| 1 | Supplementary Material:                                                                                |
|---|--------------------------------------------------------------------------------------------------------|
| 2 | Changes in the dynamical properties of the North-Atlantic atmospheric                                  |
| 3 | circulation in the past 150 years.                                                                     |
| 4 | David Rodrigues <sup>1</sup> , M. Carmen Alvarez-Castro <sup>1</sup> , Gabriele Messori <sup>2</sup> , |
| 5 | Pascal Yiou <sup>1</sup> , Yoann Robin <sup>1</sup> , Davide Faranda <sup>1*</sup>                     |
| 6 | <sup>1</sup> Laboratoire de Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, IPSL,    |
| 7 | Universite Paris-Saclay, 91191 Gif-sur-Yvette, France.                                                 |
| 8 | <sup>2</sup> Department of Meteorology and Bolin Centre for Climate Research, Stockholm University,    |
| 9 | Stockholm, Sweden.                                                                                     |
|   |                                                                                                        |

<sup>10</sup> \*Corresponding author address: Laboratoire de Sciences du Climat et de l'Environnement, UMR

<sup>11</sup> 8212 CEA-CNRS-UVSQ,IPSL, Universite Paris-Saclay, 91191 Gif-sur-Yvette, France.

<sup>12</sup> E-mail: davide.faranda@lsce.ipsl.fr

13

## ABSTRACT

In the supplementary material we present the results of the statistical tests 14 discussed in the main paper (Tables S1, S2) and the joint histograms of  $(d, \theta)$ 15 (Figures S1-S26) for all the models analysed, corresponding to Figure 8 in 16 the main paper. Table S1 presents the results of a Wilcoxon ranksum test 17 (Von Storch 1999) comparing the median values of d and  $\theta$  between the mod-18 els and the reanalysis and between sub-periods within the same dataset. The 19 null hypothesis is that the variables are samples from continuous distributions 20 with equal medians. A rejection of the null hypothesis therefore indicates a 2 significant difference between the medians (bold entries). The columns la-22 beled P12, P23 and P13 compare the median values of the same dataset over 23 the three sub-periods: 1851-1900, 1901-1950 and 1951-2000. There is no 24 clear trend across the models, with some showing significant changes in both 25 d and  $\theta$  and others showing no variations. The columns labeled *Pra* compare 26 the medians of the models to those of the reanalysis over the full 1851-2000 27 period. All but three of the higher resolution models yield statistically differ-28 ent medians from the reanalysis for both of the dynamical systems metrics. 29 Table S2 presents the Root Mean Square Error (RMSE) between 20CR and 30 CMIP5 models for SLP extreme anomalies corresponding to days beyond the 3. 0.02 and 0.98 quantiles of the  $d, \theta$  distributions. 32

## References

<sup>34</sup> Von Storch, H., 1999: Misuses of statistical analysis in climate research. *Analysis of Climate* <sup>35</sup> Variability, Springer, 11–26.

## 36 LIST OF TABLES

| 37 | Table 1. | p-values of the ranksum test to study whether the median <i>Pmed</i> of the dimen-       |
|----|----------|------------------------------------------------------------------------------------------|
| 38 |          | sion (d) or the persistence ( $\theta$ ) changes between the periods of each model       |
| 39 |          | (P12, P23, P13) and between each model and the 20CR reanalysis (Pra). p-                 |
| 40 |          | values < 0,00001 are represented as 0. Bold numbers show significant changes             |
| 41 |          | at the 0.05 level using a ranksum test. Models are ordered by increasing in              |
| 42 |          | resolution                                                                               |
| 43 | Table 2. | RMSE between 20CR and CMIP5 models for SLP extreme anomalies obtained                    |
| 44 |          | considering the SLP fields beyond the 0.02 and 0.98 quantiles of the $d, \theta$ distri- |
| 45 |          | butions                                                                                  |

TABLE 1. p-values of the ranksum test to study whether the median *Pmed* of the dimension (*d*) or the persistence ( $\theta$ ) changes between the periods of each model (*P*12,*P*23,*P*13) and between each model and the 20CR reanalysis (*Pra*). p-values< 0,00001 are represented as 0. Bold numbers show significant changes at the

<sup>49</sup> 0.05 level using a ranksum test. Models are ordered by increasing in resolution.

|    |                               | Pmed (d) |         |                 | $Pmed\left(\boldsymbol{\theta}\right)$ |         |         |         |         |
|----|-------------------------------|----------|---------|-----------------|----------------------------------------|---------|---------|---------|---------|
| N. | Models                        | P12      | P23     | P13             | Pra                                    | P12     | P23     | P13     | Pra     |
| 1  | 20CR                          | 0        | 0       | 0               | _                                      | 0       | 0,00019 | 0       | -       |
| 2  | CMCC-CESM                     | 0,14932  | 0,18834 | 0,90453         | 0                                      | 0,01286 | 0,16537 | 0,27336 | 0       |
| 3  | CanESM2                       | 0,75710  | 0,01868 | 0,00754         | 0                                      | 0,01868 | 0,14011 | 0,40354 | 0       |
| 4  | MIROC-ESM-CHEM                | 0,71166  | 0,18351 | 0,33392         | 0                                      | 0,06156 | 0,96734 | 0,05805 | 0       |
| 5  | MIROC-ESM                     | 0,60922  | 0,53551 | 0,89892         | 0                                      | 0,09860 | 0,57164 | 0,02486 | 0       |
| 6  | BCC-CSM1-1                    | 0,16301  | 0,43325 | 0,53587         | 0                                      | 0,03806 | 0,10650 | 0,00021 | 0       |
| 7  | IPSL-CM5B                     | 0        | 0,01041 | 0               | 0                                      | 0,05955 | 0,19765 | 0,54816 | 0       |
| 8  | NorESM1-M                     | 0,08539  | 0       | 0,00001         | 0                                      | 0,36281 | 0,34488 | 0,06340 | 0       |
| 9  | FGOALS-S2                     | 0,00839  | 0,03568 | 0               | 0                                      | 0,27269 | 0,00094 | 0,02321 | 0       |
| 10 | MPI-ESM-P                     | 0,05314  | 0,96271 | 0,04909         | 0                                      | 0,00310 | 0,40551 | 0,00017 | 0       |
| 11 | MPI-ESM-LR                    | 0,87446  | 0,00532 | 0,00316         | 0                                      | 0,90788 | 0,48649 | 0,55772 | 0       |
| 12 | CSIRO-MK3-6-0                 | 0,07196  | 0,00140 | 0               | 0                                      | 0,01158 | 0       | 0,00015 | 0,02506 |
| 13 | CMCC-CMS                      | 0,62410  | 0,09515 | 0,02891         | 0                                      | 0,00338 | 0,97717 | 0,00328 | 0       |
| 14 | MPI-ESM-MR                    | 0,40856  | 0,00050 | 0,00002         | 0                                      | 0,55003 | 0,01951 | 0,00318 | 0       |
| 15 | IPSL-CM5A 0 0,17916 0,00098 0 |          | 0,61061 | 0,15644         | 0,05223                                | 0       |         |         |         |
| 16 | INM-CM4 0 0,91457 0,00093 0 0 |          | 0,32157 | 0,00289         | 0,05065                                | 0       |         |         |         |
| 17 | 7 ACCESS-1-0 0,22330 0,0196'  |          | 0,01967 | 0,27733         | 0                                      | 0,03324 | 0,28185 | 0,00145 | 0       |
| 18 | MIROC5                        | 0,44975  | 0,76702 | 0,63848         | 0                                      | 0,33047 | 0,62295 | 0,13261 | 0       |
| 19 | CNRM-CM5                      | 0,00227  | 0,02928 | 0,37598         | 0                                      | 0       | 0,23172 | 0,00073 | 0       |
| 20 | MRI-ESM1                      | 0,09510  | 0,01032 | 0,00002         | 0                                      | 0,56039 | 0,26909 | 0,07458 | 0       |
| 21 | BCC-CSM1-M                    | 0,44241  | 0,01528 | 0,00141         | 0                                      | 0,59750 | 0,00077 | 0,00515 | 0       |
| 22 | MRI-GCM3                      | 0,96671  | 0,13074 | 0,12073         | 0                                      | 0,54675 | 0,13894 | 0,03884 | 0       |
| 23 | EC-EARTH                      | 0,75276  | 0,15889 | 0,28299         | 0                                      | 0,00330 | 0,14022 | 0,00001 | 0,58680 |
| 24 | CESM1-FAST                    | 0,30229  | 0,01851 | 0,18630         | 0,12823                                | 0,69600 | 0,01400 | 0,04269 | 0       |
| 25 | CESM1-CAM5                    | 0,00022  | 0,00009 | 0,84053         | 0                                      | 0,00247 | 0,07079 | 0,20712 | 0       |
| 26 | CESM1-BGC                     | 0,02373  | 0,00001 | 0,03104         | 0,60554                                | 0,94591 | 0,02543 | 0,02028 | 0       |
| 27 | CCSM4                         | 0        | 0,00107 | 0,0020 <b>5</b> | 0,01807                                | 0,08769 | 0,35862 | 0,41889 | 0       |

| 50 | TABLE 2. RMSE between 20CR and CMIP5 models for SLP extreme anomalies obtained considering the |
|----|------------------------------------------------------------------------------------------------|
| 51 | SLP fields beyond the 0.02 and 0.98 quantiles of the $d, \theta$ distributions.                |

| N  | Models         | AR   | NAO-  | BLO  | NAO+ |
|----|----------------|------|-------|------|------|
| 1  | 20CR           | 0    | 0     | 0    | 0    |
| 2  | CMCC-CESM      | 3,19 | 10,86 | 4,86 | 8,77 |
| 3  | CanESM2        | 3,20 | 8,86  | 4,72 | 6,60 |
| 4  | MIROC-ESM-CHEM | 2,99 | 10,41 | 5,81 | 5,77 |
| 5  | MIROC-ESM      | 2,79 | 10,19 | 6,00 | 5,51 |
| 6  | BCC-CSM1-1     | 3,65 | 9,91  | 6,21 | 8,41 |
| 7  | IPSL-CM5B      | 3,51 | 10,38 | 6,17 | 6,92 |
| 8  | NorESM1-M      | 3,56 | 10,11 | 6,11 | 8,64 |
| 9  | FGOALS-S2      | 3,70 | 9,16  | 5,86 | 6,53 |
| 10 | MPI-ESM-P      | 3,21 | 10,67 | 4,10 | 9,37 |
| 11 | MPI-ESM-LR     | 3,68 | 10,94 | 4,10 | 8,78 |
| 12 | CSIRO-MK3-6-0  | 3,36 | 7,17  | 3,50 | 7,20 |
| 13 | CMCC-CMS       | 3,30 | 10,32 | 4,27 | 8,84 |
| 14 | MPI-ESM-MR     | 3,43 | 9,91  | 4,15 | 9,22 |
| 15 | IPSL-CM5A      | 3,72 | 10,26 | 6,20 | 6,26 |
| 16 | INM-CM4        | 2,89 | 9,35  | 4,44 | 6,56 |
| 17 | ACCESS-1-0     | 3,37 | 9,18  | 4,36 | 7,36 |
| 18 | MIROC5         | 3,57 | 7,42  | 3,02 | 6,64 |
| 19 | CNRM-CM5       | 3,01 | 9,44  | 4,83 | 6,42 |
| 20 | MRI-ESM1       | 3,60 | 10,29 | 6,81 | 8,48 |
| 21 | BCC-CSM1-M     | 3,60 | 8,73  | 5,94 | 8,62 |
| 22 | MRI-GCM3       | 3,62 | 10,07 | 7,03 | 8,16 |
| 23 | EC-EARTH       | 3,38 | 10,32 | 4,18 | 8,36 |
| 24 | CESM1-FAST     | 3,48 | 9,43  | 6,08 | 8,03 |
| 25 | CESM1-CAM5     | 3,55 | 10,05 | 6,01 | 8,06 |
| 26 | CESM1-BGC      | 3,51 | 10,21 | 5,62 | 8,30 |
| 27 | CCSM4          | 3,44 | 9,63  | 5,88 | 8,26 |

## 52 LIST OF FIGURES

| 53<br>54<br>55<br>56 | Fig. 1.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CMCC-CESM (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 10 |
|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 57<br>58<br>59<br>60 | Fig. 2.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CanESM2 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.        | 11 |
| 61<br>62<br>63<br>64 | Fig. 3.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MIROC-ESM-CHEM (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days. | 12 |
| 65<br>66<br>67<br>68 | Fig. 4.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MIROC-ESM (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 13 |
| 69<br>70<br>71<br>72 | Fig. 5.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model BCC-CSM1-1 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.     | 14 |
| 73<br>74<br>75<br>76 | Fig. 6.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model IPSL-CM5B (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 15 |
| 77<br>78<br>79<br>80 | Fig. 7.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model NOrESM1-M (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 16 |
| 81<br>82<br>83<br>84 | Fig. 8.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model FGOALS-S2 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 17 |
| 85<br>86<br>87<br>88 | Fig. 9.  | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MPI-ESM-P (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 18 |
| 89<br>90<br>91<br>92 | Fig. 10. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MPI-ESM-LR (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.     | 19 |

| 93<br>94<br>95<br>96     | Fig. 11. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CSIRO-MK3-6-0 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days. | 20 |
|--------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 97<br>98<br>99<br>100    | Fig. 12. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CMCC-CMS (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 21 |
| 101<br>102<br>103<br>104 | Fig. 13. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MPI-ESM-MR (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.    | 22 |
| 105<br>106<br>107<br>108 | Fig. 14. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model IPSL-CM5A (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.     | 23 |
| 109<br>110<br>111<br>112 | Fig. 15. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model INM-CM4 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.       | 24 |
| 113<br>114<br>115<br>116 | Fig. 16. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model ACCESS-1-0 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.    | 25 |
| 117<br>118<br>119<br>120 | Fig. 17. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MIROC5 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.        | 26 |
| 121<br>122<br>123<br>124 | Fig. 18. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CNRM-CM5 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 27 |
| 125<br>126<br>127<br>128 | Fig. 19. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MRI-ESM1 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.      | 28 |
| 129<br>130<br>131<br>132 | Fig. 20. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model BCC-CSM1-M (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.    | 29 |
| 133<br>134               | Fig. 21. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model MRI-GCM3 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bot-                                                                                                                                                  |    |

| 135<br>136               |          | tom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.                                                                                                                                                                                                              |   | 30 |
|--------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 137<br>138<br>139        | Fig. 22. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model EC-EARTH (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of                                                             |   | 21 |
| 140<br>141               | Fig. 23. | Joint $d, \theta$ observations in number of days                                                                                                                                                                                                                                                                                                           | • | 31 |
| 142<br>143<br>144        |          | (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.                                                                                                                                                                                                          |   | 32 |
| 145<br>146<br>147<br>148 | Fig. 24. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CESM1-CAM5 (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.         |   | 33 |
| 149<br>150<br>151<br>152 | Fig. 25. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CESM1-BGC (centre) and their difference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint $d, \theta$ observations in number of days.          | • | 34 |
| 153<br>154<br>155        | Fig. 26. | Bivariate histograms of $(d, \theta)$ for the 20CR (left), the model CCSM4 (centre) and their dif-<br>ference $\Delta$ (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bot-<br>tom). The violet lines indicate the median values. The colorbar represents the frequency of<br>ioint $d$ $\theta$ observations in number of days |   | 25 |
| 156                      |          |                                                                                                                                                                                                                                                                                                                                                            | · | 55 |



FIG. 1. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CMCC-CESM (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 2. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CanESM2 (centre) and their difference (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 3. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MIROC-ESM-CHEM (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 4. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MIROC-ESM (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 5. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model BCC-CSM1-1 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 6. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model IPSL-CM5B (centre) and their difference (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 7. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model NOrESM1-M (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 8. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model FGOALS-S2 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 9. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MPI-ESM-P (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 10. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MPI-ESM-LR (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



<sup>188</sup> FIG. 11. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CSIRO-MK3-6-0 (centre) and their <sup>189</sup> difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet <sup>190</sup> lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of <sup>191</sup> days.



<sup>192</sup> FIG. 12. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CMCC-CMS (centre) and their dif-<sup>193</sup> ference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines <sup>194</sup> indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



<sup>195</sup> FIG. 13. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MPI-ESM-MR (centre) and their <sup>196</sup> difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet <sup>197</sup> lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of <sup>198</sup> days.



<sup>199</sup> FIG. 14. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model IPSL-CM5A (centre) and their differ-<sup>200</sup> ence  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines <sup>201</sup> indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 15. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model INM-CM4 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 16. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model ACCESS-1-0 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 17. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MIROC5 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 18. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CNRM-CM5 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 19. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MRI-ESM1 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 20. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model BCC-CSM1-M (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 21. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model MRI-GCM3 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 22. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model EC-EARTH (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 23. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CESM1-FAST (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 24. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CESM1-CAM5 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 25. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CESM1-BGC (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.



FIG. 26. Bivariate histograms of  $(d, \theta)$  for the 20CR (left), the model CCSM4 (centre) and their difference  $\Delta$  (right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate the median values. The colorbar represents the frequency of joint  $d, \theta$  observations in number of days.