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1. General scope

In this chapter we introduce a general framework called the Relational Analysis approach
and its related contributions and applications in the fields of data analysis, data mining
and multi-criteria decision making. This approach was initiated by J.F. Marcotorchino and
P. Michaud at the end of the 70’s and has generated many research activities. However,
the aspects of this framework that we would like to focus on are of a theoretical kind.
Indeed, we are aimed at recalling the background and the basics of this framework, the
unifying results and the modeling contributions that it has allowed to achieve. Besides, the
main tasks that we are interested in are the ranking aggregation problem, the clustering
problem and the block seriation problem. Those problems are combinatorial ones and the
computational considerations of such tasks in the context of the RA methodology will not be
covered. However, among the list of references that we give thoughout this chapter, there are
numerous articles that the interested reader could consult to this end.

In order to introduce the Relational Analysis approach (denoted “RA” in the rest of the doc-
ument), let us first introduce several problems that one could encounter in the data anal-
ysis field. To this end, let us consider a data table concerning a set of N objects O =
{O1, . . . ,Oi, . . . ,ON} described by a set of M variables V = {V1, . . . ,Vk, . . . ,VM}. These data
can be represented using a (N × M) feature matrix denoted T given by the following eqs. (1)
and (2); ∀i = 1, . . . , N;k = 1, . . . , M:

Tik = Vk
i = Numerical value assigned to object Oi according to Vk (1)

T =



V1 V2 . . . , Vk . . . VM

O1 V1
1 V2

1 . . . Vk
1 . . . VM

1
O2 V1

2 V2
2 . . . Vk

2 . . . VM
2

...
...

...
...

...
...

...
Oi V1

i V2
i . . . Vk

i . . . VM
i

...
...

...
...

...
...

...
ON V1

N V2
N . . . Vk

N . . . VM
N


(2)



Depending on the nature of the features of T, we can list the different following problems
tackled in the data analysis field and related domains:

• The variables in V can correspond to M criteria that give M different rankings on the
objects O. In that case, the objects could be N different alternatives. Then, one can be
interested in finding a consensual ranking that “sums up” these M different rankings
in order to determine the best (the most consensual) alternative1. This task is known
as the ranking aggregation problem and it can be encountered in other domains, than
data analysis, such as social choice theory, multi-criteria decision making or multi-agent
systems.

• The variables in V can be categorical2 variables. In that case, one can be motivated by
discovering patterns among the set of objects O. In other words, one would want to
find a partition such that objects belonging to the same cluster have high similarities
and objects belonging to different clusters have low similarities. This problem, known
as the clustering problem, is studied in statistical data analysis, and data-mining fields
and it has many applications such as customer relationship management, text mining
or web data clustering for instance.

• Finally, one could also be interested in finding a bi-partition which simultaneously de-
compose both sets O and V. In that context, a bicluster is the association of a cluster of
objects and a cluster of variables. This task is known as the biclustering or block seri-
ation problem and it is studied notably in gene-mining or in group technology problems
for example.

The previously mentioned problems are often modeled and solved by means of different
approaches. One of the main advantages of the method presented here, is that it allows to
synthesize in a unique formal way, all those different data analysis tasks, as particular cases
of a general model. In the RA framework, those different problems can be formalized as
binary relations aggregation problems. Departing from the feature matrix T, the different
aforementioned tasks, can be seen as finding a consensual binary relation that aggregates and
summarizes a set of individual binary relations (the variables) of T.

We briefly give in what follows some illustrative examples:

• When the variables Vk;k = 1, . . . , M, are numerical criteria, they induce M different
rankings Rk;k = 1, . . . , M, on the set of alternatives O. These rankings are order rela-
tions (partial or total orders) and the solution we look for is a consensual relation R (a
total order for example) that fits “as good as possible”, the M individual rankings.

• When the variables Vk;k = 1, . . . , M, are categorical features, the latter induce M differ-
ent partitions Rk;k = 1, . . . , M, of the set of objects. Clustering those objects can thus be
seen as looking for a consensual partition (or an equivalence relation) R, that sums up
the M individual partitions.

• When the feature matrix T consists of 0/1 values such as indicator tables that encode
categorical variables, the biclustering problem amounts to determine a bi-partition of
objects and categories. This problem can also be interpreted as the search for a consen-
sual relation R. This kind of relation is called a “block seriation” relation.

1The alternative that is ranked first in the consensual ranking.
2And more generally, numerical variables.



The RA approach uses algebraic concepts related to binary relations in order to turn the previ-
ously mentioned problems into binary relations aggregation problems. Basically, if we denote
by Rk the binary relation associated to a variable Vk, then all the aforementioned problems
could be seen as a particular instance of the following problem:

max
R

Aggreg(R1, . . . ,Rk, . . . ,RM;R) (3)

where Aggreg is an aggregation procedure.

One of the main characteristics of the RA methodology is to use pairwise comparisons
matrices similar as adjacency matrices in order to represent binary relations. We will see that
the representation of binary relations through that coding has many properties. The second
principle of the RA approach consists in using a criterion called “the Condorcet’s criterion” as
a global measure of consensus. This criterion has its origins in mathematical social sciences
and was first studied in its literal form by A. de Condorcet in 1785. This criterion is nothing
but a voting criterion, which was applied first to the ranking aggregation problem. It was
shown that this criterion satisfies many axioms in the context of social choice theory. The
Condorcet’s criterion was, then, extended to the partitions aggregation problem. Therefore it
can be interpreted as a partitioning criterion as well. The RA approach notably contributed to
show that the ranking aggregation problem and the clustering one were particular cases of a
unique model, as we will show in the next paragraphs.

The rest of this chapter is organized as follows. In section 2, we basically recall some key
properties of the RA approach: the individual relational matrices, that represent individual
binary relations; the collective relational matrix, that is aimed at aggregating the individual
binary relations in a simple yet efficient way; the relational properties of binary relations that
can be expressed as linear inequalities or equalities using relational matrices; and the general
expression of the Condorcet’s criterion.
In section 3, 4, 5, we respectively detail the applications of the RA approach in ranking aggre-
gation problems, clustering problems, and block seriation problems. Particularly, in the RA
framework, all these problems are modeled using the same formalism, based on 0/1 integer
linear programming.
Recently, “Correlation Clustering” (CC) problems were proposed in (6). This setting tackles
the clustering problem from a graphic point of view and has many relationships with different
concepts underlined in the RA approach. Indeed, the partitioning criterion used in the CC
approach is very similar to the Condorcet criterion. Moreover, the linear program used by
this approach for modeling the clustering problem (see for example (15), (22), (18)), is the
same as in the RA method. Accordingly, we also introduce in section 6, other results of interest
obtained in the clustering field by using the RA method in order to strengthen the graphical
and the linear programming point of views for addressing clustering problems.

2. Introduction to the Relational Analysis approach

We first recall some previous contributions concerning the analysis of relational data, that
is to say, data which have particular structures such as binary relations: order relations,
equivalence relations or graph relations in general. There has been a growing interest for
such kinds of data since the end of the 70’s.



Concerning order relations, Condorcet’s work opened up the mathematical field of decision
making in the social sciences (14). In France, A. de Condorcet’s work got a particular interest
in the 80’s, rediscovered and updated by J.F. Marcotorchino and P. Michaud (36), (40), B.
Monjardet, J.P. Barthélémy and B. Leclerc (8), (26)... In the USA, we can also mention the
Nobel Prize’s laureate, K.J. Arrow who has contributed to the social choice theory (5) and also
the book of Kemeny and Snell (23) in mathematical sciences as well.

Concerning equivalence relations (categorical data), since this type of data has been mostly
studied by statisticians and data analysts, it is an other set of contributors which has to be
quoted. We can firstly mention S. Régnier (46), I.C. Lerman (27) and J.F. Marcotorchino and P.
Michaud (37), on the french side. Apart from french researchers, we can particularly mention
H.T. Zahn’s work (52) as well as B. Mirkin’s work, see (42) for example.

Obviously, this is not an exhaustive reference list of scientists who have contributed to this
area. We have only mentioned some main papers that are closely related to the approach
proposed by the RA framework.

The RA methods, presented here, are mainly the approaches, studied and developed by
J.F. Marcotorchino and P. Michaud and colleagues. Their work is essentially based upon
the study of relational data from the graph theory, the statistical and the integer linear
programming standpoints (36), (41).

First of all, let us recall basic definitions about binary relations.

A binary relation R on two sets of objects O (the domain) and D (the codomain3), is a triple
(O,D, G(R)), where G(R) called the graph of the relation R, is a subset of the Cartesian
product O × D. If we have (Oi, Dj) ∈ G(R), then we say that object Oi is in relation with
object Dj for the relation R. This will be denoted by OiRDj.

We can also associate to R, its complement which is a binary relation denoted by R and
which is the subset of the cartesian product O×D such that (Oi, Dj) /∈ G(R).

When D = O, we talk about binary relations on a single set O. This particular kind of binary
relations is of interest and it will be referred as (O, G(R)).
There exist different properties that a binary relation (O, G(R)) can satisfy. Among all those
relational properties, the most useful ones are given in Table 1.
Those properties allow us to characterize the type of a binary relation (O, G(R)). We have the
following definitions:

• A preorder is a binary relation that is reflexive and transitive.

• A strict total order is a binary relation that is irreflexive, asymmetric, transitive and
total.

• An equivalence relation is a binary relation that is reflexive, symmetric, and transitive.

3For a real continuous quantitative variable, D could equal R for example; for a categorical variable,
D could be the set of categories of this variable.



Relational Logical
property definition

Reflexivity OiROi ∀Oi ∈ O

Irreflexivity OiRkOi ∀Oi ∈ O

Symmetry OiROi′ ⇒Oi′ROi ∀ (Oi,Oi′ ) ∈ O2

Asymmetry OiROi′ ⇒Oi′RkOi ∀ (Oi,Oi′ ) ∈ O2 : Oi 6= Oi′

Transitivity OiROi′ ∧Oi′ROi′′ ⇒OiROi′′ ∀ (Oi,Oi′ ,Oi′′ ) ∈ O3

Totality OiROi′ ∨Oi′ROi ∀ (Oi,Oi′ ) ∈ O2 : Oi 6= Oi′

Table 1. Relational properties for (O, G(R))

After recalling briefly, basic concepts inherent to binary relations, we now present how the
RA approach copes with such data structures.

The first principle of the RA methodology amounts to represent binary relations as pairwise
comparisons matrices, called “relational matrices”, which are made of 0/1 values.
Let (O, G(R)) be a binary relation on a single set O, where #O = N. Then in the RA method,
we represent this binary relation by its (N × N) relational matrix4 X where, ∀i, i′ = 1, . . . , N:

Xii′ =
{

1 if OiROi′

0 otherwise
(4)

Using the RA formalism, we can easily define the relational matrix X, associated to the com-
plement of the relation (O, G(R)). Indeed, we have, ∀i, i′ = 1, . . . , N:

Xii′ = 1− Xii′ (5)

In the block seriation problems, we are no longer faced with relations on the same set, as
previously done, but we will consider, in that case, binary relations on two different sets
(O,D, G(R)).

4In graph theory those matrices are adjacency matrices but in the case of particular binary relations,
these matrices have special properties as we will see later.



For clarity reasons, we will use other notations for that type of binary relations. Suppose
that, #O = N and #D = P; then the relational matrix that represents the binary relation is the
(N × P) binary matrix Z, where, ∀i = 1, . . . , N; j = 1, . . . , P:

Zij =
{

1 if OiRDj

0 otherwise
(6)

The representation of binary relations by using pairwise comparison matrices allows to
express the relational properties as linear equations. This is a strong property of the RA
formalism. We give in Table 2, the linear equations related to the relational properties already
presented in Table 1.

Relational Linear equations using
properties the relational matrix

Reflexivity Xii = 1 ∀i = 1, . . . , N

Irreflexivity Xii = 0 ∀i = 1, . . . , N

Symmetry Xii′ = Xi′ i ∀i, i′ = 1, . . . , N

Asymmetry Xii′ + Xi′ i ≤ 1 ∀i, i′ = 1, . . . , N : i 6= i′

Transitivity Xii′ + Xi′ i′′ − Xii′′ ≤ 1 ∀i, i′, i′′ = 1, . . . , N

Totality Xii′ + Xi′ i ≥ 1 ∀i, i′ = 1, . . . , N : i 6= i′

Table 2. Relational properties as linear equations in the RA formalism for (O, G(R)) binary
relations

The second principle of the RA approach is the use of Condorcet’s criterion as an association
and consensus criterion. This criterion is based upon a similarity or association measure
between objects, and a dissimilarity or non association measure between the same items as
well.



Let us call respectively, A and A, the matrices associated to relation5 and to non relation6

between pairs of objects. Then the Condorcet’s criterion applied to binary relations on a single
set is given as follows:

Condorcet(A, A, X) =
N

∑
i=1

N

∑
i′=1

(
Aii′Xii′ + Aii′Xii′

)
(7)

For the case of binary relations on two different sets7, we have:

Condorcet(A, A, Z) =
N

∑
i=1

P

∑
j=1

(
AijZij + AijZij

)
(8)

As we can see, the Condorcet’s criterion is a quite “logical” criterion: it measures the to-
tal agreements (“positive” and “negative” agreements) between two relations. Likewise, the
greater the values of Aij (resp. Aij), the more (resp. less) likely objects Oi and Dj should be in
relation from a consensus standpoint.

3. The ranking aggregation problem

The ranking aggregation problem consists in looking for a consensual ranking (or order
relation) on a set of objects (or alternatives) that summarizes a set of individual rankings
(or a set of several criteria). This problem was firstly mathematically addressed by A. de
Condorcet (14) in the context of voting theory and decision making. Historically, it is the
first background of the RA approach and the first consistent foundation of such a theoretical
framework.

The first aspect of this task consists in aggregating individual rankings in a natural manner.
Indeed, suppose that we have items who are described by two real continuous quantitative
variables such as their height (in centimeters) and their weight (in kilograms). These two
real continuous quantitative variables induce a ranking among the items (the smallest to
the tallest for example). How can we compute a consensual ranking that could efficiently
summarize the rankings given by the height and the weight ?

In statistics, suppose we want to measure a central trend for the variable “height”, it is then
possible to compute the mean of this variable for instance. While computing the mean,
we have to sum up the heights over all the items and we divide the obtained value by N.
Here, the addition is possible because we aggregate “centimeters with centimeters”. On the
contrary, it is not obvious to aggregate for each item, his height and his weight. Indeed, it is a
non sense to add centimeters with kilograms. Thus, how could we proceed to aggregate both
variables ?

In order to answer this question, the RA suggests to compute the relational matrices associ-
ated to the individual rankings induced by the real continuous quantitative variables. Let us

5For two objects Oi and Oi′ , this measure gives the “strength” of the relation OiROi′ .
6For two objects Oi and Oi′ , this measure gives the “strength” of the relation OiROi′ .
7In the case of two different sets, Aij gives the “strength” of the relation OiRDj and Aij gives the

“strength” of the relation OiRDj.



suppose that we have M real continuous quantitative variables denoted by Vk;k = 1, . . . , M.
Let Vk

i be the value assigned to item Oi with respect to variable Vk. Then, for each variable,
we can associate its following relational matrix:

Ck
ii′ =

{
1 if Vk

i ≤ Vk
i′

0 otherwise
(9)

For example we build up a relational matrix as follows:

Vk

O1 0.5
O2 0.2
O3 0.6
O4 0.9

→


O1 O2 O3 O4

O1 1 0 1 1
O2 1 1 1 1
O3 0 0 1 1
O4 0 0 0 1

 (10)

Considering the M individual relational matrices, the relation aggregation procedure becomes
possible: it is just given by the sum over all the individual relational matrices. By doing so, we
define the collective relational matrix also called the “collective Condorcet’s matrix”, denoted
C. The general term of the latter matrix is given by:

Cii′ =
M

∑
k=1

Ck
ii′ =

{
Nb of variables for which Oi

has a lower rank than Oi′ (11)

Similarly, we can also define the collective relational matrix C related to the aggregation of the

M individual relational matrices Ck where:

Cii′ =
M

∑
k=1

Ck
ii′ =

{
Nb of variables for which Oi

has not a lower rank than Oi′ (12)

This aggregation process that we have just introduced, gives a partial answer to the initial
problem represented by eq. (3). It gives a subsequent process for aggregating order relations
in a natural manner. But now that we have aggregated the different rankings, how can we
determine a consensual ranking R that agrees as much as possible with the M individual
rankings ?

In the RA methodology, the consensus ranking is the one that maximizes the Condorcet’s
criterion where Aii′ = Cii′ and Aii′ = Cii′ :

Condorcet(A, A, X) =
N

∑
i=1

N

∑
i′=1

(
Cii′Xii′ + Cii′Xii′

)
(13)

Replacing Xii′ with 1− Xii′ and selecting only the part of the criterion which is dependent on
X, we then have the following Condorcet’s criterion:

Condorcet(C,C, X) =
N

∑
i=1

N

∑
i′=1

(
Cii′ − Cii′

)
Xii′ (14)



This means that Oi should have more chances to have a lower rank than Oi′ in the consensual
ranking8, if the number of variables that give a lower rank to Oi than to Oi′ is greater or equal
than the number of variables that give a higher rank to Oi than to Oi′ .

If we suppose, moreover, that there is no missing rank value among the individual rankings,
then we have: Cii′ = M − Cii′ . If we take into account this expression in eq. (14), then we
obtain the following simplified Condorcet’s criterion:

Condorcet(C, X) =
N

∑
i=1

N

∑
i′=1

(
Cii′ −

M
2

)
Xii′ (15)

In the particular case where we do not have any missing value, the consensual ranking will
more likely give to Oi a rank lower than to Oi′ 9, provided that the number of variables or
criteria which ranked Oi before Oi′ is greater or equal to the simple majority.

If we simply apply the previous rule we will observe a paradoxical situation most of the
time. Indeed, aggregating order relations using the simple majority decision rule does
not guarantee to obtain an order relation as a solution10. This is the famous “Condorcet’s
paradox”, which states that if a majority of voters prefer “i” to “j” and a majority of voters
prefer “j” to “k”, it could happen that a majority of voters prefer “k” to “i”, thus violating
the transitivity condition. Consequently the real problem, we want to solve is now based
upon the following key question: how can we determine the strict total order relation that
maximizes the Condorcet’s criterion ? This problem is unfortunately not so simple, since
it is an NP-hard problem (51). Without any algorithmic process, it would need a complete
enumeration of all the N! possible solutions to get the final result (by the way, just for N=70,
notice that 70!≈ 1.2100). Thanks to the RA approach we can solve the ranking aggregation
problem, through an 0/1 integer linear programming approach. Furthermore, it is also
possible to use a simpler model, based upon binarity relaxation scheme by considering
0 ≤ Xii′ ≤ 1. In that case, we could use continuous linear programming technique and the
“dual of dual process” described in (36) for instance.

According to Table 1, the use of pairwise comparisons matrices allows to turn the relational
properties, characterizing an order relation, into linear constraints. Furthermore, once we
are given A and A, we can see that the Condorcet’s criterion is a linear objective function
with respect to X, the solution we are looking for. As a result, we can model the ranking
aggregation problem by maximizing a linear consensus criterion subject to linear constraints.
Hence, we can get the exact optimal solution using an integer linear programming solver as
mentioned beforehand and as described in (36), (41), (39):

maxX Condorcet(A, A, X)
st

Xii′ ∈ {0,1} (binarity)
Xii′ + Xi′ i ≤ 1 ∀i, i′ = 1, . . . , N : i 6= i′ (asymmetry)
Xii′ + Xi′ i ≥ 1 ∀i, i′ = 1, . . . , N : i 6= i′ (totality)
Xii′ + Xi′ i′′ − Xii′′ ≤ 1 ∀i, i′, i′′ = 1, . . . , N (transitivity)

(16)

8ie Xii′ = 1.
9ie Xii′ = 1.

10That is to say: irreflexive, asymmetric, total and transitive.



We have presented the general model to solve the ranking aggregation problem using the RA
methodology. In eq. (16), X must respect the linear constraints of a strict and total order,
but other types of order relations could also be modeled in a similar way. The interested
reader could find in (41), (2), other relational properties and their associated linear equations
(in terms of the RA formalism).
Other works, related to the ranking aggregation problem, can be found in (4), (21), (47) or
(7) for example. In those papers, the ranking aggregation problem, which is also referred as
the “median linear ordering problem” or shortly the “linear ordering problem”; is treated
from a combinatorial optimization viewpoint. For a study of the complexity of problems like
relations aggregation, see (51) for instance.

Among the different contributions in ranking aggregation problems, for which RA approach
was used as a basic concept, special attention must be paid to the results obtained by S.
Ghashghaie in (17). In this work, it is shown that statistical association criteria for compar-
ing rankings such as Goodman and Kruskal, Somers, Kendall, Deuchler and Kim; differ from
the Condorcet’s criterion, just by slight changes. We can also mention the following reference
too (19), where the author provides a theoretical and axiomatic comparison of Condorcet’s
criterion against other aggregation criteria.

4. The clustering problem

The RA methodology is still valid when we want to consider other relations and aggregation
problems than the ranking aggregation task.

From an algebraic point of view, we can observe that the only difference between a linear
order and an equivalence relation mainly consists in replacing the asymmetry property with
the symmetry one. From this observation, J.F. Marcotorchino and P. Michaud extended the
0/1 integer linear programming that optimally solves the rank aggregation problem to the
similarities aggregation problem (41), (37). Hence, we get the second main application of the
RA methods in data analysis: modeling the clustering of categorical data problem as a linear
program.

Suppose that we have at our disposal (N × N) matrices A and A of pairwise similarities
and dissimilarities between pairs of objects that we want to cluster. Then we can use the
Condorcet’s criterion as a clustering function similarly as for the ranking aggregation:

Condorcet(A, A, X) =
N

∑
i=1

N

∑
i′=1

(
Aii′Xii′ + Aii′Xii′

)
=

N

∑
i=1

N

∑
i′=1

(
Aii′ − Aii′

)
Xii′ +

N

∑
i=1

N

∑
i′=1

Aii′ (17)

If we consider the part of eq. (17) which is only a function of X, we can notice that maximizing
the Condorcet’s criterion in the clustering task, consists in putting11 objects Oi and Oi′ in the
same cluster12 if their measure of similarity Aii′ is higher than their measure of dissimilarity

11In condition to satisfy the relational properties of an order relation see eq. (18).
12ie Xii′ = 1.



Aii′ .

Given A and A, then looking for a partition which is represented by a relational matrix X
and which is aimed at maximizing the Condorcet’s criterion, can be obtained by means of 0/1
integer linear programming (41), (37), (32), (31).

maxX Condorcet(A, A, X)
st

Xii′ ∈ {0,1} (binarity)
Xii = 1 ∀i = 1, . . . , N (reflexivity)
Xii′ − Xi′ i = 1 ∀i, i′ = 1, . . . , N : i 6= i′ (symmetry)
Xii′ + Xi′ i′′ − Xii′′ ≤ 1 ∀i, i′, i′′ = 1, . . . , N (transitivity)

(18)

This model is particularly adapted for clustering objects, described by categorical variables13.
Hence, the same aggregation method introduced beforehand for dealing with orders relation
can be applied here as well.

Suppose that we have M categorical variables denoted by Vk;k = 1, . . . , M, and let denote by
Vk

i the class of Vk assigned to object Oi. Then each variable induce an equivalence relation on
the objects. As a result, we can associate to each Vk a relational matrix Ck:

Ck
ii′ =

{
1 if Vk

i = Vk
i′

0 otherwise
(19)

For instance, we can get the following relational matrix:

Vk

O1 blue
O2 brown
O3 brown
O4 blue

→


O1 O2 O3 O4

O1 1 0 0 1
O2 0 1 1 0
O3 0 1 1 0
O4 1 0 0 1

 (20)

Just by considering the M individual relational matrices, we can, as for order relations, aggre-
gate equivalence relations by summing up the individual relational matrices. We then define
the collective relational matrix which general term is given by:

Cii′ =
M

∑
k=1

Ck
ii′ =

{
Nb of variables for which Oi and Oi′

are in the same cluster
(21)

We can also define the collective relational matrix C related to the aggregation of the individ-

ual relational matrices Ck where:

Cii′ =
M

∑
k=1

Ck
ii′ =

{
Nb of variables for which Oi and Oi′

are not in the same cluster
(22)

13However, in section 6, we will consider the case where objects are described by real continuous quan-
titative variables.



Similarly to the previous section, if we take A = C and A = C and if we replace Xii′ with
1− Xii′ then we first obtain:

Condorcet(C,C, X) =
N

∑
i=1

N

∑
i′=1

(
Cii′ − Cii′

)
Xii′ (23)

Secondly, if we suppose that there is no missing value then we have, Cii′ = M − Cii′ , and the
following simplified Condorcet’s criterion:

Condorcet(C, X) =
N

∑
i=1

N

∑
i′=1

(
Cii′ −

M
2

)
Xii′ (24)

Maximizing the Condorcet’s criterion in order to cluster categorical data, amounts to highly
consider to put Oi and Oi′ in the same cluster14 of the consensus partition15, if the number
of variables considering that Oi and Oi′ are in the same cluster is higher than the number
of variables considering that Oi and Oi′ are not in the same cluster. Moreover, if there is
no missing value then it is equivalent to say that Oi and Oi′ are more likely in the same
cluster of the consensual partition, if the number of variables indicating that Oi and Oi′ are
in the same cluster is greater or equal to the simple majority M

2 of the total number of variables.

Here, it is worth mentioning that the integer linear program given in eq. (18) does not require
as an “a priori” hypothesis, the knowledge of the expected number of clusters of the partition
we are looking for. This is quite an attractive and interesting property of the RA approach in
the clustering context: the number of clusters obtained solving eq. (18) is an optimal inherent
value according to Condorcet’s criterion.

There are other problems related to the clustering task that have been studied in the context
of the RA framework. We quote here some references16. In (13), the RA approach is used for
studying binary relations over triples of objects. This work led to the definition of association
and partitioning criteria for heterogeneous data. In (10), an application in computational
linguistics is proposed and particularly for the automatic building of synonyms dictionaries.
We can also mention other theoretical contributions from (8), (45), or (50) for example.

More recently, the “Correlation Clustering” (CC) method has been proposed by G. Bansal and
al in (6). The similarity matrix, considered here, is built up as follows: we put 1 if objects Oi

and Oi′ are considered as similar and −1 otherwise. In terms of the notations presented in
this chapter, this corresponds to the particular case where Aii′ = 1 if Oi and Oi′ are similar and
Aii′ = 1 if they are not. In (15), the linear program used for approximating the clustering prob-
lem is equivalent to eq. (18) except that the unknown relational matrix is X with general term
Xii′ = 1− Xii′ . This latter representation leads to a distance relation which is irreflexive, sym-
metric and which satisfies the “triangle inequality” which is the exact dual of the transitivity
property17. In a recent work, L. Labiod (25) has studied the possible connections between the

14In condition to satisfy the relational properties of an equivalence relation see eq. (18).
15ie Xii′ = 1.
16But we will show in section 6 other main results obtained by using the RA formalism.
17If X satisfies the transitivity inequality given in eq. (18), then it is easy to see that X satisfies the

triangle inequality: Xii′′ ≤ Xii′ + Xi′ i′′ .



CC methods, the N-Cuts methods and other clustering functions and the RA approach. Ac-
cordingly, his conclusions corroborate the fact that the Condorcet’s criterion is a central and
focal concept.

5. The block seriation problem

Let us consider the case where we have as an input, a (N × P) 0/1 indicator table K. Then in
its original form, the problem of seriation consists in finding two permutations, the first one
τ, corresponding to a permutation of the rows of K, and the other one σ, corresponding to a
permutation of the columns of K; such that a dense structure “appears” along the diagonal of
the permuted K′. A simple example is given below:

K =



D1 D2 D3 D4 D5 D6 D7 D8 D9

O1 1 0 0 1 0 0 1 0 0
O2 1 0 0 0 1 0 0 1 0
O3 1 0 0 1 0 0 1 0 0
O4 0 1 0 0 1 0 0 1 0
O5 0 1 0 0 1 0 0 1 0
O6 0 0 1 0 1 0 0 0 1
O7 0 0 1 0 0 1 0 0 1


↓ (τ,σ)

K′ =



D1 D4 D7 D2 D8 D5 D3 D6 D9

O1 1 1 1 0 0 0 0 0 0
O3 1 1 1 0 0 0 0 0 0
O2 1 0 0 0 1 1 0 0 0
O4 0 0 0 1 1 1 0 0 0
O5 0 0 0 1 1 1 0 0 0
O6 0 0 0 0 0 1 1 0 1
O7 0 0 0 0 0 0 1 1 1



(25)

In a more general perspective, let suppose that we have two (N × P) matrices, A and A, such
that Aij gives the “strength” of the relation OiRDj and Aij gives the “strength” of the relation
OiRDj, ∀i = 1, . . . , N; j = 1, . . . , P. For example, considering the previous example, we can take
Aij = Kij and Aij = 1−Kij.

Let us moreover denote by P = P1 ∪ . . . ∪ Pk ∪ . . . Pκ and Q = Q1 ∪ . . . ∪ Qk ∪ . . . Qκ , two par-
titions with regards to the set of objects O and the set of descriptors D. These two partitions
have the same number of clusters κ. Then, the block seriation problem can be reshaped under
the maximization of the following criterion:

F(κ, P, Q) =
κ

∑
k=1

 ∑
Oi ∈ Pk
Dj ∈ Qk

Aij + ∑
Oi ∈ Pk
Dj /∈ Qk

Aij

 (26)

We can see that the solution κ = 3; P1 = {O1,O3}, P2 = {O2,O4,O5}, P3 = {O6,O7} and
Q1 = {D1, D4, D7}, Q2 = {D2, D8, D5}, Q3 = {D3, Dv,O9}; is the triple that maximizes the
criterion considering the example given in eq. (25).



We can therefore define the two following assignment matrices:

Pik =
{

1 if Oi belongs to Pk

0 otherwise
(27)

Qjk =
{

1 if Dj belongs to Qk

0 otherwise
(28)

Using those assignment matrices, the problem can be re-stated as follows:

maxκ,P,Q F(κ, P, Q) = ∑κ
k=1

(
∑N

i=1 ∑P
j=1 AijPikQjk + ∑N

i=1 ∑P
j=1 AijPik(1−Qjk)

)
st

Pik ∈ {0,1} ∀i = 1, . . . , N;k = 1, . . . ,κ
Qjk ∈ {0,1} ∀i = 1, . . . , N;k = 1, . . . ,κ
∑κ

k=1 Pik = 1 ∀i = 1, . . . , N
∑κ

k=1 Qjk = 1 ∀j = 1, . . . , P

(29)

There are N + P linear constraints but the criterion that we have to maximize is quadratic
according to PikQjk thus we cannot use integer linear programming solvers.

But, considering the criterion given in eq. (29), one can distribute the sum over k into the
brackets and introduce the following variable (33), (35):

Zij = ∑κ
k=1 PikQjk

=
{

1 if Oi and Dj belong to the same block
0 otherwise

(30)

For example, according to this variable, the optimal solution corresponding to the example
given previously is the following one (to be clear we give this solution according to permuta-
tions τ and σ):

Z =



D1 D4 D7 D2 D8 D5 D3 D6 D9

O1 1 1 1 0 0 0 0 0 0
O3 1 1 1 0 0 0 0 0 0
O2 0 0 0 1 1 1 0 0 0
O4 0 0 0 1 1 1 0 0 0
O5 0 0 0 1 1 1 0 0 0
O6 0 0 0 0 0 0 1 1 1
O7 0 0 0 0 0 0 1 1 1


(31)

For instance we can see that the first block constituted of (P1; Q1) is given by
({O1,O3};{D1, D4, D7}) and all terms of Z corresponding to the Cartesian product
{O1,O3} × {D1, D4, D7} are assigned 1.

The (N × P) binary matrix Z is interpreted as a relational matrix associated to a binary
relation on two sets O and D. The important facts are that this approach firstly allows us to
have a criterion that is independent of κ and which is linear according to Z, and secondly, it
is possible to express the relational properties of this particular relation using linear equations.



These linear equations were given in (33):

∑P
j=1 Zij ≥ 1 ∀i = 1, . . . , N

∑N
i=1 Zij ≥ 1 ∀j = 1, . . . , P

Zij + Zi′ j + Zij′ − Zi′ j′ ≤ 2
Zij + Zi′ j + Zi′ j′ − Zij′ ≤ 2
Zij + Zij′ + Zi′ j′ − Zi′ j ≤ 2
Zi′ j + Zij′ + Zi′ j′ − Zij ≤ 2

∀i = 1, . . . , N
(32)

These four latter constraints are called “impossible triads”: “at the crossing of two rows and
two columns of Z, one cannot get a “1” value three times”. More precisely, let us suppose that
for the optimal solution, Zij = 1, that is to say, Oi and Dj are in the same block. If furthermore,
Zij′ = 1 and Zi′ j′ = 1 then we must also have Zi′ j = 1. In other words, if Oi is in the same block
as Dj and Dj′ , and if Oi′ is in the same block as Dj then Oi′ should be in the same block as Dj.

Using the binary relation formalism, we can see that we can also obtain the relational matrix
Z by means of integer linear programming solver:

maxZ Condorcet(A, A, Z)
st

Zij ∈ {0,1} (binarity){
∑P

j=1 Zij ≥ 1

∑N
i=1 Zij ≥ 1

∀i = 1, . . . , N
∀j = 1, . . . , P (assignment)

Zij + Zi′ j + Zij′ − Zi′ j′ ≤ 2
Zij + Zi′ j + Zi′ j′ − Zij′ ≤ 2
Zij + Zij′ + Zi′ j′ − Zi′ j ≤ 2
Zi′ j + Zij′ + Zi′ j′ − Zij ≤ 2

∀i, i′ = 1, . . . , N
∀j, j′ = 1, . . . , P (impossible triads)

(33)

Let us recall that the Condorcet’s criterion under its general form, is given as follows:

Condorcet(A, A, Z) =
N

∑
i=1

P

∑
j=1

(
AijZij + AijZij

)
(34)

If A = K, K being an indicator table, commonly used in categorical data analysis, then the
block seriation model given in eq. (33) gives rise to a biclustering method for this type of
table. In this particular case, we have Aij = 1 − Kij and by replacing Zij with 1 − Zij, we
obtain the following simplified Condorcet’s criterion:

Condorcet(K, Z) =
N

∑
i=1

P

∑
j=1

(
Kij −

1
2

)
Zij (35)

We have highlighted the RA approach for biclustering tasks in the particular case of 0/1 data
type but, the proposed method can be straightforwardly extended to other types of data such
as real continuous quantitative data. In that case, matrices A and A18 are required.

18 A could be taken from A.



Block seriation models, through their relational formalism, have generated many research
works, both for theoretical and practical purposes. We can quote as an illustrative example
C. Bédécarax’s Phd Thesis (9) where is defined a more general framework called “quadri-
decomposition”. From that general model, the above mentioned clustering problems19 are
in fact structural derivatives. Besides, “quadri-decomposition” modeling was successfully
applied to the automatic building of dictionaries in computational linguistics see (10). Fur-
thermore, in order to take into account large amount of data, several heuristics have been
developed and the interested reader could consult (43) for such algorithms and also (16) for
an application to production management optimization.

6. Other results of the RA method in the context of clustering problems

In the analysis of equivalence relations, the RA approach has allowed other interesting
contributions.

The first one, concerns the study of numerous “association criteria” crossing categorical vari-
ables20 such as Belson, Lerman, χ2 of Tchuprow, Jordan, Rand and Janson and Vegelius in-
dexes for instance. Suppose that we have at our disposal two categorical variables Vk and
Vl with respectively pk and pl categories. Then the previous association criteria are basically
defined using the (pk × pl) contingency table nkl where ∀(u,v) ∈ {1, . . . , pk} × {1, . . . , pl}:

nkl
uv =

{
Nb of objects that have both category Du of Vk

and category Dv of Vl (36)

Relational matrices such as Ck and Cl , are other ways to encode categorical variables. Follow-
ing some previous contributions from M.G. Kendall (24), J.F. Marcotorchino in (28), (29), (30),
(31), developed correspondence or transfer formulas that allow one to express the association
criteria using relational matrices Ck and Cl . Some of the main correspondence formulas are
given below:

pk

∑
u=1

pl

∑
v=1

(nkl
uv)

2 =
N

∑
i=1

N

∑
i′=1

Ck
ii′C

l
ii′ (37)

pk

∑
u=1

(nkl
u.)

2 =
N

∑
i=1

N

∑
i′=1

Ck
ii′ (38)

The reformulation of association criteria into the RA formalism, allows us to model coefficients
like Belson, Rand, χ2 of Tchuprow, Janson and Vegelius..., as particular cases of a general
Coefficient, which is nothing but a simple variant of Bravais-Pearson’s correlation coefficient
∆(Ck,Cl , f ,µk,µl) see (28), (38), (44), (2), (3).
The RA formalism has allowed to get a deeper understanding of the main differences between
several association criteria: in fact, the latent differences between the above mentioned asso-
ciation criteria can be expressed, according to 3 parameters ( f ,µk,µl):

• f is a function that transforms the general term of each relational matrix21

19ie clustering O or D or both.
20Two way contingency tables analysis.
21For example, among the transformation functions that occurred in the relational formalism, Torger-

son’s transformation is the one related to the Belson criterion.



• µk is a central trend (playing the role of a mean) corresponding to Ck

• µl is a central trend (playing the role of a mean) corresponding to Cl

In order to illustrate those results, we give as an example, the different formulations of the χ2

of Tchuprow criterion:

Tchuprow(Vk,Vl) =
∑u,v

1
nkl

u.nkl
.v

(
nkl

uv −
nkl

u.nkl
.v

N

)2

√
(pk − 1)(pl − 1)

(39)

=
∑i,i′

(
Ck

ii′
Ck

i.
− 1

N

)(
Cl

ii′
Cl

i.
− 1

N

)
√

∑i,i′

(
Ck

ii′
Ck

i.
− 1

N

)2

∑i,i′

(
Cl

ii′
Cl

i.
− 1

N

)2
(40)

where Ck
i. = ∑i′ Ck

ii′ gives the number of objects that belong to the same cluster22 of Oi

according to Vk. Here, the parameters ( f ,µk,µl) corresponding to the χ2 of Tchuprow is
( f (Cii′ ) = Cii′/Ci.,µk = 1/N,µl = 1/N). Another example is the (modified) Rand index,
which can also be expressed using this general coefficient ∆: it is linked to the particular
coefficient given by ( f (Cii′ ) = Cii′ ,µk = 1/2,µl = 1/2).

Concerning the relational expression of association criteria, we can also quote the “Maximal
Association model” defined in (32) and (48) which is aimed at defining partitioning criteria
by aggregating association criteria between relations and X. More precisely, suppose that we
have M relational matrices23, Ck;k = 1, . . . , M, and we want to find out a consensual equiva-
lence relation X. In that case, we can use a particular association criterion ∆(Ck, X, f ,µk,µl)
in order to measure the correlation between a given partition Ck and an unknown relational
matrix X representing the consensus partition. Then, one can consider to determine X such
that it maximizes24 the following partitioning criterion25:

M

∑
k=1

∆(Ck, X, f ,µk,µl) (41)

We can see that the Maximal Association model for partitions gives many solutions to the
initial problem given by eq. (3).
Moreover these association criteria, can be interpreted as similarity measures between
categorical variables. As a result, one can use those measures to partition categorical variables
and apply these results in a dimension reduction purpose. This question was investigated in
the context of the RA framework in (1).

The second contribution in data analysis that is worth noticing is related to the measure of
similarity between objects. The approach developed in (11), (12), called “regularized similar-
ity” consists in giving automatic weights to the initial variables according to particular models

22ie the number of objects that have the same category of Oi according to Vk .
23Derived from M categorical variables.
24Most of the association criterion’s numerators given by particular ∆(Ck , X, f ,µk ,µl) lead to linear par-

titioning criteria according to X and can then be used with integer linear programming.
25With respect to the linear equations given in eq. (18).



of weighting, among them let us quote: the logical, the statistical and the probabilistic models.

One can represent a set of M categorical variables using the (N× P) indicator matrix K where
P = ∑M

k=1 pk. This matrix is a binary one and we have, ∀i = 1, . . . , N;∀j = 1, . . . , P:

Kij =
{

1 if object Oi is in the category26 Dj

0 otherwise
(42)

We have previously defined Cii′ according to a logical approach in terms of equivalence rela-
tions aggregation. We can also have a more geometrical approach since we have:

Cii′ =
P

∑
j=1

KijKi′ j = 〈~Oi, ~Oi′ 〉 (43)

where ~Oi = (Ki1, . . . ,Kij, . . . ,KiN) and 〈., .〉 is the canonical scalar product.
From a geometrical standpoint, the regularized similarity method amounts to exhibiting a
diagonal metric, for which the diagonal weights are computed from the categorical variables.
The regularized similarity of type α denoted by Aα

ii′ is given by:

Aα
ii′ =

P

∑
j=1

αjKijKi′ j (44)

For instance, “statistical regularized similarity”, defined in (11), gives higher weights to
infrequent categories and reciprocally, very low weights to those frequent categories. In this
particular case, we have actually αj = 1/K.j. We can observe that the model supposes that
if two objects have a rare category in common then their similarity should be higher than if
their shared category were frequent.

This particular similarity measure is related to the χ2 metric used in Correspondence Factor
Analysis methods (20). We can mention here, the following paper (34), where the latent link
between the RA method and Factor Analysis methods is explained.
Basically, the Condorcet’s criterion, while we use the statistical regularized similarity,
becomes highly related to “Inertial criteria”. More precisely, J.F. Marcotorchino showed
that the Condorcet’s criterion associated to the similarity matrix of general term Aα

ii′ , and

the dissimilarity matrix of general term Aα
ii′ =

Aα
ii+Aα

i′ i′
2 − Aα

ii′ , is the non trivial partitioning
criterion strongly relevant to the family of criteria based upon inertia or “variance”. This
result led to the design of a full methodology called “Relational Factor Analysis method” (34)
that consists in coupling the representations of clusters in terms of “bubbles”, resulting from
the RA27 method, with the projection of objects on a 2D space obtained after applying the
Factor Analysis method. Both approaches complement each other, because they resectively
maximize objective criteria that are very close.

The third contribution that we can mention finally, is based on the extension of the RA
method which is well-designed for clustering categorical data, to deal with objects described
by real continuous quantitative variables. Indeed, we can notice that similarity measures can
be expressed through scalar products or in a general manner by kernels. Then if we take

27With the statistical regularized similarity.



Aii′ = 〈~Oi, ~Oi′ 〉 and Aii′ = 〈~Oi ,~Oi〉+〈~Oi′ ,~Oi′ 〉
2 − 〈~Oi, ~Oi′ 〉 which is equal to 1

2 ||~Oi − ~Oi′ ||, we have
the following simplified Condorcet’s criterion:

Condorcet(A, X) =
N

∑
i=1

N

∑
i′=1

(
〈~Oi, ~Oi′ 〉 − 1

2

(
〈~Oi, ~Oi〉+ 〈~Oi′ , ~Oi′ 〉

2

))
Xii′ (45)

Following previous results given in (34), we can show that the criterion based upon the inertial
difference can be expressed using the RA formalism as follows:

IB(X)− IW(X) = 2
N ∑N

i=1 ∑N
i′=1

(
〈~Oi, ~Oi′ 〉 − 1

2

(
〈~Oi ,~Oi〉+〈~Oi′ ,~Oi′ 〉

2

))(
Xii′
Xi.

)
− 1

N2 ∑N
i=1 ∑N

i′=1〈~Oi, ~Oi′ 〉
(46)

IB(X) is the “between classes inertia” related to a partition represented by its relational
matrix X, IW(X) is the “within classes inertia28” and 〈., .〉 is a scalar product (kernel).

In the formula (46), if we look at the subpart depending on X, we can observe that the main
difference between Condorcet’s criterion and the inertial difference criterion resides in the
fact that the first one does not weight the general term Xii′ , whereas the second one integrates
a weight29, 1/Xi., to the general term Xii′ .

Finally, by considering eq. (46) and the 0/1 integer linear program described in eq. (18) we
can thus extend the RA approach for clustering problems to the more general case of objects
described by real continuous quantitative variables.
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[7] Barthélémy, J.P., Guenoche, A., Hudry, O.: Median linear orders: heuristics and a branch
and bound algorithm. European Journal of Operational Research 41, 313–325 (1989)
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