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Abstract

In this paper, we address the problem of unsupervised
rank aggregation in the context of meta-searching in infor-
mation retrieval field. The first goal of this paper is to apply
aggregation operators that are defined in information fusion
domain to the particular issue mentioned beforehand. Tri-
angular norms, conorms and quasi-arithmetic means, are
such kind of operators. Then, the second goal of this work
is to introduce a new aggregation function, its logical foun-
dations and its combinatorial properties. Particularly, this
operator allows to take into account the relationships be-
tween experts in a flexible way. Finally, we test these differ-
ent aggregation operators on the LETOR dataset. The re-
sults of our experiments show that this kind of aggregation
functions can lead to better results than baseline methods
such as CombSUM and CombMNZ approaches.

1. Introduction

Data fusion problems arise when for a given task, there
are several experts which give different opinions. These
opinions can agree or not and we are faced with the prob-
lem of combining them in order to figure out a consensus
decision. That kind of issue can be encountered in different
contexts: in voting theory, we have to aggregate the votes
or preferences of many individuals in order to elect a con-
sensus candidate; in decision making we have several al-
ternatives and we have to choose the most appropriate one
according to several criteria. Aggregating preference rela-
tions is an issue that has been analyzed in social sciences
[7], [2], [11] and in statistics [14], [19].

More recently, in information retrieval, tasks such as
meta-search problems aim at combining the results given by
different search engines into a single consensus list of web
pages which is expected to be more robust and efficient than
if we take into account only one search engine.

In this paper, we are concerned with the data fusion prob-
lem when the experts’ opinions are ranking distributions
(rank values or score values) over a set of objects. We are
more particularly interested in addressing this issue in the
context of information retrieval. In this situation, there are
several specificities which are analyzed in [10]. For exam-
ple, in information retrieval, unlike in multicriteria decision
making, we rather aggregate partial lists and the number of
partial rankings (the number of search engines) to be com-
bined is lower than the number of objects.

In the information retrieval community, many methods
have been proposed for “learning to rank” in order to tackle
rank aggregation problems in a supervised manner. In our
case, we assume that there is no training data available and
we rather deal with unsupervised rank aggregation issues.

In that context, linear combination of experts’ scores
such as CombSUM or CombMNZ methods [12], often give
robust results. A recent work detailed in [10] proposes
to extend aggregation approaches developed in multicrite-
ria decision making field for dealing with rank aggregation
problems in information retrieval. One of the aims of the
present work is similar to the one presented in this last pa-
per: we want to apply aggregation operators already defined
in other fields (information fusion field in our case [3], [5]),
to the rank aggregation problem in information retrieval.
The paper is organized as follows.

In section 2, we first recall some related works and we
introduce the basic notations and the baseline approaches
CombSUM and CombMNZ. Second, in section 3, we give
some details about the scores’ normalization step that is
required when applying aggregation functions. Next, in
section 4, we recall some well-known aggregation opera-
tors in information fusion field: triangular norms, triangular
conorms and quasi-arithmetic means. Another goal of this
paper is then to introduce, in section 5, a new consensus ag-
gregation function. This method has logical foundations, it
involves triangular norms and more generally conjunction
operators. As we will see, despite its combinatorial aspect,
we prove a property that allows to reduce the computational



cost of this new function. Finally, we experiment the differ-
ent proposals using three datasets taken from the LETOR
package [18]. The experiments results given in section 6,
show that many aggregation functions and particularly, our
method, give better results than baseline approaches.

2. Related work and notations

We suppose there are M experts (the search engines) and
N objects. Each expert gives an ordered list of those N ob-
jects according to their own preferences (or scores). How-
ever, we will restrict ourselves to the top list of each expert
(partial rankings). In other words, we don’t consider the
whole list but only the most relevant objects according to
each expert. From these M ordered top lists, the problem
we address is to find a single consensus list which com-
bines the M rankings. There are different methods for ad-
dressing this issue and we can in fact, notice two families of
approaches according to [23], [10]:

• positional methods: for each object, we consider the
scores given by each expert (the object’s profile), we
then aggregate these scores using different techniques
and we finally re-rank the objects using the aggregated
scores. The first positional method was proposed by
Borda [4] but linear combination such as the arithmetic
mean is for instance, one of these methods [12].

• majoritarian methods: these methods use pairwise
comparisons matrices of objects and are mostly based
upon order relations aggregation using association cri-
teria such as Condorcet’s criterion [7], [20] or distance
criteria such as Kendall distance [19], [9]. Other meth-
ods have also been proposed using Markov chain mod-
els [8]. Lastly, outranking methods which were in-
troduced in multicriteria decision problems have been
adapted for information retrieval tasks [24], [10].

The methods proposed in this paper belong to the po-
sitional family. Before introducing the most popular ap-
proaches used in this context, we first give some basic nota-
tions:

• Sj(i) is the normalized score expert j assigns to object
i.

• L(j) is the ordered list of expert j.

• Lk(j) is the first k objects of L(j) or the top-k list
of expert j. We will also denote Lk = {Lk(j); j =
1, . . . ,M} the set of all top-k lists.

• U =
⋃M

j=1 Lk(j) is the union set of the M top-k lists.
We will also denote K = #U , the number of elements
in U .

• ∀i ∈ U : NZ(i,Lk) is the number of top-k lists in
which object i appears.

Using these notations, we can define below the general
linear combination which represents the baseline methods
for rank aggregation issues in information retrieval [12],
∀i ∈ U :

Combv,w(i) = NZ(i,Lk)v
M∑

j=1

wjSj(i) (1)

where v is an integer and w a (M × 1) vector of weights.
In this kind of approach, the most usual particular cases

employed are the following ones [12], ∀i ∈ U :

CombSUM(i) =
M∑

j=1

Sj(i) (2)

CombMNZ(i) = NZ(i,Lk)
M∑

j=1

Sj(i) (3)

Other methods have been proposed for learning the
weight vector w in an unsupervised manner. In [16] for
example, an unsupervised learning algorithm is suggested.
However, this approach is a linear combinations of scores.
In our case, we rather use non linear aggregation operators.

3. Normalization step

The normalization step is inherent to any positional
methods. Indeed, each expert may have its own particu-
lar score distribution which belongs to a certain range of
values. As a result, before applying any aggregation func-
tion, we have to normalize each distribution if we want them
to be mutually comparable. It exists several normalization
methods [22]. However, in our particular case, the aggre-
gation operators we are going to introduce have a fuzzy
logic flavor. In other words, they aggregate truth values
that belong to [0, 1]. Thus, we propose to normalize the
experts’ scores as follows.

Let us denote by Vj(i), the original score value the expert
j assigns to object i. Then, its associated normalized score
denoted by Sj(i) is given by, ∀j = 1, . . . ,M ;∀i ∈ Lk(j):

Sj(i) =
Vj(i)−mini′∈Lk(j){Vj(i′)}

maxi′∈Lk(j){Vj(i′)} −mini′∈Lk(j){Vj(i′)}
(4)

With respect to expert j, the previous normalization for-
mula is given for all objects belonging to the expert’s top-k
list, Lk(j). We still need to assign normalized scores to
objects that belong to U − Lk(j). The only thing we can
assume about these last objects is that they are not preferred
to any of the objects belonging to Lk(j). Consequently,
∀j = 1, . . . ,M ;∀i ∈ U − Lk(j), we put: Sj(i) = 0.



4. Some aggregation operators defined in infor-
mation fusion

Many aggregation functions have been defined in the
field of information fusion. We recall some of them namely
triangular norms, triangular conorms and quasi-arithmetic
means. These functions will be tested in our experiments in
section 6.

4.1. Triangular norms and conorms

Triangular norms (t-norms in short) are binary operations
T : [0, 1]2 → [0, 1] which are associative, commutative,
non decreasing in each argument and such that T (a, 1) = x,
∀a ∈ [0, 1]. They are special functions used in probabilistic
metric spaces [25], and fuzzy logic [15].

In fuzzy logic particularly, these operations extend the
conjunction from the binary case to the multi-valued case.
Let A and B be two events1 and µ(A) = a and µ(B) = b
their associated truth values in [0, 1]. Then, T (a, b) mea-
sures the truth value of the conjunction A ∩ B. As t-norms
are associative and commutative, they can easily be ex-
tended for measuring the conjunction of more than two
events. We have for example: T (a, b, c) = T (T (a, b), c)
and so on.

When using t-norms as aggregation operators, we mea-
sure the conjunction of the events to be combined. In our
case, we measure the truth value of “object i is relevant for
all experts”. However, the disjunction of these events is also
of interest. Then, departing from a t-norm T , we can define
its related triangular conorm T ∗ (t-conorm in short) as fol-
lows, which allows to extend the disjunction to the multi-
valued case:

T ∗(a, b) = 1− T (1− a, 1− b) (5)

Thus, by using t-conorms as aggregation operators, we
measure the truth value of the event, “object i is relevant for
at least one expert”.

It exists non-parametric and parametric t-norms and t-
conorms. The four fundamental non-parametric ones are:

• the minimum t-norm and its related t-conorm:

TM (a, b) = min(a, b) (6)
T ∗

M (a, b) = max(a, b) (7)

• the product t-norm and its related t-conorm:

TP (a, b) = ab (8)
T ∗

P (a, b) = a + b− ab (9)

1Typically, in our case, events are for example: “object i is relevant for
expert j”

• the Lukasiewicz t-norm and t-conorm:

TW (a, b) = max(a + b− 1, 0) (10)
T ∗

W (a, b) = min(a + b, 1) (11)

• the drastic product and its related t-conorm:

TD(a, b) =
{

0 if (a, b) ∈ [0, 1[2

min(a, b) otherwise (12)

T ∗
D(a, b) =

{
1 if (a, b) ∈]0, 1]2

max(a, b) otherwise (13)

TM and TD are respectively, upper and lower bounds for
t-norms. Thus, ∀T as a t-norm;∀(a, b) ∈ [0, 1]2:

TD(a, b) ≤ T (a, b) ≤ TM (a, b) (14)

TM gives the highest value for the conjunction of two
events: it assumes that one event is included in the other
one and thus a positive dependence between them. TP gives
the conjunction value of two events assuming that these last
ones are independent. On the contrary, TW which is lower
than TP , supposes that there is a rather negative dependence
between the events. Finally, TD gives a zero value to the
conjunction of two events unless one of the two has a truth
value 1.

It also exists numerous parametric t-norms and t-
conorms. However, we will introduce only one pair of them:
the Schweizer-Sklar family for which the non-parametric t-
norms and conorms are particular cases.

The Schweizer-Sklar t-norm is given by, ∀λ ∈ [−∞,∞]:

Tλ
SS(a, b) =

 TM (a, b) λ = −∞
TP (a, b) λ = 0
TD(a, b) λ = ∞

(15)

and for λ ∈]−∞, 0[∪]0,∞[, we have:

Tλ
SS(a, b) =

(
max(aλ + bλ − 1, 0)

) 1
λ

Its corresponding t-conorm is as follows:

T ∗λ
SS(a, b) =

 T ∗
M (a, b) λ = −∞

T ∗
P (a, b) λ = 0

T ∗
D(a, b) λ = ∞

(16)

and for λ ∈]−∞, 0[∪]0,∞[, we have:

T ∗λ
SS(a, b) = 1−

(
max((1− a)λ + (1− b)λ − 1, 0)

) 1
λ

As mentioned beforehand, t-norms or t-conorms can be
used as aggregation operators. In that case they represent
two extreme point of views which are respectively the con-
junction and the disjunction over all events. On the contrary,



mean operators are more compromise. According to [3], we
have the following classification:

T (a, b) ≤ min(a, b) ≤ M(a, b) ≤ max(a, b) ≤ T ∗(a, b)

where M is a mean operator.
As we will see in our experiments, due to their limit be-

haviors, t-norms and t-conorms don’t fit well to meta-search
problems. T-norms are too strict and they perform very
badly. T-conorms perform better than t-norms but still, they
are not able to reach the baseline results. Nevertheless, we
mention, in section 6, the results obtained using different t-
conorms. As a result, in meta-search problems, we must use
more compromise operators than t-norms or t-conorms. In
that perspective, we introduce in the following paragraph,
quasi-arithmetic means.

4.2. Quasi-arithmetic means

Quasi-arithmetic means, also called generalized f -
means, are operators that generalize the classical arithmetic
mean by using a transformation function f . In our case, we
will consider f : [0, 1] → [−∞,∞]. f must be contin-
uous, strictly monotone, and it must also respects the fol-
lowing conditions: {f(0), f(1)} 6= {−∞,∞}. The quasi-
arithmetic mean associated to f is denoted Mf . Given a
sequence of M values {a1, . . . , aM} ∈ [0, 1]M , the quasi-
arithmetic mean of this sequence is defined by:

Mf (a1, . . . , aM ) = f−1

 1
M

M∑
j=1

f(aj)

 (17)

We will consider more particularly, the case of power
functions f(a) = ap with p ≥ 1 which are strictly mono-
tonic functions. We remark that CombSUM is obviously
equivalent to the arithmetic mean. To go further, we present
in our experiments in section 6, the results obtained with
p = 2 (quadratic mean). As we will see, this function out-
performs the CombSUM results.

5. A new consensus aggregation operator

In addition to the previous aggregation functions, we in-
troduce a new method which also presents interesting re-
sults on the LETOR datasets [18], compared to baseline
methods. Unlike the t-norms and t-conorms methods re-
called beforehand, which are extreme point of views, the
proposed approach is more consensus. Thus, it is compa-
rable to quasi-arithmetic means. However, unlike this last
method, our approach allows to take into account differ-
ent types of dependencies between experts using different
t-norms.

5.1. Definition and logical foundations

Let us denote by Sj(i) the event: “object i is relevant
for expert j”. If we consider all M experts, we can de-
fine the following event: “object i is relevant for at least m
experts among M”. Formally, this last event that we will
denote EM

m (i) is given by the following formula, ∀m =
1, . . . ,M ;∀i = 1, . . . ,K:

EM
m (i) =

⋃
1≤j1<...<jm≤M

(⋂
(Sj1(i), . . . , Sjm(i))

)
(18)

Given the truth value, Sj(i) ∈ [0, 1], of event Sj(i), we
are interested in computing the truth value of event EM

m (i)
which will be denoted EM

m (i).
This is a combinatorial problem which generalizes

Poincaré’s formula2 also known as the “inclusion-exclusion
principle”. It has been shown in [1] that EM

m can be ex-
pressed as a linear combination of the following quantities,
∀i = 1, . . . ,K:

• for l = 1:

SM
l (i) =

M∑
j=1

Sj(i) (19)

• for l = 2, . . . ,M :

SM
l (i) =

∑
1≤j1<...<jl≤M

T (Sj1(i), . . . , Sjl(i)) (20)

where T is a t-norm or a conjunction operation.
This linear combination is related to Jordan’s combinato-

rial formulas [13], [6], and we have, ∀m = 1, . . . ,M ;∀i =
1, . . . ,K:

EM
m (i) =

M∑
l=m

(−1)l−m

(
l − 1
m− 1

)
SM

l (i) (21)

where
(
n
p

)
= n!

p!(n−p)! , are binomial coefficients.
Now that we have introduced the consensus measures

EM
m ;m = 1, . . . ,M , we make a simple assumption on

which our aggregation function is based: the greater the
number of experts who find object i relevant, the higher the
aggregated score corresponding to object i must be3 [17].

In a literal formulation, our aggregation function can be
defined as follows : we weight by m the measure that object
i is relevant for at least m experts then we sum over m from
1 to M . As the proposed method gives increasing weights

2Poincaré’s formula corresponds to the case m = 1.
3Notice that baseline methods given in (1) pursue the same goal by

weighting by NZ(i,Lk)v the experts’ score sum. However, our proposal
is a different approach which is rather based upon a logical definition.



Figure 1. Illustration of the combinatorial
“trick” with 3 experts

when m, the number of considered experts, grows, it is a
method that respect the property we are looking for.

We denote our consensus aggregation function A. It is
formally defined by the following equation, ∀i = 1, . . . ,K:

A(i) =
M∑

m=1

mEM
m (i) (22)

We may also consider a normalized version by dividing (22)
by M(M+1)

2 .
In its original formulation given by equations (21) and

(20), the computation cost of A(i) is very expensive. In-
deed, in order to compute SM

l (i) in (20), we need to enu-
merate

(
M
l

)
combinations which grows exponentially. But,

as we will show in the following paragraph, using combina-
torial properties, we can reduce the computational cost of
A(i) to O(M2).

5.2. The combinatorial “trick”

From equation (22) which has an exponential computa-
tional cost, we can prove the following statement which al-
lows to reduce significantly the computational cost of the
proposed consensus aggregation operator, ∀i = 1, . . . ,K:

A(i) =
M∑

j=1

Sj(i) +
∑

1≤j<j′≤M

T (Sj(i), Sj′(i)) (23)

Given equation (23), we can see that our proposal goes
beyond a simple sum4 as the proposed aggregation function
allows to take into account pairwise conjunctions between
experts. Particularly, we can specify the type of relationship
between each pair of experts by using different t-norms such
as introduced in paragraph 4.1.

We give in figure 1, an illustration of the property for
M = 3. We give the proof of the combinatorial “trick”
which allows to obtain the reduced form (23) in appendix.

4As the first part is similar to CombSUM.

6. Experiments and results

In this section, using numerical examples, we show that
the proposed aggregation operators can perform better than
baseline approaches.

We tested the different methods introduced previously,
on the three different datasets of the LETOR package [18]:

• OHSUMED dataset (subset of MEDLINE, a database
of medical publications): 106 queries, 25 different
ranking features (the experts)

• TREC 2003 web track (topic distillation task): 50
queries, 44 different ranking features (the experts)

• TREC 2004 web track (topic distillation task): 75
queries, 44 different ranking features (the experts)

For each datasets, we have different queries (topics)
and for each ranking features, we are given a distribution
of scores among a set of objects (medical publications or
html files). The ranking features are either low-level or
high-level content features, between each judged query-
document pairs. The reader can consult [18], for a more
detailed description of the characteristics of these datasets
and for the definition of the features that were extracted.

The LETOR dataset was initially constituted for bench-
marking “learning to rank” methods. In that context the goal
is to learn, from a training set, how to combine the different
experts. In our case, we are in an unsupervised context and
we only use the relevance file for measuring a posteriori the
performances of the proposed methods.

First, we normalized the data using the score normaliza-
tion5 given by (4) with k = 1000. Then, we computed the
following aggregation functions: CombSUM (equivalent to
Mf with f(a) = a), CombMNZ, the quadratic mean (Mf

with f(a) = a2) and the new aggregation method A using
either non-parametric t-norms or the parametric t-norm Tλ

SS

with λ = 2.
For measuring and comparing the performances of the

different aggregation methods, we used the trec eval
tool6 and we retained the mean average precision (MAP)
and the precision at 5 (P@5) measures. The results are
given in tables 1, 2 and 3. In italic are the baseline results
given by CombSUM. We put in bold the best result with
respect to the MAP, among the aggregation operators we
tested.

These results show that quadratic means and our aggre-
gation function outperform the baseline results whereas the
t-conorms perform very poorly except for the OHSUMED
dataset. It is not clear if our approach is better than quasi-
arithmetic means as there is little differences between both

5We found that it may happen that for some features, a unique value is
assigned to all objects. In that case, we replaced this value by 0.

6cf. http://trec.nist.gov/



Method MAP P@5
CombSUM 39.52 % 47.36 %
CombMNZ 38.68 % 46.98 %

Quadratic mean 40.39 % 49.25 %
T ∗

M 39.71 % 49.25 %
T ∗

P 37.32 % 40.94 %
T ∗

W 29.97 % 26.98 %
A with TM 38.49 % 46.60 %
A with TP 39.44 % 47.17 %
A with TW 40.23 % 49.81 %

A with TSS , λ = 2 40.74 % 50.19 %

Table 1. Results for the OHSUMED dataset

Method MAP P@5
CombSUM 16.83 % 16.80 %
CombMNZ 15.42 % 14.40 %

Quadratic mean 16.57 % 16.80 %
T ∗

M 07.98 % 07.20 %
T ∗

P 04.40 % 03.20 %
T ∗

W 01.27 % 01.20 %
A with TM 15.86 % 14.00 %
A with TP 16.81 % 16.40 %
A with TW 17.04 % 17.60 %

A with TSS , λ = 2 17.37 % 17.60 %

Table 2. Results for the TREC 2003 dataset

Method MAP P@5
CombSUM 26.81 % 22.13 %
CombMNZ 23.09 % 20.53 %

Quadratic mean 29.41 % 21.87 %
T ∗

M 07.93 % 04.80 %
T ∗

P 04.59 % 02.40 %
T ∗

W 07.60 % 00.00 %
A with TM 22.63 % 20.80 %
A with TP 26.78 % 22.13 %
A with TW 29.00 % 21.60 %

A with TSS , λ = 2 29.56 % 21.87 %

Table 3. Results for the TREC 2004 dataset

of them in terms of MAP or P@5. We could have tested Mf

with f(a) = ap and p ≥ 3. This may give better results than
the one obtained using A. However, we could also tune the
parameter λ when applying A with a parametric t-norm.

Finally, despite quite similar results, both methods are
different. We argue in favor of our approach as it has deep
logical foundations, and as it also allows to model the re-
lationships between experts using different t-norms unlike
quasi-arithmetic means. In our experiments, we assumed

that all pairs of experts had the same kind of relationships.
In a more general perspective, a better expertise of the de-
pendencies between the features, can be taken into account
by choosing for each pair of features a different conjunction
operation.

7. Conclusion

In this paper, we address data fusion problems. We are
particularly concerned with unsupervised rank aggregation
issues in information retrieval field. The general aim of this
work is to investigate the use of some aggregation operators
defined in information fusion field in the context mentioned
beforehand. We have recalled and tested classic aggregation
operators such as t-conorms and quasi-arithmetic means.
We have moreover introduced a new aggregation method
A, its logical foundations and its combinatorial properties.

Our experiments on the LETOR dataset show that quasi-
arithmetic means and A operator can improve the baseline
results. It also allows us to conclude that t-norms and t-
conorms are not good aggregation operators for that kind of
issues and datasets as they are not enough compromise.

The results we obtain in an unsupervised manner are
interesting compared to the ones obtained in a supervised
manner7. Consequently, we intend to embed the methods
described in this paper and particularly, the new aggrega-
tion function, in a supervised context. In that perspective,
the concept of expert’s reliability seems interesting to de-
velop.
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A. Appendix: proof of the combinatorial
“trick”

Proof. In order to prove the property given in equation (23),
we will use the two following combinatorial identities8:

n∑
p=0

(−1)p

(
n

p

)
= 1{n=0} (24)

n∑
p=0

(−1)p+1

(
n

p

)
p = 1{n=1} (25)

7For example, the baseline results in a supervised context for the
OHSUMED dataset reach a MAP of approximately 44.00 % [18]. We
have seen previously that the best result we obtained in an unsupervised
manner using A is 40.74 %.

8For identities and properties referring to binomial coefficients and Pas-
cal’s triangle, a good reference is the following website [21].



where 1{A} is the indicator function which equals 1 if
proposition A is true; 0 otherwise. We first have:

A(i)

=
M∑

m=1

mEM
m (i)

=
M∑

m=1

m

M∑
l=m

(−1)l−m

(
l − 1
m− 1

)
SM

l (i)

=
M∑

m=1

m

M∑
l=1

(−1)l−m

(
l − 1
m− 1

)
SM

l (i)1{l≥m}

=
M∑
l=1

M∑
m=1

m(−1)l−m

(
l − 1
m− 1

)
SM

l (i)1{m≤l}

=
M∑
l=1

l∑
m=1

m(−1)l−m

(
l − 1
m− 1

)
SM

l (i)

Then we denote m′ = m− 1; l′ = l− 1 and M ′ = M − 1.
Using these variables we obtain:

A(i)

=
M ′∑
l′=0

l′∑
m′=0

(m′ + 1)(−1)l′−m′
(

l′

m′

)
SM ′+1

l′+1 (i)

=
M ′∑
l′=0

SM ′+1
l′+1 (i)

l′∑
m′=0

(m′ + 1)(−1)l′−m′
(

l′

m′

)

=
M ′∑
l′=0

SM ′+1
l′+1 (i)

 l′∑
m′=0

(−1)l′−m′
(

l′

m′

)

+
l′∑

m′=0

(−1)l′−m′
(

l′

m′

)
m′


Next, if we enumerate a bit this last expression with respect
to l′, we can see that using the combinatorial identities given
in (24) and (25): we obtain SM

1 (i) for l′ = 0; SM
2 (i) for

l′ = 1 and a null quantity for l′ > 1. This shows finally that
A(i) = SM

1 (i) + SM
2 (i) which is the same as (23).

References

[1] J. Ah-Pine. Sur des aspects algébriques et combinatoires
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en analyse des données relationnelles. Mathématiques et
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