kl .v ) 2 = N i,i C k .. C l ii
where n kl u. = v n kl uv and

C k i. = i C k ii Table 1.
Correspondence formulas between contingency representation and relational representation

In [START_REF] Idrissi | Contribution à l'unification de critères d'association pour variables qualitatives[END_REF], the author uses these formulas, in order to obtain the symmetric relational expression of Rand (modified version), Janson-Vegelius, Lerman, and Tchuprow criteria. We extend these results by giving in addition, the symmetric expression of Belson and Jordan criteria. The related definitions are given below.

B(C k , C l ) = N i=1 N i =1 C k ii - C k i. + C k .i N + C k .. N 2 C l ii - C l i. + C l .i N + C l .. N 2 (8) L(C k , C l ) = i,i C k ii -i,i C k ii N 2 C l ii -i,i C l ii N 2 i,i C k ii -i,i C k ii N 2 2 i,i C l ii -i,i C l ii N 2 2 (9) T (C k , C l ) = i,i C k ii C k i.
-

1 N C l ii C l i.
-

1 N i,i C k ii C k i.
-

1 N 2 i,i C l ii C l i.
-

1 N 2 (10) 
J(C k , C l ) = 1 N i,i C k ii - C k i. N C l ii - C l i. N (11) 
R(C k , C l ) = 1 N 2 i,i C k ii C l ii + C k ii C l ii (12) JV (C k , C l ) = i,i C k ii -1 p k C l ii -1 p l i,i C k ii -1 p k 2 i,i C l ii -1 p l 2 (13) 
where

C k ii = 1 -C k ii , C k = U N -C k and U N is the (N × N ) square matrix
where all terms equal 1.

We also have the following equation for the modified Rand criterion that will be called the symmetric modified Rand criterion, R (C k , C l ) :

R (C k , C l ) = 2R(C k , C l ) -1 = i,i C k ii -1 2 C l ii -1 2 i,i C k ii -1 2 2 i,i C l ii -1 2 2 (14)
The relational representation of the studied association criteria can easily be proved by using the correspondence formulas given in Table 1. Besides, the different proofs for these correspondence formulas are given in [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie II[END_REF].

A unifying relational approach for many association criteria

Using the relational representation, one can express the different association criteria that we have recalled, as particular cases of a general criterion similar to a Bravais-Pearson correlation coefficient 3 between transformed relational matrices [NI00], [START_REF] Ah-Pine | Sur des aspects algébriques et combinatoires de l'Analyse Relationnelle[END_REF] :

∆(C k , C l , f, µ k , µ l ) = i,i (f(C k ii )-µ k )(f(C l ii )-µ l ) i,i (f(C k ii )-µ k ) 2 i,i (f(C l ii )-µ l ) 2 (15) 
According to (15), we can see that the main differences between the studied criteria are based upon :

• the transformation function f applied to the terms of the relational matrices, • the central trends µ k and µ l , which are given parameters.

We give in Table 2, different values to the parameters (f, µ k , µ l ), which define particular coefficients. The latter are related to the association criteria recalled previously. Therefore, we also give the relationship type that exists between the defined coefficient and its corresponding association criterion.

In this table, we mention the Torgerson transformation [START_REF] Torgerson | Multidimensional scaling : I. theory and method[END_REF]. We recall that it is an operation used in multidimensional scaling which, given a scalar products matrix between objects, gives as output the scalar products matrix between centered objects :

f (C k ii ) = C k ii - C k i. + C k .i N + C k .. N 2 = O i k -G k , O i k -G k {O i k ; i = 1, . . . , N } are (p k × 1) binary vectors where [O i k ] u = K k iu ; u = 1, . . . , p k and G k = 1 N N i=1 O i k .
The RA approach allows to have a better understanding of the main differences between the studied association criteria. Moreover, in their relational 3 similar coefficients for measuring the relationship between square matrices were considered in [START_REF] Escoufier | Le traitement des variables vectorielles[END_REF] and in [START_REF] Hubert | A general statistical framework for assessing categorical clustering in free recall[END_REF]. These coefficients were respectively defined as RV coefficients and Γ statistics

f (C ii ) µ k µ l Related criteria
Relation with the related criteria

f (C ii ) 0 0 Belson Normalized = Belson C ii - C i. +C .i N + C.. N 2 (Torgerson transf.) f (C ii ) = C ii C k .. /N 2 C l .. /N 2 Lerman Lerman f (C ii ) = C ii /Ci. 1/N 1/N Tchuprow Tchuprow f (C ii ) = C ii C k i. /N C l i. /N Jordan Normalized Jordan f (C ii ) = C ii 1/2 1/2 Modified Symmetric Rand modified Rand f (C ii ) = C ii 1/p k 1/p l Janson-Vegelius Janson-Vegelius
Table 2. Correspondence between correlation coefficient and association criteria expressions all these association criteria are related to the geometrical independence deviation concept. Indeed, we can also express the general equation (15) using the Frobenius scalar product between two relational matrices :

C k , C l F = N i=1 N i =1 C k ii C l ii = Trace( t C k • C l ) Then, we can see that ∆(C k , C l ) = 0 ⇔ f (C k ) -µ k U N , f (C l ) -µ l U N F = 0
In [START_REF] Mirkin | Mathematical classification and clustering[END_REF], Mirkin gives four different classes for classifying association criteria :

• structural association approach, • contingency modeling approach, • geometrical approach,

• cross-classificational approach.

Regarding this classification, our results would give more emphasis to the contingency modeling approach and to the geometrical approach. The first one is related to the contingency representation and to the statistical independence deviation concept whereas the second one is related to the relational representation and to the geometrical independence deviation concept. We will study in more details those two different approaches in the following section.

Moreover, our approach underlines the geometrical approach more than the definition given in [START_REF] Mirkin | Mathematical classification and clustering[END_REF] does. Indeed, in [START_REF] Mirkin | Mathematical classification and clustering[END_REF], only the Tchuprow criterion is considered as belonging to the geometrical approach4 . Using the relational representation, we can show that the equivalence match criterion given in [START_REF] Mirkin | Mathematical classification and clustering[END_REF] is exactly Marcotorchino's version of Rand criterion [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie I[END_REF]. Regarding equation ( 15) and Table 2, this last criterion is related to the parameters (f = Id, µ k = 1/2, µ l = 1/2) which leads to the symmetric modified Rand criterion with range values [-1, 1]. In a more general perspective, we have shown that many other association criteria which are not considered5 in [START_REF] Mirkin | Mathematical classification and clustering[END_REF] can also be expressed using the geometrical correlation coefficient given in (15). Finally, unlike the contingency representation, the relational representation allows to express the differences between the studied association criteria using three clearly defined parameters.

Statistical and geometrical independence concepts

In the contingency representation, we say that two nominal categorical variables V k and V l are statistically independent if their joint probabilities, n kl uv N , equal the product of their marginal probabilities,

n kl u. N n kl .v N : V k ⊥ S V l ⇔ n kl uv N = n kl u. N n kl .v N ∀(D k u , D l v ) : D k u ∈ V k , D l v ∈ V l (16) 
Many of the studied association criteria are based upon this concept when using contingency representation. Indeed, we clearly see, that Belson, Lerman, Tchuprow and Jordan criteria are null if V k and V l are statistically independent.

On the contrary, in the relational representation, all studied association criteria are related to the geometrical independence deviation concept 6 . We say that two nominal categorical variables are geometrically independent if we have the following relation :

V k ⊥ G V l ⇔ ∆(C k , C l , f, µ k , µ l ) = 0 (17) ⇔ i,i f (C k ii ) -µ k f (C l ii ) -µ l = 0
Regarding statistical / geometrical independence, we now focus on a particular relationship between two of the recalled association criteria : the Belson criterion and the Janson-Vegelius criterion's numerator. This relationship can be stated as follows :

• The Belson criterion, in its contingency representation, is based on the statistical independence whereas in its relational representation, it is based on a geometrical independence associated to the Torgerson transformation. • On the contrary, the Janson-Vegelius criterion's numerator, in its contingency representation, is based on the geometrical independence associated to the Torgerson transformation whereas, in its relational representation, it is related to the statistical independence with an equiprobability assumption.

We summarize the Belson / Janson-Vegelius criteria relationship in Table 3.

Deviation from Geometrical independence statistical independence based on Torgerson transformation

Belson u,v n kl uv - We give below more details about our interpretations of the independence concepts underlying the relational and the contingency representations of Janson-Vegelius criterion's numerator, which show the duality property between the latter and Belson criterion.

n kl u. n kl .v N 2 i,i C k ii - C k i. N + C k .i N - C k .. N 2 C l ii - C l i. N + C l .i N - C l .. N 2 Janson-Vegelius i,i C k ii -1 p k C l ii -1 p l u,v n kl uv - n kl u. p l + n kl .v p k - n kl .. p k p l 2 (numerator)
First, if we consider the Janson-Vegelius criterion's relational representation, we can interpret the term (C k ii -1 p k ), as a deviation from the statistical independence situation in an equiprobability context. Let P (C k ii ) be, symbolically, the probability for two objects O i and O i , belonging to the same class of V k . Let us assume moreover, that the different classes D k u ; u = 1, . . . , p k ; are equiprobable. This implies that the probability for an object to belong to any class of V k equals 1/p k . Then, in case of probability independence, we have : 

P (C k ii ) =
n kl uv - n kl u. p l - n kl .v p k + n kl .. p k p l = D k u -G k , D l v -G l ∀(D k u , D l v ) ∈ V k × V l where G k = 1 p k D k u ∈V k D k u and G l = 1 p l D l v ∈V l D l v .
5 A "logical" independence concept : the "indetermination" situation Despite the general geometrical independence deviation concept underlying the relational representations of the studied association criteria, we can distinguish another kind of independence which has a "logical" aspect. This concept was defined in [START_REF] Marcotorchino | Utilisation des comparaisons par paires en statistique des contingences partie I[END_REF] and was called the situation of "indetermination". It is related to Condorcet criterion defined in voting theory [START_REF] Condorcet | Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix[END_REF].

In that context, we have an "indetermination" situation when the number of voters in favor of a candidate equals the number of voters against this candidate. This criterion which measures the relationship between order relations was extended to the case of equivalence relations [START_REF] Michaud | Modèles d'optimisation en analyse des données relationnelles[END_REF]. This extension allows to link the Condorcet criterion to the modified Rand criterion as we formally have :

R(C k , C l ) = Condorcet(C k , C l ) N 2 (18) 
In order to introduce the "indetermination" situation concept we first introduce the four-fold / tetrachoric 7 table given in its relational representation. Indeed in that case, the nominal categorical variables through their relational matrices C k and C l , can be interpreted as 0/1 variables. As a result, we can consider the (2 × 2) table given in Table 4.

C l C l Margin C k 11 kl = i,i C k ii C l ii 10 kl = i,i C k ii C l ii i,i C k ii C k 01 kl = i,i C k ii C l ii 00 kl = i,i C k ii C l ii i,i C k ii Margin i,i C l ii i,i C l ii N 2
Table 4. Agreements and disagreements between relational matrices

We say that two nominal categorical variables are in an "indetermination" situation if we have the following relation :

V k ⊥ L V l ⇔ 11 kl + 00 kl -10 kl -01 kl = 0 (19) ⇔ i,i C k ii C l ii + i,i C k ii C l ii - i,i C k ii C l ii - i,i C k ii C l ii = 0 ⇔ i,i C k ii -C k ii C l ii -C l ii = 0 ⇔ 4 i,i C k ii -1/2 C l ii -1/2 = 0
7 this table is equivalent to the four-fold / tetrachoric table given in [START_REF] Mirkin | Mathematical classification and clustering[END_REF] but the latter only uses the contingency representation. However, when using the relational representation the following notations 11 kl , 01 kl , 10 kl and 00 kl are straightforward unlike for the contingency representation. Finally this allows us to naturally apply other coefficients such as the odds-ratio as we suggest in (20) or other similarity indexes between 0/1 vectors This result shows that the symmetric modified Rand criterion 8 is null when we have an "indetermination" situation associated to uniform weights : µ k 1 = µ k 0 = µ l 1 = µ l 0 . Another example is the Janson-Vegelius criterion which is null when we have an "indetermination" situation associated to the following parameters : µ k 1 = (p k -1), µ k 0 = 1, µ l 1 = (p l -1), µ l 0 = 1.

Finally by using equation ( 23), we could also enrich Table 2, by adding some other Λ coefficients associated to particular weight systems.

  uv = n kl u. =Number of objects belonging to the class D k u of V k , • p k u=1 n kl uv = n kl .v =Number of objects belonging to the class D l v of V l , • p k u=1 p l v=1 n kl uv = N = Total number of objects.

p

  p k u=1 P ("O i and O i belong to the class D k u ") = p k u=1 P ("O i belongs to the class D k u ")P ("O i belongs to the class D k u Second, if we consider the Janson-Vegelius criterion's contingency representation, we can interpret the term (n kl uvk p l ), as the Torgerson transformation of the (N × 1) binary vectors {D k u ; u = 1, . . . , p k } and {D l v ; v = 1, . . . , p l } where [D k u ] i = K k iu ; i = 1, . . . , N . Indeed, we have n kl uv = D k u , D l v and the following relation :

Table 3 .

 3 Dual relationship between Belson and Janson-Vegelius criteria due to the contingency / relational representation duality

see for example[MAP] for a recent overview of this theory

their aggregation, their association measures

see also[START_REF] Mirkin | Eleven ways to look at the chi-squared coefficient for contingency tables[END_REF] 

Belson, Lerman, Jordan, Janson and Vegelius criteria

notice that the (non symmetric) Rand criterion, R(C k , C l ), equals 1/2 in case of geometrical independence

Using the notations given in Table 4, we can define the number of agreements between two categorical variables as 11 kl + 00 kl and the number of disagreements as 10 kl + 01 kl . These last quantities are exactly the equivalence match and equivalence mismatch criteria given in [START_REF] Mirkin | Mathematical classification and clustering[END_REF]. Finally, we have an "indetermination" situation when the number of agreements equals the number of disagreements. This situation means that the variables are neither "concordant" nor "discordant".

Using Table 4, we can formally characterize the "indetermination" situation concept compared to the statistical independence deviation concept. Indeed, when considering 0/1 variables, we can use the odds-ratio measure in order to determine if two variables are statistically independent or not :

⇔ 11 kl 00 kl -10 kl 01 kl = 0

Using correspondence formulas, we can easily show that the modified Lerman criterion, L(C k , C l ), is null if and only if the odds-ratio measure, OR(C k , C l ), equals one.

Comparing equation ( 19) to (20), we can see that the "indetermination" situation concept is related to an additive model, 11 kl + 00 kl -10 kl -01 kl , whereas the statistical independence deviation concept is related to a multiplicative model, 11 kl 00 kl -10 kl 01 kl .

Similarly to equation (15), we propose to extend the "indetermination" situation concept to a more general parametric family by assigning different weights to agreements and disagreements quantities :

Then, we introduce the following general formula which defines a normalized coefficient, Λ, that measures the deviation from the weighted "indetermination" situation between two nominal categorical variables :

We give below the formal relationship between the geometrical independence and the "indetermination" situation in the relational representation :