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Abstract

The well-known 5-parameter isometry group of plane gravitational waves in 4 dimensions is

identified as Lévy-Leblond’s Carroll group in 2 + 1 dimensions with no rotations. Our clue is

that plane waves are Bargmann spaces into which Carroll manifolds can be embedded. We also

comment on the scattering of light by a gravitational wave and calculate its electric permittivity

considered as an impedance-matched metamaterial.
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I. INTRODUCTION

A gravitational plane wave is the 4-manifold, R4 globally, endowed with the Lorentz

metric [1–8],

g = δij dX
idXj + 2dUdV +Kij(U)X iXj dU2, (I.1)

where the symmetric and traceless matrix K(U) = (Kij(U)) characterizes the profile of the

wave. Here U and V are light-cone coordinates, whereas X = (X1, X2) parametrizes the

transverse plane which carries the flat Euclidean metric dX2 = δij dX
idXj. This metric is

a Brinkmann pp-wave metric [9]. Since the only non-vanishing curvature components are

Ri
UjU = −RV

ijU = −Kij, it is Ricci-flat. In 3 + 1 dimensions, (I.1) is the general form of a

Ricci-flat Brinkmann metric.

In this paper we identify, following [4], the isometry group of the gravitational wave (I.1)

we denote here by C, as the Carroll group in 2 + 1 dimensions with broken rotations.

Let us recall that the Carroll group, C(d+1), has originally been introduced as an unusual

contraction, c→ 0, of the Poincaré group E(d, 1) [10–12]. It acts on (d+ 1)-dimensional flat

“Carroll space-time”, Cd+1, with coordinates (x, v), according to

x→ Ax + c, v → v − b · Ax + f, (I.2)

where A ∈ O(d) and c ∈ Rd represent spatial orthogonal transformations and translations;

b ∈ Rd and f ∈ R generate “Carrollian boosts” and translations of “Carrollian time”, v,

respectively. Let us recall that the flat Carroll space-time, Cd+1 ∼= Rd+1, is endowed with

the degenerate metric γ = dx2 with kernel spanned by the constant vector field ξ = ∂v, and

is equipped with its flat affine connection. The Carroll group, C(d + 1), is thus the group

of all affine transformations of “space-time” which leave γ and ξ invariant.

Long considered as a sort of mathematical curiosity [12–14], the Carroll group has

reemerged more recently in brane-dynamics [15, 16], for the BMS group [17], in string

theory [17–19], and in non-relativistic gravitation [20].

We find it useful to record our notations: (X, U, V ) denote “Brinkmann” coordinates

which appear in (I.1), whereas (x, u, v) in (III.1) are Baldwin-Jeffery-Rosen (BJR) coor-

dinates [1, 4], convenient for determining both the isometries and the geodesics [4]. In

Minkowski space-time, K = 0, both coordinates reduce to the usual light-cone coordinates

(r, t, s).
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II. THE CARROLL GROUP AND BARGMANN SYMMETRIES

Our clue is that the space-time with metric (I.1) is also a Bargmann manifold [21, 22] in

that it carries a null, covariantly constant, vector field, namely ξ = ∂V .

Bargmann spaces are convenient tools to study non-relativistic dynamics in one lower

dimension [21–24] : the quotient of a (d + 1, 1)-dimensional Bargmann space by the folia-

tion generated by ξ carries a (d + 1)-dimensional Newton-Cartan structure [21]; U in (I.1),

can be viewed as non-relativistic time and −1
2
Kij(U)X iXj as a time dependent quadratic

scalar potential. Non-relativistic motions in Newton-Cartan spacetime are projections of

null geodesics in extended Bargmann space-time [21–23]; the ξ-preserving isometries of the

latter project to non-relativistic Galilean symmetries.

The metric (I.1) describes, in Bargmann language, the Eisenhart lift of a (possibly

anisotropic) planar oscillator with time dependent frequencies [21–25]; its ξ-preserving isome-

tries span the [centrally extended] Newton-Hooke group [without rotations in the anisotropic

case] [26]; when K = 0, the latter goes over to the [centrally extended] Galilei group (also

referred to as the Bargmann group in (d+1, 1) dimension) [21, 22]. The latter is conveniently

represented by the matrices 
A b 0 c

0 1 0 e

−b†A −1
2
b2 1 f

0 0 0 1

 , (II.1)

where A ∈ O(d); b, c ∈ Rd; and e, f ∈ R stand for a Galilei time translation and for a “Car-

roll time” translation, respectively. The superscript † means transposition. The Bargmann

group (II.1) acts affinely by matrix multiplication on Bargmann extended spacetime Rd+1,1

parametrized by (r, t, s), according to

r → Ar + bt+ c, t→ t+ e, s→ s− b · Ar − 1

2
b2t+ f. (II.2)

Recall that flat Bargmann space is endowed with the metric g = dr2+2dt ds, and the null,

constant, vector field ξ = ∂s. The null hyperplane Cd+1
t0 defined by t = t0 = const. is a Carroll

spacetime [12, 17] as it carries a twice-symmetric, semi-positive “metric”, dr2 = g|t=t0 , whose

kernel is generated by ξ. The restriction of the Levi-Civita connection of the Bargmann

metric is then a distinguished Carroll connection on Cd+1
t0 [17], coordinatized by x = r and
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v = s. The action (I.2) of the Carroll group is readily recovered by putting e = 0 in (II.2)

and performing an easy redefinition of space and “Carroll time” translations. The Carroll

group, C(d + 1) is hence the subgroup of the Bargmann group (II.1), defined by e = 0. It

is therefore a subgroup of all isometries, i.e., of the Poincaré group, E(d + 1, 1), in the flat

case. From now on, we set d = 2 again.

III. ISOMETRIES OF PLANE GRAVITATIONAL WAVES

Our first step in identifying the isometries of the plane wave (I.1) is to recast the metric

in a new coordinate system (x, u, v) [1, 4], which allows us to determine the isometry group

in terms of elementary functions, see eqn. (III.6) below. This can be achieved [5–7] with

the help of a change of coordinates (X, U, V )→ (x, u, v), namely

X = P (u)x, U = u, V = v − 1

4
x · ȧ(u)x , (III.1)

where a(u) = P (u)†P (u) for some non-singular 2×2 matrix P (u)1. The change of coordinates

allows us to present the metric (I.1) in the form

g = aij(u) dxidxj + 2du dv, (III.2)

provided the matrix P (u) is a solution of the joint system

P̈ = KP, P †Ṗ = Ṗ †P. (III.3)

Since

K =
1

2
P

(
L̇+

1

2
L2

)
P−1, L = a−1ȧ, (III.4)

the Ricci flatness of the metric (III.2), namely Tr(K) = 0, is given by the equation [1, 4],

Tr

(
L̇+

1

2
L2

)
= 0. (III.5)

Isometries. We now claim that the (generic) isometries of (III.2) form a 5-dimensional Lie

group. Following Souriau [4], in terms of the BJR (x, u, v), the latter acts on space-time as,

x→ x +H(u)b + c, u→ u, v → v − b · x− 1
2
b ·H(u)b + f, (III.6)

1 The square root, P , of the matrix a > 0 is not uniquely defined since RP with R(u) ∈ O(2) is another

one. However, eqns (III.3) guarantee that Ṙ = 0, i.e., that P is merely defined up to O(2). Conditions

(III.3) implies that K = P̈P−1 in (I.1) is indeed symmetric.
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where H is a (symmetric) 2× 2 matrix verifying Ḣ = a−1, that is,

H(u) =

∫ u

u0

a(t)−1dt. (III.7)

Manifestly, c ∈ R2 and f generate transverse-space resp. null translations along the v

coordinate [6]. Moreover, the group law deduced from (III.6),

(b, c, f).(b′, c′, f ′) = (b + b′, c + c′, f + f ′ − b · c′), (III.8)

is precisely that of the Carroll group, (I.2) with no rotations, i.e. A = Id. Thus the isometry

group of the above gravitational wave is indeed the group C ⊂ C(2 + 1) of matrices
1 b 0 c

0 1 0 0

−b† −1
2
b2 1 f

0 0 0 1

 . (III.9)

The vector b ∈ R2 generates, in particular, a Carroll boost acting as in (III.6), while c ∈ R2

and f are Carrollian “space-time” translations, as before. Let us note that C is a normal

subgroup of the Carroll group of C(2 + 1), C(2 + 1)/C ∼= O(2).

It is worth stressing that while the way the Carroll group is implemented on an u = const.

null hypersurface does depend on the (fixed) value of u [8], all these actions can be derived

from the simple Carroll action at u = u0 according to (III.6)-(III.7). The coordinate trans-

formation (III.1) followed backwards yields the Carroll action in terms of the Brinkmann

coordinates and we recover eqn. # (3) in [8].

Geodesic motion. As noted by Souriau [4], the conserved quantities associated with geodesic

motions are then readily determined by Noether’s theorem. Choosing, with no restriction, u

as parameter, they are

p = a ẋ, k = x−Hp, m = 1, (III.10)

interpreted as linear momentum, boost-momentum and “mass” (unity in our parametri-

zation). In BJR coordinates, the geodesics have then the remarkable explicit expression

x(u) = H(u)p + k, v(u) = −1

2
p ·H(u)p + e u+ d, (III.11)

5



where e = 1
2
gµν ẋ

µẋν is. (This constant is negative/zero/positive for timelike/null/spacelike

geodesics). d is an integration constant. The isometry group acts on the above constants of

the motion as

(p,k, e, d)→ (p + b,k + c, e, d+ f − b · k) (III.12)

allowing us, in particular, to carry any geodesic to a geodesic defined by p = k = 0 and

d = 0, which then becomes “vertical” [4], x = 0, v = c u. Conversely, any geodesic can be

obtained by “exporting a vertical one” by an isometry : the only group-invariant property

of the trajectory is the sign of e.

IV. CLASSICAL EXAMPLES

Let us illustrate our procedure by simple examples.

1. The restriction of flat Minkowski space with metric g = dr2 + 2dt ds to the constant

“time” slice t0 = 0 is a Carroll manifold with ξ = ∂s, upon which the restriction e = 0

of the Bargmann group (II.1) acts, consistently with the Carroll action (I.2), via (III.6)

with H(t) = (t − t0) Id . The conserved quantities (III.10) take the familiar Galilean

form. Shifting the basepoint, t0 → t′0, merely shifts the transformation law of v by a

constant, namely v → v − b.x− 1
2
b2(t′0 − t0) + f.

2. For a less trivial example, consider, e.g.,

P (u) = χ(u) diag
(
eα(u), e−α(u)

)
(IV.1)

with α(u) some arbitrarily chosen function. The associated metric

g = χ2
[
e2α(dx1)2 + e−2α(dx2)2

]
+ 2du dv (IV.2)

is Ricci-flat if

χ̈+ α̇2 χ = 0, (IV.3)

see (III.5). The pp-wave profile is, in this case,

Kij(U)X iXj =
1

2
A(U)

[
(X1)2 − (X2)2

]
, A =

2

χ2

d

du

(
χ2 dα

du

)
. (IV.4)
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From the mechanical point of view, this metric describes two uncoupled time-

dependent harmonic oscillators, one attractive, the other repulsive, with opposite

frequency-squares.

The metric (IV.2) is manifestly invariant against transverse space and advanced time-

translations, x → x + c and v → v + f , respectively, while retarded time, u, is kept

fixed. The orthogonal group, O(2), is clearly broken since the spatial metric is not

diagonal unless α(u) = 0. Carroll boosts act as in (III.6) with H(u) =
∫ u
u0
P (w)−2dw,

where P is as in (IV.1).

To have a toy example, let us take, e.g., α(u) = u. Then a Ricci-flat metric which is

regular in the neighborhood of u = 0 is given, for example, by χ(u) = − cosu, whose

profile is
1

2
Kij(U)X iXj = tanU

[
(X2)2 − (X1)2

]
. (IV.5)

It describes a saddle-like surface with “time”-dependent scale, depicted on Fig.1, which

shows the change of the profile when u passes from negative to positive2.

FIG. 1: Wave profile (IV.5) for α(u) = u for u = −π/2 + 0.1, u = −π/4, u = 0, u = π/4, u =

π/2− 0.1. For u = 0 we get flat Minkowski space, as expected.

The components of the matrix-valued function H = diag
(
H11, H22

)
,

H11(u) =

∫ u

0

cos−2w e−2wdw, H22(u) =

∫ u

0

cos−2w e+2wdw (IV.6)

which rules both how Carroll boosts act, (III.6), and the evolution of geodesics,

(III.11), are plotted on Fig.2. For u > 0 the component H22 increases rapidly while

2 For u = ±π/2 χ = det(a(u))1/4 vanishes. This is a general property which indicates a mere coordinate

singularity [4].
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H11 is damped. For u < 0 the behavior is the opposite, consistently with the change

of profile shown on Fig.1 .

FIG. 2: The entries of the matrix-valued function H(u) = diag
(
H11, H22

)
for α(u) = u.

The evolution of a geodesic, shown on Fig.2a, is consistent with the profile change :

the repulsive and attractive directions are interchanged when u changes sign. As said

in sec. III, the curling trajectory could actually be “straightened out”, see Fig.2b,

by transforming p → 0,k → 0, d → 0 by a suitable action of the Carroll group, see

(III.12).

Let us mention that choosing instead of (IV.1):

P (u) = χ(u)

 cosh β(u) sinh β(u)

sinh β(u) cosh β(u)

 (IV.7)

with β(u) an otherwise arbitrary function, we find that the associated metric (III.2)

is Ricci-flat if χ̈+ β̇2 χ = 0. The pp-wave profile becomes

K(U)ijX
iXj = B(U)X1X2, B =

2

χ2

d

du

(
χ2 dβ

du

)
. (IV.8)

The examples (IV.4) and (IV.8) can be combined, keeping α and β independent, to

end up with the most general profile.

3. So far, the functions A and B encoding the polarization states of the gravitational

wave have been traded as arbitrary. Now in the periodic case the isometry group is

actually 6-dimensional [5]. In fact, if

Kij(U)X iXj = cos(ωU)X1X2 +
1

2
sin(ωU)

[
(X1)2 − (X2)2

]
(IV.9)
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⇒
(a) (b)

FIG. 3: The geodesic motion is determined by the conserved quantities. For p = (1, 0) and k = 0,

for example, the trajectories remain in the hyperplane x2 = 0 which can therefore be ignored,

yielding 3D pictures for
(
x1(u), u, v(u)

)
. All trajectories can be “straightened out” by a suitable

action of the Carroll group. We took α(u) = u.

with ω = const., then, putting Z = X1 + iX2, one finds that the advanced time

translations

Z → e−
1
2
iωeZ, U → U + e, V → V, (IV.10)

act isometrically for all e ∈ R. This subgroup of the Bargmann group (II.1) is however

clearly not a subgroup of the Carroll group C(2 + 1) which leaves U fixed, see (III.9).

V. CARROLL SYMMETRY OF AN ISOTROPIC OSCILLATOR

When K = −ω2 Id with ω = const., the metric (I.1) does not solve the vacuum Einstein

equations and is therefore not that of a gravitational wave; it describes instead an isotropic

harmonic oscillator [21, 22]. However the procedure described in Sec. III can be carried

out at once : P = cos(ωU) Id is a solution of (III.3) ; then (III.1) yields (III.2) with

gij(u) = cos2(ωu)δij. Integrating (III.7) we get,

H(u) =

(
tan(ωu)

ω
− tan(ωu0)

ω

)
Id. (V.1)
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Then (III.6) yields the Carroll action on oscillator-Bargmann space. Redefining the time

and renaming x and v allows us to recover, moreover, Niederer’s transformation [25, 27],

t =
tan(ωU)

ω
, r ≡ x =

X

cos(ωU)
, s ≡ v = V − ωX2

2
tan(ωU), (V.2)

which maps every (half-oscillator-period)×Rd+1 conformally onto the Bargmann space,

Rd+1,1, of a free particle, dr2 + 2dt ds = cos−2(ωU)
(
dX2 + 2dU dV − ω2X2 dU2

)
. It is worth

noting that, in terms of the redefined time, (V.1) is in fact H(t) = (t − t0) Id, consistently

with what we had found in the flat case.

We mention that the Niederer trick (V.2) could be used for an alternative derivation

of the Carroll symmetry. Recall first that the free (Minkowski) metric has the (extended)

Schrödinger group as group of ξ-preserving conformal symmetries [22]. The latter is in

turn exported to the oscillator by (V.2). Now, as said before, the t = 0 slice of flat

Bargmann space is a Carroll manifold Cd+1, with the Carroll symmetry group embedded

into the Bargmann group by eliminating the time translations (II.1). Moreover, for t = 03

the conformal factor is equal to one. The image is therefore an isometry. However, the

Niederer trick fails to work in the anisotropic case (and thus for a gravitational wave),

whose Bargmann space is not conformally flat [26].

VI. SCATTERING OF LIGHT BY A GRAVITATIONAL WAVE

We conclude by some additional comments on the scattering of light by a plane gravi-

tational wave. In [30] the analogy between photon production in a medium with a time-

dependent refractive index and particle production (and its absence) [6, 31–34] by gravita-

tional waves has been stressed and the prospects for laboratory experiments explored. For

this purpose the Baldwin-Jeffery-Rosen form of the metric would seem to be the most use-

ful. In fact one may use the general formulae developed by Tamm, Skrotskii and Plebanski

[35–38] to extract the relevant permittivities εab = εba and permeabilities µab = µba. We

mainly follow the notation of [35] but use the opposite signature convention and a different

notation for permittivity and permeability.

3 For t = t0 = const. the conformal factor is constant and can be absorbed by a redefinition of the metric.
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We define t = x0, z = x3, u = 1√
2
(z − t), v = 1√

2
(z + t) and write the metric (III.2) as

g = −dt2 + gab(u)dxadxb, gab dx
adxb = aij(u)dxidxj + dz2, (VI.1)

where a, b = 1, 2, 3 and i = 1, 2. Now in the coordinates (t,x), where x = (xa), Maxwell’s

equations take the usual flat-space form in a medium

curlE = −∂B
∂t

, divB = 0 , (VI.2a)

curlH = +
∂D

∂t
, divD = 0 , (VI.2b)

where Da = εabEb, B
a = µabHb. Since g00 = −1 and g0a = 0 in these coordinates, there are

no magneto-electric effects, which in turn implies that the medium is “impedance matched”,

that is, εab = µab =
√
−g gab. In detail, one has

εij =
√

det a(u)
(
a(u)−1

)ij
, ε33 =

√
det a(u), ε3i = 0. (VI.3)

If instead of the Maxwell equations one were to look at the Dirac equation, one might

be able to treat the analogue for gravitational waves of the Kapitza-Dirac effect [39] for

electromagnetic waves.

VII. CONCLUSION

Plane gravitational waves have long been known to have a 5-dimensional isometry group.

The first three parameters are readily identified as translations in transverse space, resp.

along one of the light-cone generators. The other two have remained somewhat mysterious,

though; here we identify the latter as Carroll boosts. In fact, we show that the isometry

group of (I.1) is the Carroll group without rotations. If the matrix a = (aij(u)) in (III.2)

happens to depend on u periodically, then u-translational symmetry is restored and the

isometry group is enhanced to a 6-parameter group; see (IV.10). In the isotropic case,

as in section V, rotations are also restored and we end up with the 7-parameter centrally

extended Newton-Hooke group. In the flat case, K ≡ 0, the latter becomes the Bargmann

group, which is a subgroup of the 10-parameter Poincaré group.

The appearance of these typically non-relativistic structures is surprising in that the

theory is fully general relativistic. It is also unexpected, since the Carroll group has originally

been defined as an ultra-relativistic contraction of the Poincaré group. Moreover, bearing in
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mind that (conformal) Carroll structures have been shown to dwell in the edge of space-time,

e.g., conformal infinity of certain solutions of Einstein’s equation [17], it is remarkable to

witness the Carroll group appearance in the bulk of some instances of the latter, namely

gravitational plane waves. From our point of view, the key formulae are

1. The metric in Baldwin-Jeffery-Rosen coordinates, (III.2);

2. The exact equation for the matrix a in (III.5) related to various profiles, cf. Fig.1;

3. The explicit form of the action of the Carroll group, eqn. (III.6), viewed as a subgroup

of the Bargmann group, (III.9);

4. In BJR coordinates the geodesics are expressed in terms of the conserved quantities

associated with the Carroll symmetry through Noether’s theorem, (III.11), and can

be determined explicitly when the matrix H(u) in (III.7) is calculated, yielding Fig.2.

This fact plays a key rôle in our subsequent applications to the memory effect [40]

and thus underlines the importance of Carroll symmetry for the study of gravitational

waves.

Our clue is the double role played by “Bargmann space” — which is both a relativistic

space-time and a convenient tool to study non-relativistic physics in one lower dimension.

From the group theory point of view, our finding corresponds to the fact that the Bargmann

(centrally extended Galilei) and Carroll groups are both subgroups of the Poincaré group in

one higher dimension – a way of seeing we find more convenient than the original derivation

by group contraction [10–12]. This is the point of view espoused systematically in Sections

II, III, and IV to unveil the Carroll structure of the group of isometries of the gravitational

waves under study. A similar argument, developed in Section V, sheds some light also on

the Niederer trick [27]. Section VI comments about using BJR coordinates in studying the

scattering of light by gravitational waves.

In this paper we identified the isometries of plane gravitational waves with the Carroll

group with no rotations. Conformal extensions can also be studied, through, with the

remarkable outcome that the celebrated BMS group is, in fact, a conformal Carroll group

[17]. It is puzzling to ask what role (if any) the latter could play for gravitational waves.
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H Poincaré 3 (1965) 1;

[11] V. D. Sen Gupta, “On an Analogue of the Galileo Group,” Il Nuovo Cimento 54 (1966) 512.

[12] C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, “Carroll versus Newton and

Galilei: two dual non-Einsteinian concepts of time,” Class. Quant. Grav. 31 (2014) 085016

[arXiv:1402.0657 [gr-qc]].

[13] E. Bergshoeff, J. Gomis and G. Longhi, “Dynamics of Carroll Particles,” Class. Quant. Grav.

31 (2014) 205009 [arXiv:1405.2264 [hep-th]].

[14] A. Ngendakumana, J. Nzotungicimpaye and L. Todjihounde, “Group theoretical construction

of planar Noncommutative Phase Spaces,” J. Math. Phys. 55, 013508 (2014). [arXiv:1308.3065

[math-ph]].

[15] G. W. Gibbons, K. Hashimoto and Piljin Yi, “Tachyon condensates, Carrollian contractions

of the Lorentz group and fundamental strings,” JHEP (2002) 0209: 061 [hep-th/0209034].

[16] G. W. Gibbons, “Thoughts on tachyon cosmology,” Class. Quant. Grav. 20 (2003) S321 [hep-

th/0301117].

[17] C. Duval, G. W. Gibbons, P. A. Horvathy, “Conformal Carroll groups and BMS symmetry,”

Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894 [gr-qc]]; C. Duval, G. W. Gibbons and

P. A. Horvathy, “Conformal Carroll groups,” J. Phys. A 47 (2014) 335204. [arXiv:1403.4213

[hep-th]].

[18] B. Cardona, J. Gomis and J. M. Pons, “Dynamics of Carroll Strings,” JHEP 1607 (2016) 050

[arXiv:1605.05483 [hep-th]].

[19] A. Bagchi, R. Basu, A. Kakkar and A. Mehra, “Flat Holography: Aspects of the dual field

theory,” arXiv:1609.06203 [hep-th].

[20] E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, “Carroll versus Galilei

Gravity,” arXiv:1701.06156 [hep-th].

[21] C. Duval, G. Burdet, H. P. Künzle and M. Perrin, “Bargmann structures and Newton-Cartan

theory”, Phys. Rev. D 31 (1985) 1841.

[22] C. Duval, G.W. Gibbons, P. Horvathy, “Celestial mechanics, conformal structures and gravi-

tational waves,” Phys. Rev. D43 (1991) 3907 [hep-th/0512188].

[23] L. P. Eisenhart, “Dynamical trajectories and geodesics”, Annals Math. 30 591-606 (1928).

[24] M. Cariglia, “Hidden Symmetries of Dynamics in Classical and Quantum Physics,” Rev. Mod.

Phys. 86 (2014) 1283 [arXiv:1411.1262 [math-ph]].

14



[25] G. Burdet, C. Duval and M. Perrin, “Time Dependent Quantum Systems and Chronoprojec-

tive Geometry,” Lett. Math. Phys. 10 (1985) 255.

[26] P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera and P. Kosinski, “Newton-Hooke

type symmetry of anisotropic oscillators,” Annals Phys. 333 (2013) 335 [arXiv:1207.2875

[hep-th]].

[27] U. Niederer, “The maximal kinematical invariance group of the harmonic oscillator,” Helv.

Phys. Acta 46 (1973) 191.
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