
HAL Id: hal-01504478
https://hal.science/hal-01504478v1

Preprint submitted on 10 Apr 2017 (v1), last revised 30 Oct 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Changes in the dynamical properties of the North
Atlantic atmospheric circulation in the past 150 years

David Rodrigues, M Carmen Alvarez-Castro, Gabriele Messori, Pascal Yiou,
Yoann Robin, Davide Faranda

To cite this version:
David Rodrigues, M Carmen Alvarez-Castro, Gabriele Messori, Pascal Yiou, Yoann Robin, et al..
Changes in the dynamical properties of the North Atlantic atmospheric circulation in the past 150
years. 2017. �hal-01504478v1�

https://hal.science/hal-01504478v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Changes in the dynamical properties of the North Atlantic atmospheric1

circulation in the past 150 years2

David Rodrigues1, M. Carmen Alvarez-Castro1, Gabriele Messori2,3

Pascal Yiou1, Yoann Robin1, Davide Faranda1∗
4

1Laboratoire de Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ,IPSL,

Universite Paris-Saclay, 91191 Gif-sur-Yvette, France.

5

6

2Department of Meteorology and Bolin Centre for Climate Research, Stockholm University,

Stockholm, Sweden.

7

8

∗Corresponding author address: Laboratoire de Sciences du Climat et de l’Environnement, UMR

8212 CEA-CNRS-UVSQ,IPSL, Universite Paris-Saclay, 91191 Gif-sur-Yvette, France.

9

10

E-mail: davide.faranda@lsce.ipsl.fr11

12

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

It is of fundamental importance to evaluate the ability of climate models to

capture the large-scale atmospheric circulation patterns. In the context of a

rapidly changing climate, it is equally crucial to quantify the robustness of the

modeled changes in the large-scale atmospheric dynamics. Here we approach

this problem from an innovative point of view based on dynamical systems

theory. We characterize the atmospheric circulation over the North Atlantic

in the CMIP5 historical simulations (1851 to 2000) in terms of two instan-

taneous metrics: local dimension of the attractor and stability of trajectories.

We then use these metrics to compare the models to the 20CR reanalysis over

the same historical period. The comparison suggests that: i) all the models

capture the mean attractor properties and models with finer grids perform bet-

ter; ii) extremes of the dynamical systems metrics match the same large-scale

patterns in most of the models; iii) changes in the attractor properties observed

for the 20CR reanalysis - studied by dividing the 1851-2000 period into 3 sub-

periods of 50 years each - are not reproduced by the models; iv) some models

present significant changes in the dynamical systems metrics over time but

there is no agreement on the direction and on the intensity of the shifts.
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1. Introduction30

One of the main sources of uncertainty in determining the impact of climate change on ex-31

treme events is the forced response of atmospheric dynamics (Shepherd 2014; Field 2012). While32

changes in observables such as surface temperature are easily diagnosed, shifts in the mid-latitude33

atmospheric patterns have proved very difficult to quantify. Some advances have been made by34

focussing on specific features such as atmospheric blocking (Kay et al. 2015; Cassou and Cattiaux35

2016; Faranda et al. 2016b), which in turn influence the occurrence of European cold spells and36

heat waves, but the broader appreciation of circulation changes is still unsatisfactory. Here we37

address this knowledge gap by using a dynamical systems framework. We illustrate the power of38

such an approach by considering the well-known Lorenz (1963) system, a conceptual model of39

atmospheric convection consisting of three differential equations:40

ẋ = σ(y− x) ẏ = rx− y− xz ż = xy−bz (1)

where x, y, z represent respectively the convection strength, the temperature difference between41

the surface and the top of the troposphere and the asymmetry of the convection cells. The42

parameters σ ,r are the Prandtl and the Rayleigh numbers, while b is a ratio of critical parameters.43

A trajectory of the Lorenz (1963) attractor is shown in blue in figure 1. The figure consists of44

2000 points obtained by iterating the Lorenz equations with ∆t ' 0.035, σ = 28, r = 10, b = 8/345

with a Runge Kutta scheme of order 4.46

47

To study the effects of an external forcing, we increase σ by 2% with respect to the classical48

value. Figure 1 shows a trajectory at σ = 28.5 in magenta. The magenta trajectory favours49

higher values of the variable z, but the changes relative to the original trajectory depend on the50

point being considered: some points are not displaced, while some others are mapped elsewhere.51
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Assuming no knowledge of the system other than the trajectories’ paths, how could we determine52

whether they both belong to the Lorenz attractors with two different forcings? To answer this53

question we would need: i) to measure the dynamical properties of an ensemble of trajectories54

representing the two configurations; ii) to estimate the distance between the obtained trajectories55

and determine if the shift has changed the properties of the points in a detectable way.56

57

The atmospheric equivalent of a point on the Lorenz attractor is the ensemble of instantaneous58

fields describing the atmosphere at a time t. To study the atmospheric circulation over the North59

Atlantic we will focus on a single field: the sea-level pressure (SLP) over this region. The SLP60

field reflects the major modes of variability affecting the North Atlantic (Hurrell 1995; Moore61

et al. 2013) and can further be used to diagnose a wealth of other atmospheric features, ranging62

from teleconnection patterns to storm track activity to atmospheric blocking e.g. (Rogers 1997;63

Comas-Bru and McDermott 2014). The trajectories of our dynamical systems are the succession64

of daily SLP fields from 27 CMIP5 models and the 20CR reanalysis over the period 1851 to65

2000. In order to measure changes in the systems, one must be able to specify at each point (each66

day) the local (daily) dynamical properties and track their evolution. Recent contributions to67

dynamical systems analysis have proven that local properties of the trajectories are characterized68

by two quantities: the local dimension and stability of the field considered (Lucarini et al. 2016;69

Faranda et al. 2017). They correspond respectively to the rarity and the typical persistence of the70

configuration. Faranda et al. (2017) have also shown that these two metrics can be connected to71

the predictability of a given atmospheric state and that their extremes match climate extremes.72

73

In this work we will first assess whether the models and reanalysis present similar attractor prop-74

erties over the full time period considered. To do this, we compute daily values for the dimension75
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and stability of the SLP fields and study their average and extreme properties. Next, we study the76

attractors for three sub-periods of 50 years each and quantify their changes across the periods. We77

then compare the changes seen in the models to those observed in the reanalysis. Finally, we use78

statistical mechanics arguments to attribute the changes observed in the reanalysis to greenhouse79

forcing.80

2. Data & Methods81

We use daily model output from the historical simulations of 27 CMIP5 models (see Table 1).82

The data is publicly available from the CMIP5 archive (Taylor et al. 2012). We then compare83

these to the 20th Century Reanalysis (20CRv2c) ensemble mean dataset (Compo et al. 2011). The84

analysis focuses on the region 22.5◦N−70◦N and 80◦W −50◦E.85

86

In order to compute the dynamical systems metrics, we combine the statistical tools of extreme87

value theory with the results obtained by Freitas et al. (2010) for Poincaré recurrences. The pa-88

rameters mentioned in the introduction (local dimension d and stability θ ) are computed for the89

points ζ on the attractor obtained as sequence of states of the system. The dynamical indicators90

are linked to the probability P that a trajectory x(t) of the distances of a trajectory emerging from91

a sphere of center ζ and diameter 2ε , i.e. the recurrence rate of the configuration ζ . We briefly92

outline the physical meaning of these quantities and the way they are computed below.93

(i) Local Dimensions: The Freitas et al. (2010) theorem and its modification in Lucarini et al.94

(2012) states that the probability P for chaotic attractors is a generalized Pareto distribution95

(Pickands III 1975). We first compute the distance δ between the SLP field ζ and all other obser-96

vations along the trajectory. We then weight the time series of the distance:97
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g(x(t)) =− log(δ (x(t),ζ )).

The reason for taking the logarithm is explained by Collet and Eckmann (2009): in the dy-98

namical system set-up the logarithm increases the discrimination of small values of δ (x,y) which99

correspond to large values of g(x(t)). The generalized Pareto distribution then reduces to:100

P(g(x(t))> q,ζ )' exp(−[x−µ(ζ )]/β )

namely an exponential law whose parameters µ and σ depend on the point ζ chosen on the101

attractor. Remarkably, β (ζ ) = 1/d(ζ ), where d(ζ ) is the local dimension around the point ζ .102

This result has recently been applied to SLP fields in Faranda et al. (2017).103

104

(ii) Local Stability: θ , the inverse of the residence time within a neighborhood of the config-105

uration, is exactly the extremal index introduced in extreme value theory to measure clustering106

(Freitas et al. 2012; Faranda et al. 2016a). As in the extreme value theory, θ varies between 0 and107

1. The value θ = 0 corresponds to a stable fixed point of the dynamics where the observation ζ is108

repeated infinite times (as for a pendulum left in its equilibrium position). This is of course never109

observed in the atmospheric dynamics. A value of θ = 1 indicates a point immediately leaving110

the neighborhood of ζ . Since θ is the inverse of a persistence time, it depends on the ∆t used. If111

∆t is too large, the time dependence structure is hidden and θ will to be close to 1. If ∆t is too112

small, θ is close to zero. In Faranda et al. (2017) it has been observed that θ for SLP fields over113

the North Altantic is between 0.3 and 0.5, when ∆t = 1 day. In this work we use the same ∆t.114

115
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Figure 2 illustrates of the meaning of the indicators: the local dimension d is the number of116

degrees of freedom needed to describe the dynamics of the system linearized around the state ζ117

and it is therefore proportional to the number of possible states resulting from ζ . The inverse of118

the persistence time θ is linked to the probability that the trajectory follows a path where each119

field resembles those of the previous and subsequent days.120

121

Before beginning the analysis, it is necessary to outline how the method of recurrence deals with122

changes in the attractor. There are few theoretical results on non-stationary statistics of dynamical123

systems, as well as on non-stationary extreme value theory. Luckily, the recurrence technique124

also allows to bypass most of the technical difficulties linked to non-stationarity because the125

dynamical properties are measured with respect to each single state of the attractor. If the change126

affects the neighbourhood of a state, it will change its dynamical properties d and θ . If most of127

the states are affected by the changes in the dynamics, then the average dimension of the attractor128

and the average persistence will change accordingly.129

130

In order to test this idea, we again consider the two Lorenz (1963) systems discussed in the131

Introduction and perform two sets of 30 realizations (trajectories) at σ = 28 and σ = 28.5, each132

of them consisting of 50000 points. These values correspond respectively to the size of the133

CMIP5 ensemble (about 30) and to the number of days in the period 1850-2000 (about 50000).134

If the method of recurrence is capable to distinguish between the σ = 28 and σ = 28.5 Lorenz135

attractors, then the d and θ distributions of the two sets of realizations should be significantly136

different.137

138
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First, we have to define a metric to compare (d,θ ) distributions. The simplest idea is to compute139

the median of the d,θ distribution for each realization and verify that the clouds of median140

centroids for σ = 28 and for σ = 28.5 are separated. This is shown in the top panel of Figure141

3. As a further test, we can compute the empirical probability density functions Λ(σ28) and142

Λ(σ28.5) of the pairwise distances between the d,θ median-based centroids. These distributions143

should be significantly different from the Λ(σ28)/Λ(σ28.5)) distribution obtained by mixing144

together the two sets of realizations. The visual inspection of Λ distributions (Figure 3-bottom145

panel) suggests that distances computed when mixing the σ = 28 and σ = 28.5 realizations are146

generally higher than those computed by realizations of the same attractor. This claim is sta-147

tistically supported by the Kolmogorov-Smirnov test (Von Storch 1999) results reported in Table 2.148

149

Table 2 also contains the results of the Kolmogorov-Smirnov test obtained when considering the150

Wasserstein distances W2 (Villani 2008) between the full d,θ distributions. As described by Robin151

et al. (2017), the Wasserstein distance is the proper tool to measure distance in multivariate set-ups152

so that our median-based indicator should be tested against W2. The test results suggest that the153

median-based centroids are good proxies of the Wasserstein distances. We will see in the next154

section that this result also hold for the CMIP5 ensemble. Since in the climate system we do not155

have distinct trajectories (one before and one after climate change) we will divide the dataset in156

three different periods imagining three separate trajectories obtained under different (greenhouse)157

forcings.158

3. Aggregate analysis of model and reanalysis attractors159

We begin the analysis of the daily SLP fields from 1851 to 2000 by presenting the scatterplot160

of d versus θ for the 20CR reanalysis (Figure 4). The average of d is proportional to the161
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number of degrees of freedom needed to represent the systems’ dynamics while the average of162

θ is the inverse of the mean persistence time. Maxima (minima) of d correspond to the most163

complex (simple) trajectories of the system. Maxima (minima) of θ correspond to the most164

unstable (stable) trajectories (Messori et al. 2017). Such extremes are associated to specific165

weather patterns that closely resemble the canonical North-Atlantic weather regimes. The166

top panels in Figure 4 show the composite SLP anomalies for days beyond the 0.98 and 0.02167

quantiles of the d and θ distributions. Maxima of θ reproduce an Atlantic Ridge pattern,168

while minima of θ correspond to a negative North Atlantic Oscillation (NAO) phase. Similarly,169

maxima of d correspond to a Blocking pattern and minima to a positive NAO (Faranda et al. 2017).170

171

We next compare the (d,θ) bivariate histograms obtained for the 20CR with those computed172

for the CMIP5 models (Figure 5-right). Two different behaviors emerge: some of the models173

(e.g. CMCC-CMS reported in Figure 5-centre) yeld a single mode distribution resembling174

that obtained for the 20CR ; other models show bimodal distributions (e.g. the IPCC-CM5A)175

histograms reported in Figure 5-bottom. We find the different behaviors to be related to the176

seasonal cycle: in Figure 5-left, we plot the (d,θ) diagrams for the same models by coloring177

each point according to the month of the year. In the 20CR and the CMCC-CMS model, the178

different seasons are spread across the cloud, although maxima of θ mostly occur in winter.179

The IPSL-CM5A displays a much stronger seasonal discrimination, with two distinct (d,θ)180

clouds for the winter and for the summer seasons corresponding to the different modes of the181

bivariate histograms. This implies that both the bulk statistics and the extremes are modified by182

the seasonal cycle.183

184
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Given the variety of the possible behaviors, we will analyze separately the mean and the185

extreme behavior of the dynamical properties. We report the aggregate analysis in Table 3 and186

in Figure 7. The dots correspond to the centres of the ellipses and represent the median values187

for each model; the semiaxes correspond to the standard deviation of the mean. Models are188

numbered as in Tables 1, 3 and are ordered by increasing horizontal resolution. In Table 3 we189

also provide the distances δ (d) and δ (θ) from the median of the 20CR, the relative distances190

R(d) = δ (d)/maxδ (d) and R(θ) = δ (θ)/maxδ (θ) with respect to the farthest model and a191

global score Rtot = (R(d) + R(θ))/2. To check the validity of this global score, we compare192

Rtot with the Wasserstein distance W2 between 20CR and the CMIP5 ensemble, computed as193

described in Robin et al. (2017). The results are displayed in Figure 6. The two indicators are194

so similar (Pearson coefficient: rpear = 0.90 and Spearman coefficient rspear = 0.85 (Von Storch195

1999)) that we will use the simpler Rtot when discussing our results. Rtot further indicates the196

direction of the changes (larger or smaller d,θ ) while W2 only provides this information if the197

transport plan is computed (Villani 2008). the latter would be particularly complex to compute198

for the dataset analysed here.199

200

By using the Rtot metrics, we find that all the models are within one standard deviation of the201

20CR ensemble mean. At the same time, most models display median values in d and θ which202

are statistically different from those found in 20CR. The results of a Wilcoxon ranksum test203

(Von Storch 1999) are reported in Table S1. We remark that both Figure 7 and Table S1 indicate204

that models with a higher horizontal resolution have median values generally closer to those of205

the 20CR.206

207
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Different models have different spreads in d and θ , making it worth to investigate the extremes208

of these quantities and their relation with the weather regimes found in 20CR. Figures 8 and 9209

display the composite SLP anomalies for the d and θ extremes - computed as in Figure 4 - for210

the three closest and the three farthest models (in terms of Rtot) relative to the 20CR. The models211

display similar composites independently their Rtot score. A quantitative analysis is reported in212

Table S2 using the Root Mean Square Error (RMSE) between 20CR and CMIP5 SLP composite213

anomalies. In general, we find the NAO- and NAO+ patterns to have higher RMSE whereas214

Atlantic Ridge and Blocking pattern are better represented.215

216

The aggregate analysis shows that many CMIP5 models provide a dynamical picture coherent217

with that of the 20CR reanalysis. At the same time, most models reproduce statistically different218

medians of the two dynamical systems metrics relative to what found in the reanalysis.219

4. Changes in the attractor properties220

We next investigate whether the SLP’s dynamical indicators have changed as an effect of221

past greenhouse forcing by separating the results into three periods: 1851-1900, 1901-1950 and222

1951-2000. To provide a visually immediate depiction of the changes, we compute the joint223

histograms of (d,θ). The left-hand side and middle columns in Figure 10 display these for224

CCSM4 (the model with the highest horizontal resolution among those analysed) and 20CR.225

The median values are highlighted by magenta lines. The right-hand side panels show the226

differences between 20CR and CCSM4. Results for all the other models are shown in Figures227

S1-S26. In the reanalysis, both the median of the local dimension d and the median of θ228

increase from the first to the second and the third period. These increases, although small229

relative to the metrics’ spread, are significant at the 95% level under a Wilcoxon ranksum test230
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(Table S1). For the models, the sign and significance of the changes depend on the period231

considered and are often not significant (Table S1). As a general feature, models tend to repro-232

duce the dynamical properties better for the period 1951-2000 (see Figure 10 and Figures S1-S26).233

234

We also perform a simple analysis of extremes in d and θ for the three different periods. We235

first compute the quantiles 0.02 and 0.98 for the d and θ distributions of the whole dataset. For the236

20 CR these quantiles correspond to the black lines of Figure 4. Then we compute the number of237

days falling beyond the 0.02 and 0.98 quantiles in each of the three different periods. The results238

are shown in Figure 11. From top to bottom, we report the four extremes corresponding to Atlantic239

Ridge (maxima of θ ), NAO- (minima of θ ), Blocking (maxima of d) and NAO+ (minima of d).240

Again, the changes observed for the 20CR are generally larger than those observed for the models.241

None of the models displays changes coherent with those observed in the reanalysis. The results242

are stable with respect to reasonable changes in the quantiles.243

5. Discussion and Conclusions244

We have computed the instantaneous dynamical properties of the SLP fields for the 20CR and245

the CMIP5 historical runs, over the period 1851-2000. The goal of our analysis was to assess246

whether different models with different physics and resolutions quantitatively represent the same247

dynamical system and therefore possess attractors with similar characteristics. The metrics we248

used are the local dimension d and the inverse of the persistence time θ . As described in Faranda249

et al. (2017), these two quantities give a complete characterization of the attractor of the system.250

251

When the whole analysis period is considered, we find that the models successfully capture252

some of the dynamical systems features identified in the reanalysis. For example, the range and253
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variability of the dynamical metrics are consistent across the datasets. At the same time, some254

models exagerate the effects of the seasonal cycle on the dynamical indicators, and the statistical255

agreement in the median values of the metrics is generally poor. Models with higher horizontal256

resolutions tend to perform better. The SLP fields corresponding to extremes in d and θ are257

mostly similar across the models and reanalysis. The main differences are found for the minima258

of θ and d, which in 20CR correspond to the NAO- and NAO+ patterns.259

260

To detect the changes in the attractor propertieswith time, we have then divided the results into261

three periods: 1851-1900, 1901-1950 and 1951-2000. We have analysed the joint histograms262

of the d,θ variables and compared them to those obtained for the 20CR. The reanalysis shows263

significant increases in d and θ throughout the time period analysed. These changes also reflect264

in the number of days having extreme d and/or θ values. Days with Blocking and Atlantic Ridge265

patterns increase in frequency with time, while days with NAO patterns are decreasing. This is266

coherent with the results obtained by Alvarez-Castro et al. (2017). We note that the decrease in267

the frequency of NAO patterns does not imply a more negative NAO index. Indeed, the frequency268

of the NAO- pattern decreases more than that of the NAO+ pattern suggesting that – if anything269

– the positive NAO phase becomes more dominant towards the end of the analysis period, in270

agreement with SLP measurements (Hurrell et al. 2001). None of the models show comparable271

changes: changes in d are mostly not significant and the shifts in θ are significantly smaller272

than in the reanalysis. This is reflected in the fact that the median values of the two variables273

in the models do not show a clear upward trend trhoughout the three sub-periods considered.274

As a caveat we note that our analysis does not attempt to separate the forced variability from275

natural low-frequency oscillations and that, especially during the first two periods analysed,276

it is unclear whether the greenhouse forcing can be clearly discerned above the background277
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”climate noise” (Paeth et al. 1999; Lyu et al. 2015). We must therefore take into account the possi-278

bility that the model’s internal variability dominates over the trends for the time period considered.279

280

As a further caveat we note that several studies (Krueger et al. 2013; Ferguson and Villarini281

2012, 2014) have questioned the consistency of the 20CR dataset. So, how much can we trust282

the results obtained when investigating the three separate periods? Most of the observations used283

to constrain 20CR in the first part of the dataset are located in Europe or eastern North America284

(Cram et al. 2015); the North Atlantic sector can therefore be expected to perform better than285

elsewhere. The dataset has a sufficiently high horizontal resolution to obtain a good estimate of286

the local dimension distribution (Faranda et al. 2017). However, the fact that the 20CR data is287

increasingly constrained to follow the SLP observations as the time approaches the present day288

causes a decrease of the ensemble spread with time, since the system is more closely pinned to289

a specific manifold (the observations), without the possibility of exploring the full phase space.290

This may explain the changes in the 20CR local dimension with time.291

292

If the results obtained for 20CR do not depend on the quality of the dataset but have a real phyis-293

cal meaning, the increase in dimension with time could be explained by using the results obtained294

in Faranda et al. (2013) for simple dynamical systems. In these conceptual models, the dimension295

increases with the temperature of the system defined – following the Einstein model for Brownian296

motion – as the variance of a stochastic noise term added to the deterministic dynamics. Schubert297

and Lucarini (2015) have demonstrated that this modeling approach is relevant for climate and, in298

general, for any multiscale system. Faranda et al. (2013) have further shown that θ → 1 when the299

temperature is increased, coherently with what observed in the 20CR.300
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TABLE 1. List of CMIP5 Models Analysed and 20CR reanalysis from 1851 to 2001. Models are ordered by

increasing in resolution.

402

403

No.1 Model Institution/ID Country Resolution2

1 20CRv2c NOAA-CIRES USA 2 x 2

2 CMCC-CESM Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 3,75x3,75

3 CanESM2 Canadian Centre for Climate Modelling and Analysis, CCCMa Canada 2.81x 2.79

4 MIROC-ESM-CHEM MIROC4 Japan 2,81x 2,79

5 MIROC-ESM MIROC4 Japan 2,81x 2,79

6 BCC-CSM1-1 Beijing Climate Center China 2,81x 2,79

7 IPSL-CM5B-LR Institute Pierre Simon Laplace, IPSL France 3,75x1,89

8 NorESM1-M Norwegian Climate Center Norway 2,5x1,89

9 FGOALS-2 Institute of Atmospheric Physics, Chinese Academy of Sciences China 2,81x2,81

10 MPI-ESM-P Max Planck Institute for Meteorology, MPI Germany 1,87x1,87

11 MPI-ESM-LR Max Planck Institute for Meteorology, MPI Germany 1,87x1,87

12 CSIRO-MK3-6-0 CSIRO-BOM5 Australia 1,87x1,87

13 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 1,87x1,87

14 MPI-ESM-MR Max Planck Institute for Meteorology, MPI Germany 1,87x1,87

15 IPSL-CM5A-MR Institute Pierre Simon Laplace, IPSL France 2,5x1,26

16 INM-CM4 Institute for Numerical Mathematics, INM Russia 2x1,5

17 ACCESS 1-0 CSIRO-BOM5 Australia 1,87x1,25

18 MIROC5 MIROC4 Japan 1,40x1,40

19 CNRM-CM5 CNRM-CERFACS3 France 1,40x1,40

20 MRI-ESM1 Meteorological Research Institute, MRI Japan 1,125x1,125

21 BCC-CSM1-M Beijing Climate Center China 1,125x1,125

22 MRI-CGCM3 Meteorological Research Institute, MRI Japan 1,125x1,125

23 EC-EARTH Danish Meteorological Institute, DMI Denmark 1,125x1,125

24 CESM1-FASTCHEM Community Earth System Model Contributors, NCAR USA 1,25x0,94

25 CESM1-CAM5 Community Earth System Model Contributors, NCAR USA 1,25x0,94

26 CESM1-BGC Community Earth System Model Contributors, NCAR USA 1,25x0,94

27 CCSM4 National Center for Atmospheric Research, NCAR USA 1,25x0,94

1 Order by horizontal resolution (Decreasing)
2Longitude x Latitude (◦ )
3Centre National de Recherches Meteorologiques - Centre Europeen de Recherche et de Formation Avance en Calcul Scientifique
4Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
5Commonwealth Scientific and Industrial Research Organisation(CSIRO), Bureau of Meteorology(BOM)
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TABLE 2. Two sample Kolmogorov Smirnov (KS) tests results and p-values for the distribution of distances

between realizations of the Lorenz system for two different metrics: (W2) Wasserstein distance between full d,θ

distributions, (m) distances between the medians of the d,θ distributions. The null hypothesis is that data in

Λ(1) and Λ(2) are from the same continuous distribution, with a significance level of 95%. The null hypothesis

is always rejected.

404

405

406

407

408

Λ(σ28)/Λ(σ28/28.5) Λ(σ28.5)/Λ(σ28/28.5)

KS(W2) 0.16 0.22

p-value(W2) 5 ·10−10 2 ·10−20

KS(m) 0.29 0.4

p-value(m) 3 ·10−33 1 ·10−63
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TABLE 3. List of median values for dimension d and inverse of persistence time θ , distances δ (d) and δ (θ)

from the median of the 20CR , relative distances R(d) = δ (d)/maxδ (d) and R(θ) = δ (θ)/maxδ (θ) with

respect to the farthest model and global score Rtot = (R(d)+R(θ))/2.

409

410

411

N. Model median(d) δ (d) R(d) median(θ ) δ (θ) R(θ) Rtot

1 20CRv2c 11,56 – – 0.5 – – –

2 CMCC-CESM 12,22 0,67 0,54 0,51 0,01 0,13 0,33

3 CanESM2 11,99 0,43 0,35 0,51 0 00.2 0,19

4 MIROC-ESM-CHEM 12,54 0,98 0,8 0,47 0,04 0,75 0,77

5 MIROC-ESM 12,48 0,92 0,75 0,47 0,04 0,76 0,76

6 BCC-CSM1 12,12 0,57 0,46 0,51 0,01 0,12 0,29

7 IPSL-CM5B 12,73 1,17 0,95 0,46 0,05 0,93 0,94

8 NorESM1-M 12,12 0,56 0,46 0,48 0,02 0,44 0,45

9 FGOALS-S2 11,63 0,07 0,06 0,45 0,05 1,00 0,53

10 MPI-ESM-P 12,17 0,61 0,5 0,51 0 0,06 0,28

11 MPI-ESM-LR 12,13 0,58 0,47 0,51 0,01 0,14 0,3

12 CSIRO-MK3-6-0 12,66 1,11 0,9 0,5 0 0,02 0,46

13 CMCC-CMS 11,95 0,39 0,32 0,52 0,01 0,22 0,27

14 MPI-ESM-MR 12,09 0,53 0,43 0,51 0 0,09 0,26

15 IPSL-CM5A 11,86 0,31 0,25 0,48 0,03 0,51 0,38

16 INM-CM4 12,79 1,23 1 0,47 0,04 0,70 0,85

17 ACCESS-1-0 11,74 0,19 0,15 0,49 0,02 0,31 0,23

18 MIROC5 12,58 1,02 0,83 0,49 0,02 0,33 0,58

19 CNRM-CM5 12,36 0,8 0,65 0,47 0,03 0,59 0,62

20 MRI-ESM1 11,72 0,16 0,13 0,51 0,01 0,12 0,13

21 BCC-CSM1-M 11,45 0,11 0,09 0,55 0,05 0,91 0,5

22 MRI-CGCM3 11,74 0,18 0,15 0,51 0 0,07 0,11

23 EC-EARTH 11,87 0,32 0,26 0,5 0 0,01 0,13

24 CESM1-FASTCHEM 11,56 0 0 0,51 0,01 0,18 0,09

25 CESM1-CAM5 11,88 0,32 0,26 0,51 0,01 0,13 0,2

26 CESM1-BGC 11,53 0,02 0,02 0,51 0,01 0,11 0,06

27 CCSM4 11,57 0,02 0,01 0,51 0,01 0,12 0,07
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FIG. 1. Two realizations of the Lorenz attractor. Blue: classic attractor ∆t ' 0.035, σ = 28, r = 10, b = 8/3;

Violet: σ = 28.5
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FIG. 2. Schematic representation of the dynamical indicators: the local dimension d is proportional to the

number of possible configurations originating that of the day analyzed and resulting from it. θ , is the inverse of

the persistence time of a certain configuration.
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FIG. 8. Comparison between 20CR and the best 3 models (according to the metric Rtot , a measure of distance

from the median values of d,θ ) of the composite anomalies in SLP for the four regions of the (d,θ) diagram,

highlighted in Fig. 4. The black lines indicate regions where at least the 2/3 of the composite members display

the same sign.
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FIG. 10. Bivariate histograms of (d,θ ) for 20CR (left), the model CCSM4 (centre) and their difference ∆

(right) for three periods: 1851-1900 (top), 1901-1950 (centre), 1951-2000 (bottom). The violet lines indicate

the median values. The colorbars represent the frequency of joint d,θ observations in number of days.
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