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Abstract – Bee declines are driven by multiple combined stresses, making it exceedingly difficult to identify
experimentally the most critical threats to bees and their pollination services. We highlight here the too often ignored
potential of mechanistic models in identifying critical stress combinations. Advanced bee models are now available
as open access tools and offer an unprecedented opportunity for bee biologists to explore bee resilience tipping
points in a variety of environmental contexts.We provide general guidelines on how to run bee models to help detect
a priori critical stress combinations to be targeted in the field. This so-called funnel analysis should be performed in
tight conjunction with the recent development of large-scale field monitoring programs for bee health surveillance.

Apismellifera / fieldmonitoring program / honeybees / mechanisticmodeling / agent-basedmodels

1. INTRODUCTION

The early reviews on the causes of pollinator
declines (Potts et al. 2010; Vanbergen and the
Insect Pollinators Initiative 2013) highlighted the
potential role of multiple stressor interactions and
synergies. Recently, Goulson et al. (2015) updated
the state of knowledge on combined stressors on
bees, reviewing evidence from in vitro and in vivo
experiments. They concluded that disentangling
the effects of multiple combined stressors is

exceedingly difficult, implying that evidence will
not appear rapidly enough given the urgency of
the situation. Here, we would like to draw bee
biologists’ attention to an under-used shortcut that
may help bypass some technical barriers, namely
the in silico pathway (Evans et al. 2013; Stillman
et al. 2015). Mechanistic ecological modeling has
matured over the last decade and leads to more
predictive and flexible models, which are increas-
ingly used for solving a wide range of applied
problems (Stillman et al. 2015). We provide some
guidelines on how to run bee mechanistic models
to help detect critical stress combinations from
large-scale monitoring program datasets. We con-
cur with Goulson et al. (2015) that it is necessary
to develop pollinator monitoring programs, but
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the field design of those programs should,
whenever possible, target the capture of infor-
mation on critical combinations of stressors
predicted in silico.

Ecological data collected at landscape scale
(i.e., hundreds of km2) under question-oriented
monitoring surveys has propelled a reappraisal
of environmental stressors in the observed decline
of wild bees and honeybees. For instance, in the
ECOBEE program (Odoux et al. 2014), a strong
focus has been developed toward a better under-
standing of the relationships between honeybee
colony traits and the environment. This has dem-
onstrated that food availability appears as one of
the main drivers of honeybee colony dynamics
(Requier et al. 2014), and temporal limitations in
food availability between mass flowering bloom
events (Bretagnolle and Gaba 2015) generate
strong cascading effects on colony health
(Requier et al. 2016; see also Horn et al. 2016).
Still, other stressors can act synergistically so that
their respective effect on bee survival may be hard
to discriminate in the field (Henry et al. 2014,
2015), and there is accumulating evidence that
combined stresses actually exacerbate mortality
in honeybees and wild bees. Excess mortality
has been empirically evidenced mostly with two-
way stressor interactions, including parasites ×
pathogens (Nazzi et al. 2012; Retschnig et al.
2014), poor nutrition × pathogens (Di Pasquale
et al. 2013), pesticides × pathogens (Alaux et al.
2010; Aufauvre et al. 2012; Doublet et al. 2015;
Fauser-Misslin et al. 2014), pesticides × pesticides
(Vidau et al. 2011; Gill et al. 2012; Johnson et al.
2013; Henry et al. 2015), and pesticides × weather
or landscape context combinations (Henry et al.
2014; Park et al. 2015). See also Collison et al.
(2015) for a thorough quantitative review of pes-
ticides × pathogens case studies.

However, the number of possible combinations
increases exponentially as more candidate
stressors are considered, eventually making it pro-
hibitively expensive to cover the whole range of
possibilities through traditional in vitro and
in vivo approaches (Goulson et al. 2015). Alter-
natively, the in silico pathway provides a useful
framework for combining and assessing complex
stressor interactions in bees (Barron 2015). The
idea of running bee models to simulate in silico

any multiple-way combination of stressors has
recently emerged (Becher et al. 2013), stemming
from the current flourishing of literature on bee
mechanistic models addressing specific issues
(e.g., honeybee colonies [Schmickl and
Crailsheim 2007; Becher et al. 2010, 2014;
Khoury et al. 2011, 2013; Torres et al. 2015],
bumblebee colonies [Bryden et al. 2013], solitary
bees [Everaars and Dormann 2014]). The in silico
pathway may be used to investigate tipping points
under combined stressors and has provided sig-
nificant improvement on the understanding of bee
mortality (Henry et al. 2012; Perry et al. 2015;
Horn et al. 2016; Rumkee et al. 2015). Tipping
points (Figure 1) refer here to stress levels beyond
which a small variation translates into a drastic
constraint on the sustainability of the whole sys-
tem, i.e., a steep increase in the probability to
reach a given endpoint threshold (typically the
bee population or colony collapse).

Some of these open source bee models are
expected to be used by an increasing number of
bee biologists for the study of combined stresses
(Barron 2015) and recalibrated for a variety of
specific bioclimatic contexts and research issues.
In that respect, we believe that a coherent research
agenda is urgently needed, along with a unified
terminology to facilitate communication among

Figure 1. Predictive systems models may be used to
investigate tipping points in bee populations under en-
vironmental stresses. Tipping points denote the critical
stress levels beyond which a slight increase translates
into a steep change in the state of the whole system, e.g.,
a drastic rise of the probability to reach a given moni-
tored endpoint threshold (double arrows ). In honey-
bees, typical endpoints of interest are colony collapse
or low population size (e.g., <4000 individuals at the
end of the season; Becher et al. 2014; Horn et al. 2016;
Rumkee et al. 2015).
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users. We do not plead however for an in silico
approach as a substitute for empirical studies.
Instead, it should be viewed as a tool to guide
empirical studies throughout the immense scope
of possibilities down to a reduced subset of plau-
sible and testable predictions, that is to say, funnel-
ing candidate scenarios into the conception of
both targeted small-scale experiments and of large
field monitoring programs (e.g., the ECOBEE
monitoring survey in France [Odoux et al.
2014], the German bee monitoring project
[Genersch et al. 2010], the US national surveys
[van Engelsdorp et al. 2008], the EPILOBEE
European survey [EPILOBEE Consortium et al.
2016]).

We called this approach funnel analysis and
provide here general guidelines for using it, with
special emphasis on the well-documented honey-
bee, though the same procedure applies to models
targeting other bee species. We first describe the
procedure in the Material and methods section,
along with an appropriate terminology. Second,
by using BEEHAVE as a case study honeybee
system model (Becher et al. 2014), we tested
whether demographic tipping points may be iden-
tified when simulating individual stresses on im-
portant colony traits taken separately (e.g., forager
mortality, larvae mortality, Varroa mite infesta-
tion, foraging activity) and whether combining
those stresses would hasten the tipping point, as
is expected from current hypotheses on the multi-
factorial nature of bee declines. We finally discuss
the forthcoming opportunities for bee colony
model users to coordinate their efforts for a better
understanding of the environmental drivers of bee
declines.

2. MATERIAL AND METHODS

2.1. Prerequisite for the multistress funnel
analysis

Models, even if they are complex, are simplified
representations. Therefore, to base inference about real
bees on model output, all model assumptions and their
justifications need to be documented so that they can be
scrutinized. For example, the Overview, Design con-
cepts, Details (ODD; Grimm et al. 2006, 2010) stan-
dard documentation of the BEEHAVE honeybee colony

model (Becher et al. 2014) allowed a European expert
group to evaluate all model assumptions (European
Food Safety Authority 2015). Furthermore, models
should be rich enough in structure and processes so that
they can be empirically validated at different hierarchi-
cal levels (DeAngelis and Wolf 2003; Grimm et al.
2005). For example, Horn et al. (2016) used the
BEEHAVE model to identify time periods within a
foraging season where honeybee colonies are most sen-
sitive to gaps in forage supply. They then trace these
findings back to specific changes in colony structure
and dynamics, which can be tested in subsequent
targeted small-scale experiments. Finally, to enable test-
ing of a model under different environmental settings,
effects of the most important environmental drivers
should emerge from first principles instead of imposing
them via empirical rules. For honeybee models, this
means making colony dynamics dependent on weather
and use the availability, distribution, and foraging of
nectar and pollen so that the same model can be used in
different landscapes (e.g., Becher et al. 2014; Horn et al.
2016; Rumkee et al. 2015).

If a model fulfills these requirements, it can be
used for what we here refer to as funnel analysis
(Figure 2). For such analyses, one needs to (i)
implement appropriate climate and/or landscape in-
put model parameters for the bioclimatic context of
interest and (ii) choose a relevant endpoint thresh-
old among the bee model outputs . Simulating com-
bined stresses on bees requires that users carefully
decide what endpoint critical values are to be con-
sidered for drawing conclusions from simulations.
In the case of honeybees, the typical endpoint of
interest for bee biologists and beekeepers is colony
survival over a season. Other endpoints may include
colony size at the end of the year, peak colony size,
economic value of honey stores or pollination ser-
vices, or production of queens and offspring in wild
bees. In general, endpoints should be used that can
demonstrate thresholds and tipping points (Figure 1)
as this translates the output of even complex models
into a format that can directly inform management
and policy development (Stillman et al. 2016).

2.2. Essentials of the multistress funnel
analysis

The multistress funnel analysis we propose here
(Figure 2) is based on a mixture of implicit and
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explicit representations of stressor effects on core
honeybee colony traits. Few stressors are explicitly
parameterized in current models, i.e., explicitly
taken into account via specific parameters and
equations. This is the case with Varroa mites and
the deformed wing virus (DWV) whose infestation
levels are tunable as a part of the input parameters
in BEEHAVE virtual colonies (Becher et al. 2014).
Distance and quantity of nectar and pollen avail-
able are also explicitly defined in BEEHAVE as
well as the effects of lack of pollen and nectar on
the brood (Becher et al. 2014; Horn et al. 2016).
Still, many candidate honeybee stressors have to be
implicitly implemented by simulating their effect
on core colony life history traits, i.e., those colony
traits that most influence the fate of the colony
(step A1 in Figure 2). For instance, the excess
mortality due to homing failure in intoxicated for-
ager bees was implicitly implemented by inflating
the foraging mortality parameter (Henry et al.
2012; Becher et al. 2014). Core colony traits may
be identified by means of model sensitivity

analyses (Saltelli et al. 2008; Thiele et al. 2014).
Such analyses can comprise factorial designs of
stressors which are then condensed into variance
partitioning methods (Horn et al. 2016) or via
screening for the most sensitive parameters and
then exploring, via global analysis, the relative
importance of these processes and their interac-
tions. Typical core colony traits concern the base-
line demographic functioning of the colony (e.g.,
brood mortality, in-hive workers, and foragers mor-
tality; Schmickl and Crailsheim 2007; Becher et al.
2014; Rumkee et al. 2015).

Therefore, the funnel analysis approach we rec-
ommend here actually consists of simulating vari-
ations of one or multiple core colony traits and
identifying which scenarios may lead to the end-
point thresholds of interest (steps A2 and A3 in
Figure 2) and then which ones are realistic enough,
in terms of stress realism and parsimony, to be
tested in the field (steps A4 and B in Figure 2).
Those steps are further detailed below and illus-
trated in Figure 2:

Figure 2. The multistress funnel analysis applied to honeybee colony dynamic models. In silico virtual colony
(Schmickl and Crailsheim 2007; Becher et al. 2010, 2014; Khoury et al. 2011, 2013; Torres et al. 2015) simulations
should sequentially drop combined stressor scenarios until delivering a limited subset of plausible scenarios testable
as a part of field monitoring programs (van Engelsdorp et al. 2008; Genersch et al. 2010; Odoux et al. 2014). See
Material and methods section for step-by-step details.

Modeling combined stressors in bees 331



(A) From the full scope of possibilities down to the
most plausible subset of critical stress
combinations.

(A1) Stressor effect assignment : identifying from lit-
erature and expert knowledge a qualitative net-
work of effects linking the candidate stressors
(e.g., nosema spores, neonicotinoid pesticides,
floral resource scarcity) with the affected core
colony traits (e.g., foraging intensity, brood
mortality, in-hive workers, and foragers
mortality).

(A2) Heuristic simulation of effects on core colony
traits : simulating all possible combinations of
core colony trait variations. Trait variations may
be either persistent throughout the season or
restricted to a particular period. Likewise, the
magnitude of trait variations may be allowed to
vary within a realistic range. One may compute
broad variation scenarios (e.g., low, medium, or
large effect size) or series of scenarios with finer
resolution depending on computational
performance.

(A3) Screening candidate scenarios for specific
goals and endpoint criteria : The candidate sce-
narios that result in a high probability of colo-
nies reaching the predetermined endpoint
threshold of interest are singled out. The thresh-
old probability for retaining and rejecting
scenarios is decided before the analyses, based
on goals for protection of colonies or risk
deemed acceptable. One example of specific
goals being applied is in the pesticide
regulatory arena. In line with the European
Food Safety Authority guidance for acceptable
honeybee protection goals, Rumkee et al.
(2015) proposed the lethal imposed stress
(LISx) framework for colonies, analogous to
the standard lethal dose (LD50) currently used
for pesticide risk assessment on an individual
basis. The LIS50 (or LIS10) indicates the level of
imposed stress resulting in 50 % (or 10 %)
probability of colonies reaching a chosen end-
point threshold. Using such a framework would
screen out the scenarios that predict less than a
50 % (or 10 %) chance of reaching the chosen
threshold. Alternatively, a cutoff rule may be
based on the statistical power of the envisioned
field monitoring, i.e., the finest detectable

change of endpoint threshold occurrence fre-
quency given actual sample size.

(A4) Screening candidate scenarios for realism and
parsimony criteria : Within the subset of candi-
date scenarios meeting the endpoint criteria,
some are likely to be more realistic than others
considering stressor temporal or spatial co-oc-
currence. Expert knowledge is required at this
step to decide which scenario should receive
priority given field realism and parsimony of
stressor combinations. Experts may set aside
candidate scenarios with unrealistically high
stress levels or with stressors occurring at inap-
propriate periods of the season. For instance,
some experts in a given eco-region may be
primarily concerned by the effects of increased
forager mortality due to neonicotinoid residuals
during oilseed rape blooms and of inhibited
pollen foraging activity due to the presence of
attacking yellow-legged hornets at hive en-
trance. Those stresses occur, respectively, in
spring (Henry et al. 2015) and in early fall
(Rome et al. 2015). Experts may therefore rec-
ommend focusing on the corresponding simula-
tions with acute forager mortality in spring and
reduced foraging activity in fall in order to
further assess potential associations with other
stressors throughout the season, such as patho-
gens or climate hazards. Conversely, experts
may judge it unlikely that all life stages (eggs,
larvae, pupae, in-hive workers, established for-
agers) be simultaneously subject to acute mor-
tality. For the sake of parsimony, they may
recommend selecting simulations with only
one or two life stages being simultaneously
affected by acute mortality levels.

(B) Priority field experiments .

The most plausible and parsimonious scenarios
may finally be addressed in the field, either by
suggesting new hypotheses or novel dataset cross-
comparisons to be investigated in already existing
large-scale monitoring programs. Field (in vivo)
monitoring surveys should be aimed at confirming
the links between endpoint threshold occurrence
and core colony trait alterations. Laboratory
(in vitro) experiments may further help untangle
the explicit links with specific stressors. Regardless
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of the chosen monitoring design, time series ana-
lytical approaches would be requested, whereby
correlative links would be tested between the pres-
ence or magnitude of candidate stressors, the core
colony traits at a given time of the season, and the
subsequent state of colonies later on (endpoint
threshold reached or not).

2.3. Assessing combined effects of multiple
stressors

To reveal critical stressor combinations, predictive
systems models should be able to reveal combined
effects, i.e., they should predict that multiple stressors
produce a greater effect than individual stressors taken
separately. To test this assertion, we compared in silico
the fate of honeybee colonies with a series of stresses set
at the tipping point and simulated either separately or in
combinations. Although purely illustrative, this simple
example shows how independent stressors can combine
their respective effect to promote colony failure.

Initial settingsWe used the BEEHAVEmodel (Becher
et al. 2014) with Horn’s et al. (2016) initial colony
settings, and we implemented a typical weather and
landscape dataset from the ECOBEE colonymonitoring
area (Odoux et al. 2014). We allowed a baseline infes-
tation with 100 virus-infected Varroa mites on the first
day of simulation as default value. Current beekeeping
practices were also simulated with the ad hoc options
(default settings for Varroa treatment and honey
harvests, see Becher et al. 2014).

Endpoint Colony sizes smaller than 4000 adult bees at
the end of the year (Becher et al. 2014; Horn et al. 2016;
Rumkee et al. 2015) were deemed insufficient for sus-
tainable honey production and survival throughout the
beekeeping season without human intervention. We
therefore used this demographic threshold as an end-
point value to illustrate the combined stress analysis.
Colony simulations were run for 3 years or until the
endpoint threshold was reached.

Core colony traits and tipping points We focused
on four core colony traits that are thought to have
profound impact on demographic trajectories: forager
mortality, larvae mortality, virus-infected Varroa mites,
and reduction of the foraging activity. We performed a
sensitivity analysis to identify critical tipping points

associated with those core colony traits taken individu-
ally. Default model parameters were gradually increased
(larvae and forager mortality rate,Varroa infestation) or
decreased (maximal foraging distance allowed) to de-
lineate the endpoint threshold occurrence probability
with increasing stress values. First, exploratory simula-
tions were run by series of 10 repetitions, until detecting
the range of stress values leading to low (n = 1) and
high (n = 10) endpoint threshold occurrence. The range
was then systematically covered by 20 series of 10
simulation repetitions for a better resolution. Simulation
outputs were finally fitted with a standard logistic func-
tion by using a generalized linear model (GLM) for
binomial data (glm function in R software for
statistical computing, R Core Team 2014). The tipping
point level was taken to be the highest stress value the
simulated colonies could afford without reaching the
endpoint threshold.

Stress implementation We tested the hypothesis that
combining two or more stresses at their tipping point (the
others being set to the default value) would precipitate
colonies to endpoint, which would normally not occur
with a single stressor. All multiple-way tipping point
combinations (n = 16) were simulated 20 times each,
totaling 320 simulated colonies. The probability to reach
the endpoint threshold out of the 20 simulations was
computed and compared by using simple a posteriori
pairwise exact binomial tests among stress combinations
(binom.test function, R Core Team 2014).

3. RESULTS

Core colony traits and tipping points A tipping
point pattern was successfully established when
tuning each of the four studied core colony traits
(Figure 3) and satisfactorily modeled by using
logistic functions (Table I). Estimated tipping
points were 1.42 for forager mortality rate per
105s foraging (default = 1), 0.06 for daily larval
mortality rate (default = 0.01), 1142 for initial
number of infected mites (default = 100), and
3 km for maximal distance flown by foragers on
a single day (default limited by duration of clem-
ent weather for foraging).

Stress implementation Of the 320 simulated colo-
nies covering the 16 possible tipping point
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combinations, 14 collapsed or fell below the end-
point threshold in the course of the first year, 120
in the second year, and 15 in the third year.
Simulation outputs merely illustrate the combined
stressor hypothesis developed in current scientific

literature (Figure 4). Taken alone, stressors at tip-
ping point levels did not precipitate simulated
colonies to reach the endpoint threshold. For in-
stance, colonies with a 42 % increase in forager
mortality were already on the brink of reaching

Table I. Logistic model statistics for predicting of the probability to reach the endpoint threshold as a function of
stress level imposed on four core colony traits.

Core colony trait value x α β Chi-squared statistics
for deviance

Forager mortality rate (per 105s foraging) 9.77 ± 1.73 −17.49 ± 3.12 κ = 64.0, p < 0.001

Larval mortality rate (per day) 132.4 ± 26.6 −12.31 ± 2.50 κ = 49.7, p < 0.001

Varroa infestation (nb. of infected mites) 0.0011 ± 0.00015 −4.12 ± 0.63 κ = 115.8, p < 0.001

Foraging activity (maximal daily foraging distance, km) −4.67 ± 1.67 8.43 ± 3.19 κ = 26.4, p < 0.001

The predicted endpoint curves (Figure 3) are of the form p Endpoint = 1 / (1 + e −(αx+β ) ), with x the focus colony trait value andα and
β the logistic model estimates returned by GLMs

Figure 3. Assessment of tipping points associated with four core colony traits. The probability to reach the endpoint
threshold (<4000 adult honeybees) dramatically increases beyond a critical stress value referred to as tipping points
(vertical line ). Dots and bars stand for the mean ± SD endpoint threshold occurrence per series of 10 replicated
colony simulations. Trends are depicted by a logistic fit to simulation data (thick lines and 95 % confidence limit as
shaded areas , see Table I for details).
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the endpoint threshold, but regulation mecha-
nisms in the colony compensated these forager
losses. However, the two-way combinations were
associated with a range of significantly higher end-
point threshold occurrences (10 to 90 %, Figure 4),
confirming themodel ability to identify sharp com-
bined effects contrasting with separate effects of
stresses taken alone. With three or more combined
stresses, the endpoint is almost inevitably reached
(>95 %, Figure 4).

Toward funnel analysis This demonstrates that
tuning only a couple of core honeybee colony
parameters can result in a broad range of collapse
scenarios. In practice, the funnel analysis is indeed
intended to single out which of those scenarios
should receive priority in question-oriented field
monitoring programs. From this simplistic hypo-
thetical example (Figure 4), the funnel process

would first screen out the scenarios that had no
chance to lead to the endpoint of interest (n = 6
scenarios). Then, experts may decide to screen out
scenarios with a 10 % endpoint probability cutoff
rule (n = 1 scenario), given that this approximates
their maximal field monitoring statistical resolu-
tion (see also the LIS50 framework in Rumkee
et al. 2015). They may further decide to screen
out scenarios with altered foraging activity
(n = 5 scenario) because they may consider
that this level of stress—maximal daily forag-
ing distance limited down to 3 km per forager
only—is unrealistically restrictive. Having re-
duced candidate scenarios from 16 down to 4,
experts may finally adjust their field study so as
to target the possible environmental drivers of
larval mortality, which delivers the highest end-
point threshold probabilities when combined
with Varroa mites.

Figure 4. Comparison of combined stress scenarios for endpoint criteria. For each of the 16 simulated combined stress
scenarios (left panel ), the risk to reach the critical endpoint threshold (right panel ) is given as a probability value
(±SD). Probability values that are identified by distinct letters in the right panel are significantly different from each
other (a posteriori exact binomial tests among scenarios of combined stresses, see text).
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4. DISCUSSION

The idea underlying the suggested multistress
funnel analysis is to funnel candidate scenarios
into explicit field monitoring programs while
screening for endpoint criteria and for realism
and parsimony of candidate stressor combina-
tions. Having confirmed that bee systems
models can reveal critical multistress combina-
tions, we recommend that future research inves-
tigates the ability of funnel analyses to effec-
tively end up in a small subset of candidate
scenarios. There is no guarantee that it will
invariably succeed, but it will at least help iden-
tify the most influential factors and discover
unexpected ones in the studied systems.

Sensitivity to certain stressors is likely to
depend on eco-region, weather, landscape
structure, and management, so that focusing
monitoring and experiments on the wrong fac-
tors in a certain eco-region might lead to
enormous waste of resources and time. The
ultimate aim of model-based funnel analysis
is to screen the thousands of conceivable sce-
narios of combined stressors down to a short
list of plausible scenarios humanly manage-
able in small-scale experiments and field mon-
itoring programs. In that respect, we fully
support Goulson et al.’s (2015) call for devel-
oping pollinator monitoring programs, but we
further encourage bee biologists to conceive
or adjust those programs considering mecha-
nistic model predictions of what might be the
most critical stress combinations for the con-
sidered endpoint. With this in mind, we expect
higher colony resilience in social bees owing
to buffering mechanisms as a consequence of
colony living and division of labor (Henry
et al. 2015; Rundlöf et al. 2015). This makes
social bees also a testbed for testing theories
and approaches regarding resilience and tip-
ping points. With managed honeybee colonies,
for example, we can, in contrast to full eco-
systems, manipulate buffer mechanisms and
study recovery rates and the ability of colo-
nies to absorb disturbances and maintain

functioning. This is also in line with the plea
for a more mechanistic and predictive “sys-
tems ecology” (Evans et al. 2013). Solitary
wild bees are likely to be more susceptible
and hence might provide even more sensitive
model organisms to test combined stresses
(European Academies Science Advisory
Council 2015; Rundlöf et al. 2015), but with
different resilience mechanisms.

Bee biologists are now at a crossroads of
action and reflection. Although efforts should
be spent in the development of operative so-
lutions for sustainable beekeeping and main-
taining viable wild bee populations (Goulson
et al. 2015), disentangling the respective ef-
fects of the many candidate stressors at the
roots of bee decline is still required. Simulat-
ing virtual bee systems is one promising tool
in that respect. Mechanistic models of com-
plex biological systems cannot be viewed as
perfectly reflecting reality. However, even
though a given model may be lacking empir-
ical support for a specific context of interest,
we would not discourage bee biologists from
investigating the model simulation outputs as
a part of their research, providing they keep
in mind that the outputs are conditional pre-
dictions, i.e., predictions that are dependent
on the assumptions the model is based on.
Model assumptions, formalized by a series
of parameters and equations, will gain accu-
racy as developers and users gain empirical
knowledge. At the same time, the next steps
in model development will be (i) to develop
specific modules for interaction effects among
stressors, as is currently evidenced in labora-
tory but still poorly considered in predictive
systems models and (ii) to move beyond the
dynamics of the colony to the dynamics of
the actual populations, so that the densities of
managed colonies or native species can be
predicted over time and space. Using funnel
analysis to match model simulations with em-
pirical work will lead to deeper insight into
the mechanisms behind broader scale patterns
of colony and even species loss.
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