
HAL Id: hal-01504179
https://hal.science/hal-01504179v1

Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brass Instruments Design Using Physics-Based Sound
Simulation Models and Surrogate-Assisted

Derivative-Free Optimization
Robin Tournemenne, Bastien Talgorn, Michael Kokkolaras, Joël Gilbert,

Jean-François Petiot

To cite this version:
Robin Tournemenne, Bastien Talgorn, Michael Kokkolaras, Joël Gilbert, Jean-François Petiot. Brass
Instruments Design Using Physics-Based Sound Simulation Models and Surrogate-Assisted Derivative-
Free Optimization. Journal of Mechanical Design, 2017, 139 (4), �10.1115/1.4035503�. �hal-01504179�

https://hal.science/hal-01504179v1
https://hal.archives-ouvertes.fr


Robin Tournemenne
Institut de Recherche en Communications

et Cybern�etique de Nantes,

UMR CNRS 6597,
�Ecole Centrale Nantes,

1 rue de la No€e,

Nantes 44300, France

e-mail: robin.tournemenne@irccyn.ec-nantes.fr

Jean-François Petiot
Institut de Recherche en Communications et

Cybern�etique de Nantes,

UMR CNRS 6597,
�Ecole Centrale Nantes,

1 rue de la No€e,

Nantes 44300, France

e-mail: jean-francois.petiot@irccyn.ec-nantes.fr

Bastien Talgorn
Department of Mechanical Engineering,

GERAD and McGill University,

Montr�eal, QC H3T1J4, Canada

e-mail: bastien.talgorn@mail.mcgill.ca

Michael Kokkolaras
Department of Mechanical Engineering,

GERAD and McGill University,

Montr�eal, QC H3T1J4, Canada

e-mail: michael.kokkolaras@mcgill.ca

Jo€el Gilbert
Laboratoire d’Acoustique

de l’Universit�e du Maine,

UMR CNRS 6613,

Universit�e du Maine,

Le Mans 72085, France

e-mail: joel.gilbert@univ-lemans.fr

Brass Instruments Design Using 
Physics-Based Sound Simulation 
Models and Surrogate-Assisted 
Derivative-Free Optimization
This paper presents a method for design optimization of brass wind instruments. The shape of 
a trumpet’s bore is optimized to improve intonation using a physics-based sound simulation 
model. This physics-based model consists of an acoustic model of the resonator, a mechanical 
model of the excitator, and a model of the coupling between the excitator and the resonator. 
The harmonic balance technique allows the computation of sounds in a permanent regime, 
representative of the shape of the resonator according to control parameters of the virtual 
musician. An optimization problem is formulated in which the objective function to be 
minimized is the overall quality of the intonation of the different notes played by the 
instrument. The design variables are the physical dimensions of the resonator. Given the 
computationally expensive function evaluation and the unavailability of gradients, a surrogate-
assisted optimization framework is implemented using the mesh adaptive direct search 
algorithm (MADS). Surrogate models are used both to obtain promising candidates in the 
search step of MADS and to rank-order additional candidates generated by the poll step of 
MADS. The physics-based model is then used to determine the next design iterate. Two 
examples (with two and five design optimization variables) demonstrate the approach. Results 
show that significant improvement of intonation can be achieved at reasonable computational 
cost. Finally, the perspectives of this approach for computer-aided instrument design are 
evoked, considering optimization algorithm improvements and problem formulation 
modifications using for instance different design variables, multiple objectives and constraints 
or objective functions based on the instrument’s timbre.

1 Introduction

The study of sound quality and playing properties of musical
instruments is critical to improving the design of the latter. This is
not a trivial task because sound quality is influenced by objective
acoustic characteristics of the instrument and subjective criteria
related to players’ feelings, tastes, and preferences. Two main
kinds of studies aim at addressing this issue. On the one hand, the
quality can be assessed by listeners or players (subjective quality)
during evaluation tests [1]. When conducting this kind of tests, it
is necessary for the researchers to control precisely the design
parameters of the instrument and the testing environment, to
assess the reliability of the evaluations, and to define how to deal
with interindividual differences. On the other hand, the quality
can be quantified by physical measurements on the instruments
(objective quality) [2].

For the brass instruments considered in this paper, the single
most important physical measurement that characterizes behavior
is the acoustic input impedance of the resonator [2]: it yields the
magnitude of the acoustic response to a forced oscillation. It can
be either measured or computed with an acoustic model [3], and is
a function of the inner shape of the pipe (called the “bore”). For

example, the typical input impedance of a trumpet presents sev-
eral peaks of impedance that represent the acoustic resonances of
the pipe (see Fig. 1).

When playing, the musician produces a sound whose frequency
(i.e., the playing frequency) is close to the resonance frequency of
an impedance peak [4]. At first approximation, the playing fre-
quency (which influences intonation) is mainly governed by the
corresponding peak of impedance. The challenge for an instru-
ment maker is to define a bore that will produce notes with precise
intonation.

Fig. 1 Typical input impedance Z of a Bb trumpet (magnitude),
showing the resonances 2, 3, 4, 5 of the instrument
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With this in view, many researchers have used an optimization
approach to design an instrument’s inner shape with a given set of
properties concerning input impedance. Kausel used genetic algo-
rithms and the Rosenbrock minimization procedure to optimize the
intonation of brass instruments [5]. Different criteria for bore optimi-
zation of the trombone can be found in Ref. [6]. Noreland used
gradient-based algorithms to optimize the intonation of horns using a
model for impedance calculation that combines a one-dimensional
transmission line model with a two-dimensional finite element model
[7]. Poirson et al. propose the integration of subjective and objective
assessments of designs into the optimization process [8]. A percep-
tual study has been conducted on a set of trumpets to define the target
frequency ratio for the resonances of impedance.

However, even if valuable, these approaches focus only on the
performance of the instrument alone, neglecting a crucial element
in playing an instrument: the musician. The studies of Eveno et al.
showed in particular that the relations between the resonance fre-
quencies of the impedance and the actual frequencies of the
sounds played by musicians can be significantly different [9].
Although interesting information can be given by the impedance
concerning the intonation of an instrument, it is still very difficult
to predict the “playability” and sound qualities of brass only based
on the impedance.

A second approach in the characterization of a musical instru-
ment is the use of a physics-based model that models not only the
instrument, but also its interaction with the musician. In this con-
text, sound simulations by physics-based modeling are interesting
because they can simulate the function of instruments in a realistic
way, as far as the underlying physics are captured adequately
[10]. For example, time domain simulations are presented in Ref.
[11], where the authors investigate perceptual differences between
simulated guitar sounds obtained by modifications of the mechani-
cal parameters of the body. Sound simulations by physics-based
modeling constitute a promising means to study and improve the
function of musical instruments, but their use is limited when it
comes to instrument design [2].

The main objective of this work is to present a new paradigm
for the design and optimization of brass musical instruments. The
novelty of the approach lies in the integration of sound simula-
tions, obtained from a physics-based model that takes into account
the interaction of the instrument with a virtual musician, into the
optimization process. To illustrate the approach, we will demon-
strate it on a particular brass instrument, the trumpet. The imple-
mented simulation method (the harmonic balance technique [12])
allows the computation of sounds in a permanent regime (auto-
oscillations), which is representative of the shape of the resonator
according to control parameters of the virtual musician embou-
chure (the mechanical parameters of the excitatory system). Play-
ing frequencies and the spectra of different notes of the tessitura
of a trumpet can then be characterized using these simulations.
Various virtual embouchures, which lead to convergence of the
system toward auto-oscillations, are considered to produce simu-
lations that are representative of the resonator. Due to the high
computational cost of this approach and the difficulty to estimate
gradients due to the stochastic nature of the objective function of
the optimization problem, a surrogate-assisted optimization
framework that utilizes the derivative-free mesh-adaptive direct
search (MADS) algorithm is adopted.

The paper is organized as follows: We first present extended
details about the trumpet’s function, the physics-based brass
model, and the simulation technique to clarify the sound simula-
tion method. We then formulate the optimization problem and
describe the principles of the MADS algorithm and the framework
for surrogate-assisted optimization. Finally, we conduct two case
studies concerning the shape optimization of trumpets with two
and five design variables, respectively, and draw conclusions.

2 Trumpet Modeling

Brass instruments are wind instruments that produce sounds by
the coupling of an excitator (the lips of the musician) to a resona-
tor (the body of the instrument). The main parts of the resonator
are the mouthpiece (a short removable piece of metal on which
the musicians place their lips), the leadpipe (a roughly conical
part, essential to the intonation of the instrument), and the flaring
bell (see Fig. 2). Three valves are necessary to adjust the length of
the resonator and to obtain chromatic scales.

The characteristics of a played note and its timbre depend
mainly on the inner shape of the resonator (the bore) and, of
course, on the musician’s technical ability and skill. From a pres-
sure Pm in the mouth of the musician (typical values measured on
trumpet players are from 1 kPa to about 12 kPa), the lips act as a
vibrating valve that modulates the air flow into the instrument [2].
The column of air in the instrument vibrates, according to the res-
onance frequencies of the resonator. A regime of oscillations is
created as a result of the complex coupling between the resonator
and the lips. It is important to mention that this coupling is the
result of the reaction of the resonator on the lips: vibrations of the
lips are facilitated at frequencies which correspond to the reso-
nance frequencies of the bore. With the same bore, several notes
can be obtained, corresponding to different regimes of oscillations
governed by the resonance frequencies. Given that occidental
music is globally written with 12 different notes per octave which
is called the chromatic scale, one bore representing roughly 8
exploitable notes is not enough. In order to cope with this issue
three cylindrical valves placed in the middle of the instrument
(see Fig. 2) lengthened the bore shifting the resonances toward
lower frequencies. Finally, using the right combination of the
three valves and the right embouchure, the musician can produce
more than 12 different notes over 3 octaves (3*12¼ 36 notes).

From an acoustic point of view, the resonator alone can be char-
acterized by its input impedance Z, showing the resonance frequen-
cies of the bore (see Fig. 1). It represents the response of the
instrument in forced oscillations for a given frequency range and
shows several peaks (corresponding to resonances) that are used to
play the different notes. Z can be either measured on a real instru-
ment [13] or modeled using an acoustic model of the wave propa-
gation in the resonator. From the definition of the geometry of the
resonator, the input impedance can be computed using the transmis-
sion line modeling [3]. This model considers the inner shape of the
instrument as a concatenation of simple geometries as cylinders,

Fig. 2 Definition of the main parts of the trumpet: the mouth-
piece (in light gray), the leadpipe (in black), and the flaring bell

Fig. 3 Bore geometry of a trumpet, described as a series of
conical and cylindrical segments
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cones, Bessel horns, exponential horns, and discontinuities (see Fig.
3 for an example of the bore geometry of a trumpet), for which the
expressions of the input impedance are explicit with a transfer
matrix modeling. The input impedance of the entire instrument is
finally computed by taking the product of the matrices of all the ele-
ments (transfer matrix of a horn). The model considered in this
paper takes into account plane-wave propagation and visco-thermal
losses, but more advanced models with bents, wall energy losses,
and multimodal approaches for flaring bells could be utilized.

2.1 Physics-Based Model. The physics-based model of brass
instruments available in the literature is given by

pðjxÞ ¼ ZðjxÞvðjxÞ (1)

d2H tð Þ

dt2
þ
2pfl

Ql

dH tð Þ

dt
þ 2pflð Þ2 H tð Þ � H0ð Þ ¼

Pm � p tð Þ

ll
(2)

and v tð Þ ¼ bH tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Pm � p tð Þð Þ

q

s

(3)

While this work considers trumpets, the same model can be
employed for any reed instrument. In general, the input impedance
paradigm is commonly used for wind instruments. Moreover, this
approach can be extended to any auto-oscillating musical instru-
ment, such as bowed strings, flutes/organs, human voices, and, of
course, other brass and reed instruments. These three equations rep-
resent the behavior of the different parts of the system [2]. They
couple three time-varying variables: the opening height H(t) of the
two lips, the volume flow v(t) and the pressure p(t), in the mouth-
piece. Equation (1), with the frequency domain notation, describes
the acoustic behavior of the resonator. It represents the impedance
Z of the instrument, defined as the ratio of acoustic pressure in the
mouthpiece p(jx) to the acoustic volume flow v(jx) entering the
instrument. Equation (2) describes the mechanical behavior of the
lips of the musician considered as a mechanical oscillator with one
degree-of-freedom. Said degree-of-freedom is the opening height
H(t) between the two lips (H(t)¼ 0 is numerically imposed if
H(t)< 0). Equation (3) describes the coupling between the lips and
the trumpet. Obtained by expressing the Bernoulli theorem, it repre-
sents a nonlinear coupling between the pressure in the mouthpiece
p(t), the opening height of the lipsH(t), and the volume flow v(t).

While more elaborate models may be developed by refining the
description of the system, the model presented above is sufficient
to characterize the underlying physics and the sound perception of
brass instruments. References [10] and [14] examine the percep-
tual differences in the simulated sound of different trumpets, pro-
ducing sounds using the model of Eqs. (1)–(3). When the
dimensions of two instruments differ significantly (order of milli-
meters), human participants are able to distinguish among simu-
lated sounds. When the dimensions are very similar (order of
some tenths of mm), different simulated sounds cannot be distin-
guished by the participants.

Several parameters are introduced in this model: (1) the parame-
ters concerning the musician’s embouchure are Pm (the pressure in
the mouth), fl (the resonance frequency of the lips), ll (the area den-
sity of the lips), b (the width of the lips), H0 (the rest value of the
opening height of the lips), and Ql (the quality factor of the reso-
nance of the lips); (2) the input impedance Z of the trumpet; and (3)
the air density q. Numerical solutions p(t) of this system of equa-
tions can be computed to simulate the sound created by a given
trumpet (defined by its input impedance Z) and for a given “virtual
musician embouchure” (defined by its control parameters).

2.2 Simulations Using the Harmonic Balance Technique.
The harmonic balance technique is a particular method used to
obtain numerical solutions of the physics-based model described
above. This technique simulates sounds in a permanent regime

(steady state) in the frequency domain. The principle is to com-
pute (if it exists) a converging periodic solution of the pressure
p(t) of the system, taking into account a given finite number N of
harmonics in a truncated Fourier series (Eq. (4))

pðtÞ ¼
X

N

n¼1

An cosð2pnFtþ unÞ (4)

Assuming that the solution p(t) of the system of equations is
harmonic, the unknown values of the simulations are the ampli-
tudes of the harmonics An, the phases un, and the playing fre-
quency F. A numerical solution p(t) of the auto-oscillating system
satisfying Eqs. (1)–(3) can be defined if the system converges
toward a stable solution (more details can be found in Ref. [12]).

2.3 Control Parameters of the Simulations. To perform a
sound simulation, it is necessary to define the relevant values (i.e.,
the values that lead to a convergence toward a steady-state sound
for a given note) for the parameters of the musician embouchure
(in other words, it is necessary to “teach” the computer how to
play the trumpet). For a given note, the experience shows that
many embouchures may lead to a steady-state note. The choice of
the ranges of the parameters is based both on numerical tests of
the simulations and on measurements on real trumpet players. In
this study, the values of b, Ql, H0 are considered as fixed [15]. The
three variables Pm, ll, and fl are considered as control parameters
of the simulations, and constitute the virtual embouchure. As for a
real trumpet player, the pressure Pm in the mouth influences
mainly the dynamics of a simulated sound. Since experimental
measurements on real musicians provided maximum values
around 12 kPa for the pressure in the mouth [16], the range of val-
ues selected in this study runs from 6 kPa to 9 kPa, which corre-
sponds roughly to mezzoforte (mf) dynamics. The values of ll
range from 1 to 6 kg/m2 [15]. Finally, the frequency of the lips fl
is the parameter that allows the selection of the played regime
(note): the higher the value of fl, the higher the simulated regime.
Exploration tests led to a range of fl that spans from 130Hz to
480Hz to simulate the second, third, fourth, and fifth regimes of
the Bb trumpet with no valve pressed, the regimes considered in
this study. These regimes correspond to the musical notes Bb3,
F4, Bb4, D5–concert-pitch, see Fig. 4.

The values of the control parameters considered in this study
are given in Table 1. These values were selected because they
generally lead to a convergence of the auto-oscillations toward a
periodic solution.

Given that the impedance model is limited in frequency (see
Fig. 1), it is not relevant to consider many harmonics for the sound
simulation. Above 3000Hz, the magnitude of the impedance is
flat and no difference between trumpets is noticeable. Therefore,
the number N of harmonics considered for the simulations has
been bounded to 3000Hz. For the two highest notes, Bb4
(466.16Hz) and D5 (587.33Hz), this allows roughly the computa-
tion of five or six harmonics. All the sounds have thus been simu-
lated with N¼ 6 harmonics. In conclusion, for a given trumpet
(characterized by its input impedance Z) and for a virtual musician
embouchure (characterized by the parameters Pm, ll, fl, b, H0, and
Ql), the simulations generate one note, corresponding to one of
the regimes, 2, 3, 4, and 5, of the trumpet. Each note is character-
ized by its playing frequency F and by the amplitudes and phases
of its 6 first harmonics.

Fig. 4 Musical notation of the notes Bb3, F4, Bb4, and D5 of
the Bb trumpet that are simulated in this study
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3 Optimization Problem Formulation

The design optimization problem of an instrument can be for-
mulated as

min
x2X

JðxÞ (5)

where J : Rn ! R is the objective function, and x represents the
design parameters of the instrument. The design space X is a sub-
set of Rn delimited by box (bound) constraints. Specifically, the
optimization variables are the geometric parameters that define
the inner shape of the bore (see Fig. 3). To facilitate the input
impedance calculations, the bore is approximated by a series of
conical and cylindrical waveguide segments. Consequently, x is a
vector of geometric quantities such as the lengths and radii of cyl-
inders or cones. X corresponds to constraints applied on x to
obtain viable trumpet shapes.

In this work, we estimate the quality of an instrument by its
intonation. Other possible descriptors (based on timbre or volume)
can be found in the literature; however, there is no consensus in
the community regarding the quality of sounds. These disagree-
ments notwithstanding, there is a strong consensus that a trumpet
playing in tune is desirable. Therefore, our objective function J is
a descriptor of the instrument’s intonation: it is computed from
the playing frequencies F produced by the simulations for the dif-
ferent regimes of the instrument (see Fig. 5).

3.1 Computation of the Objective Function. The flowchart
of the process for optimizing the shape of a trumpet bore using
physics-based sound simulations is depicted in Fig. 5. The input
impedance is computed based on the design vector x representing
the resonator’s geometry. The harmonic balance technique simu-
lates P different notes based on the calculated input impedance
Z(x) and some virtual embouchures chosen in a set u of possible
embouchures (see next paragraph for their definition). While vari-
ous virtual embouchures are considered, only the ones that lead to
convergence of the system toward auto-oscillations are selected.
This selection process is a crucial step in the method and is
described in more detail in the next paragraph.

For each note i, the average (across different embouchures)
playing frequency Fiðx;uÞ is computed. The intonation of the
note is assessed by the deviation of the expected playing fre-
quency from the actual playing frequency as simulated using the
physics-based model. To compute this deviation, the cent logarith-
mic unit is used because it is standard to compare musical pitches
(there are no scaling issues), given that human perception of
pitches is based on frequency ratios (1 cent corresponds to a fre-
quency ratio equal to a hundredth of a semitone). To compute this
deviation, a reference (tuning) note and a reference scale (consid-
ered as the correct intonation) are necessary. Trumpet players
tune generally their instrument on the fourth regime of the trumpet
with no valve pressed (Bb4, concert pitch), so it is used as the ref-
erence note.

The equal-tempered scale (which means that the octave is
divided in 12 equal semi-tones) is chosen as the reference scale,
given its worldwide use in occidental music. While it is possible
to consider customized musical temperament for a particular

trumpet player, such consideration is beyond the scope of this
paper. For every note i, the equal-tempered deviation (ETD)
between the average frequency of the ith note, Fiðx;uÞ, and the
reference frequency Fref ðx;uÞ is given by

ETD x; i;uð Þ ¼ aref!i � 1200 log2
Fi x;uð Þ

Fref x;uð Þ

!

(6)

where aref!i is the difference between the reference note ref and
the targeted note i given by the equal-tempered scale (�500 cents
for example between Bb4 and F4 between which the interval is a
descending fourth). The objective function Jðx;uÞ for the whole
instrument is the average of the absolute deviation across the
(P�1) notes (note that the deviation between the reference note
and the fourth note is always equal to zero)

J x;uð Þ ¼
1

P� 1

X

i2Notes

jETD x; i;uð Þj (7)

The main challenge in the proposed approach lies in the conver-
gence of the simulations toward auto-oscillations. This refers to
the instability of nonlinear systems for which no analytical solu-
tions are available. For a given instrument geometry, appropriate
virtual embouchures must be selected to ensure that the simula-
tions converge toward a sound in a permanent regime. Further-
more, similar to an inexperienced player that would blow a
trumpet with a terrible sound, the virtual embouchure must be
carefully selected in order to produce realistic sounds. A prepro-
cessing of the simulations is thus necessary to obtain, for different
geometries of instruments, a set of appropriate embouchures that
converge toward realistic sounds. To that end, a criterion has been
defined to represent the amplitude of the simulated sound rela-
tively to the pressure in the mouth. If the amplitudes of the har-
monics are large enough relative to the mouth pressure Pm

produced by the virtual musician, the embouchure is considered
appropriate. For a given note, a sound is considered realistic if

ffiffiffiffiffiffiffiffiffiffiffi

P

6

i¼1

A2
i

s

Pm

� Threshold (8)

An exploration of the design space according to the embou-
chure parameters is carried out to determine the threshold for each
note and to build a map of appropriate embouchure–geometry
couples. If x is in R

2, the space to explore has five dimensions:
two geometric variables and three embouchure variables (Pm, ll,
fl). To explore this space, a five-dimensional Latin hypercube is
built and every sample is simulated. This constitutes the prepro-
cessing of the parameters of the simulations. The thresholds are
adjusted to select 10% of the simulated sounds for a given note. A
map of appropriate embouchure–geometry couples is drawn from
the previously selected sounds (using a Gaussian mixture model
that fits the distribution).

It is important to mention that the average playing frequency,
Fiðx;uÞ, is an average value across a finite set of embouchures.
Furthermore, this set of embouchures is not deterministic, given

Table 1 Values of the control parameters for the simulations
considered in the study (virtual musician embouchure)

Definition Notation Value

Resonance frequency of the lips fl (Hz) 130–480
Mass per area of the lips ll (kg/m

2) 1–6
Pressure in the mouth Pm (kPa) 6–9
Width of the lips b (mm) 10
Rest value of the opening height H0 (mm) 0.1
Quality factor of the resonance Ql 3

Fig. 5 Flowchart of the optimization process
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that the preprocessing determination of appropriate embouchures
is stochastic (random sampling using the Gaussian mixture
model). The consequence is that the objective function J(x) is not
deterministic (two consecutive calculations may give different
results). In practice, a set of 100 embouchures is simulated to pro-
vide an estimation of Fiðx;uÞ for one note.

4 Surrogate-Assisted Derivative-Free Optimization
Methodology

Since the objective function is the result of a stochastic simula-
tion, derivatives are not available and cannot be approximated
reliably. Therefore, we use a rigorous derivative-free algorithm
with convergence properties, MADS [17–19], available via the
NOMAD software. This algorithm is based on the search-and-poll
paradigm introduced in Ref. [20]. The search step can implement
any user-defined method to obtain promising candidates. The poll
step determines candidates around the incumbent solution; it
ensures the convergence of the algorithm toward a local optimum.
In this work, we use a variation of the surrogate-assisted optimiza-
tion framework proposed in Ref. [21]. The basic idea is that we
use surrogate models of the “true” physics-based sound simulation
model to (i) formulate and solve a surrogate problem in the search
step to obtain a promising candidate and (ii) rank-order the candi-
dates generated by the poll step. We then use the “true” physics-
based sound simulation model to evaluate opportunistically all
these candidates in order to determine the next iterate.

4.1 Mesh Adaptive Direct Search. At each iteration k of the
MADS algorithm, the trial points must lie on a mesh Mk defined
as

Mk ¼ fxþ D
m
k Dz : z 2 N

nD ; x 2 Xkg � R
n (9)

where D
m
k is the mesh size parameter, the columns of D 2 R

n�nD

form a positive spanning set of nD directions in R
n [19], and

Xk ¼ fx1; x2;…; xpg � R
n denotes the set of points already

evaluated.
During each search step, an ensemble of surrogate models of

the “true” physics-based sound simulation model use to evaluate
the objective function J is built using previous evaluations. The
considered ensemble of surrogate models is described in section
4.2. The best surrogate model is selected, and a second instance of
MADS is used to obtain the design that minimizes it. This
instance of MADS uses two starting points: the incumbent solu-
tion of the problem, and (if available) the point returned by the
previous search. This design is then projected on the mesh Mk and
evaluated using the “true” physics-based sound simulation model.
If this candidate leads to an improvement of the solution, the sur-
rogate model ensemble is updated and the search is repeated. Oth-
erwise, the algorithm continues with the poll step.

During each poll step, the poll set is defined as
Pk ¼ fxk þ D

p
kd;d 2 Dkg, where Dk is a set of normalized direc-

tions such that these directions are positively spanning of Rn such
that Pk � Mk; the interested reader can refer to Ref. [17] for

details. The poll set is then sorted using the surrogate model, and
the points are evaluated using the “true” physics-based sound sim-
ulation model in an opportunistic manner, which means that the
evaluation of Pk is interrupted if a candidate leads to an improve-
ment of the solution. In this case, the mesh and poll size parame-
ters are increased so that the algorithm progresses faster toward a
better solution. Otherwise, these parameters are reduced, which
means that the next poll will look for trial points in a closer neigh-
borhood. A fundamental aspect of the MADS algorithm is that the
mesh size decreases faster than the poll size, which means that the
set of polling direction becomes dense in R

n once normalized
(see Fig. 6).

4.2 Surrogate Models. To build a robust and accurate surro-
gate model of the “true” objective function, we rely on an ensem-
ble of surrogate models [22–24]. At the beginning of each search
step, 17 different surrogate models (see Table 2) are built. For
each of these models, an error metric is computed to enable the
selection of the best model at the beginning of each search or poll
step. The selected model is then used in the search step to provide
an interesting candidate and in the poll step to order the poll can-
didates. An alternative to the use of ensembles of surrogates is the
selection of one type of model and the optimization of its parame-
ters. The selection of the best surrogate type, however, can be dif-
ficult to do in advance: in part because of the variety of options
available, and in part because the most suitable type may change
as the optimization process unfolds. Moreover, the optimization
of the parameters of the surrogate may be computationally expen-
sive. In Ref. [25], we showed that the use of ensembles of models
is a robust and efficient approach for surrogate-assisted
optimization.

The rationale behind updating all surrogates at every iteration is
that the best model can vary. The surrogates are built using three
different modeling techniques: Polynomial response surfaces
(PRSs) [24,26,27], Kernel smoothing (KS) [24,28], and radial
basis functions (RBFs) [24,26,27,29,30]. For each of these model-
ing methods, previously generated data [X, J(X)] are used to build
a surrogate Ĵ of the function J.

4.2.1 Polynomial Response Surfaces. A PRS model is a linear
composition of polynomial basis functions

ĴðxÞ ¼
X

q

j¼1

cj h
PRS
j ðxÞ (10)

where the coefficients c ¼ fcjgj¼1;…;q 2 R
q are computed by ordi-

nary least squares (OLS) to minimize

Fig. 6 MADS poll and mesh sizes for a two-dimensional
problem

Table 2 List of surrogate models built during the search step

#
Model
type Degree

Ridge
param. r

Shape
param. k

Kernel
/ðdÞ

1 PRS 1 0 N.A. N.A.
2 1 0.001
3 2 0
4 2 0.001
5 3 0
6 6 0.001

7 KS N.A. N.A. 0.1 e�k2d2

8 0.3
9 1.0
10 3.0
11 10.0

12 RBF 1 0.001 0.3 e�k2d2

13 1.0
14 3.0
15 10.0
16 N.A. d
17 d logðdÞ
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X

p

i¼1

ðJðxiÞ � ĴðxiÞÞ
2 þ r

X

q

j¼1

c2j (11)

where r is a ridge parameter (typically, r¼ 0.001), which allows
to regularize the OLS system, especially when the number of
training points is smaller than the number of basis functions. The
degree of the PRS defines the maximum degree of the polyno-
mials fhPRSj gj¼1;…;q, which are chosen to form a basis of the poly-
nomial vector space for that given degree.

Since the objective function is not smooth, a PRS of high
degree may have a tendency to over-fit the data. In other words, a
higher PRS degree may lead to a higher cross-validation error.
The ridge parameter can be fine-tuned to minimize cross-
validation error, but this process is time-consuming. In this study,
the accuracy of the surrogate is attained by building several mod-
els rather than by fine-tuning their parameters. For this reason,
surrogates 1–6 in Table 2 are PRS models of various degrees and
ridge parameter values.

4.2.2 Radial Basis Functions. RBF models are linear combi-
nations of PRS basis functions and radial basis functions

ĴðxÞ ¼
X

qPRS

j¼1

cPRSj hPRSj ðxÞ þ
X

qRBF

j¼1

cRBFj hRBFj ðxÞ (12)

Unlike most RBF model formulations [24,29,30], qRBF is chosen
so that qRBFþ qPRS� p, which means that there is not one radial
basis function per training point, and that this model does not nec-
essarily match the value of J at the training points. However, this
allows to limit the number of basis functions and the time neces-
sary to compute the coefficients of the model. As for PRS models,
these coefficients are computed by minimizing the error described
in Eq. (11). In particular, when the number of training points is
smaller than the number of basis functions, the regularization
term is required to build the model. Consequently, for RBF mod-
els, the ridge parameter and the degree of the PRS must be speci-
fied as parameters of the model (see Table 2). In this work, the
degree of the PRS in an RBF model is always one. The function

hRBFj is radial basis function of the form hRBFj ðxÞ ¼ /ðkx; xsjkÞ

where the points fxsjgj¼1;…;qRBF are a subset of X selected greedily

to maximize the distance between the points within this subset.
The function /ðdÞ is either a Gaussian kernel of shape parameter
k (models 7–10) or an harmonic spline of order 1 or 2 (models 11
and 12, respectively) [29].

4.2.3 Kernel Smoothing. The Kernel Smoothing prediction in
x is a weighted average of all observations J(X), where the weight
assigned to an observation decreases when its distance from x
increases. Formally, we have

Ĵ xð Þ ¼

P

p

j¼1

wj xð ÞJ xjð Þ

P

p

j¼1

wj xð Þ

; wherewj xð Þ ¼ / kx� xjk2
� �

(13)

As for some of the RBF models, / is a Gaussian kernel
/ðdÞ ¼ expð�k2d2Þ, where k is a shape parameter that controls
the amount of smoothing in the model.

4.2.4 Selection of the Best Surrogate Model. Two error met-
rics are considered in this work to select the best surrogate model.
The first metric is the leave-one-out cross-validation root mean
square error (also named PRESS [31–33])

EPRESS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p

X

p

i¼1

J xið Þ � Ĵ
�ið Þ

xið Þ

� �2
s

(14)

where Ĵ
ð�iÞ

is the model built by leaving out the observation
½xi; JðxiÞ�. This error metric allows to quantify not only the error
of the model on the training point but also its predictive error. The
second error metric, proposed by Ref. [25], is the leave-one-out
cross-validation order error (OECV), which is based on the
assumption that the error between y and Ĵ is less important than
the ability of the model to correctly order two candidates. This
metric is defined as

EOECV ¼
1

p2

X

i;j

J xið Þ � J xjð Þ xor Ĵ
�ið Þ

xið Þ � Ĵ
�jð Þ

xjð Þ

� �

(15)

where xor is the logical “exclusive or” operator. In other words,
the error will be high if there are many couples (xi, xj) for which

the sign of J(xi)�J(xj) is different from that of Ĵ
ð�iÞ

ðxiÞ

�Ĵ
ð�jÞ

ðxjÞ. The value of EOECV is bounded by [0, 1]. We observe

that if EOECV> 1/2, then Ĵ is less accurate than its opposite
function.

5 Examples

Two design problems are considered: one with two design opti-
mization variables (2D) and one with five (5D). For the 2D prob-
lem, an exhaustive computation of the objective function on a fine
discretization of the design space is tractable. It is therefore possi-
ble to assess the quality of the optimal solution with respect to the
global optimum obtained using the exhaustive enumeration. The
5D problem corresponds to a more realistic design problem. For
both problems, the initial guess xinit corresponds to the geometry
of the Yamaha 6335 trumpet (measured using balls and calipers).
The optimal bores are compared to this geometry to assess the
quality of the results. However, the exact bore geometry of
the Yamaha trumpet is not available due to proprietary issues. The
comparison is thus made relative to an approximate measurement
of this trumpet. Each problem is solved with a budget of 100
objective function evaluations, using the “true” physics-based
sound simulation model, to investigate the performance of the
optimization methodology at reasonable computational cost
(approximately 5 CPU hours per run on a 3.4GHz Intel Core i7-
2600 with 16 GB of RAM). Moreover, to allow for a reliable
quantification of the efficiency of the optimization methods, each
problem is solved 20 times with each of the four solvers.

5.1 Design Optimization Problem With Two Variables.
The design variables concern two diameters of the leadpipe of a
Bb trumpet, an important part of the bore that connects the mouth-
piece to the tuning slide (see Fig. 2). This part, roughly conical,
has a significant influence on the intonation and timbre of the
instrument [10]. The impact of the two design variables on the
geometry of the bore is illustrated in Fig. 7. The first adjustable

Fig. 7 Representation of the leadpipe inner radius along the
instrument axis; the black dotted line to the initial geometry
(measured on the Yamaha trumpet); each other line corre-
sponds to the best design found by one of the four methods
over 20 runs
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radius (axial position of 0.16m) spans from 4mm to 5.8mm while
the second (axial position of 0.24m) spans from 4.8mm to
6.6mm. The rest of the trumpet corresponds to measurements
made on a Yamaha 6335 trumpet with a Yamaha 15C4 mouth-
piece (see Fig. 3 for the complete bore profile).

A single evaluation of the objective function J(x) over the
entire discretized design space (with a granularity of 0.01mm) is
plotted in Fig. 8. The objective function has a global optimum of
3 cents at x¼ [4.8 5.5] (in mm). The maximum of J(x) in the
design space is 27 cents. The leadpipe geometry corresponding to
the initial point (Yamaha trumpet) is represented by a black dotted
line in Fig. 7. Its position on the objective function surface is
denoted by the black cross on Fig. 8.

Four optimization strategies are tested. The ones nicknamed
“None” and “Quad” use the official NOMAD release 3.7.2 where the
search step is omitted or where it employs local quadratic surro-
gate models, respectively. The strategies based on the use of the
ensemble of surrogates tested with the two error metrics are
named after the error metric, i.e., PRESS and OECV.

The history plot of the objective function for each optimization
strategy is shown in Fig. 9.

On average, the best objective is obtained using OECV:
detailed intonation improvements obtained with this strategy are
shown in Fig. 10. The optimal objective function value for the
best run of OECV is 0.9 cents at x¼ [4.68 5.43] (in mm). The

average intonation improvement is 5.4 cents, which is above the
just noticeable difference (JND) in pitch (5 cents).

Note that the deviation of the fourth note is zero because this
note is chosen as the tuning reference.

5.2 Design Optimization Problem With Five Variables.
The five design variables concern the leadpipe and the mouth-
piece. On the leadpipe, five parts of equal length (l¼ 44 mm) are
considered. The design variables are the inner radii of the leadpipe
at the connection between two parts (four variables out of six con-
trol points because the initial and last control points are fixed to
4.8 and 5.6mm, respectively). These four inner radii values span
from 3.8 to 6.6mm. The last variable corresponds to the depth of
the mouthpiece (length of the cylinder before the cup of the
mouthpiece) which spans from 0 to 6mm. The rest of the trumpet
is as in the 2D example.

The performance of the four strategies is presented in Fig. 11 as
for the 2D problem. On average, the OECV strategy yields the
best design. The average optimal objective value is 1.5 cents,
improving the overall intonation by 5.8 cents. The detailed intona-
tion improvements obtained with this method are shown in Fig.
12, and the final best optimum of the OECV strategy is x¼ [2.3
6.48 4.13 5.41 6.42] (in mm).

When the PRESS metric is used, the selected model error varies
between 0.23 and 7.9, with an average of 3.1. For the OECV met-
ric, the selected model error varies between 0 and 0.41, with an
average of 0.27. For the OECV and PRESS strategies, we define
the “model selection map” Si,k as the number of times that the

Fig. 8 Exhaustive computation of the objective function for
the two-dimensional design example; the black cross denotes
the initial geometry; the other dots denote the best solutions of
the four employed strategies

Fig. 9 Evolution of the objective in the 2D problem

Fig. 10 Details of the intonation improvements obtained using
the OECV method for the 2D case: the dark gray columns corre-
spond to the initial geometry while the light gray columns cor-
respond to the optimum; the two left columns are the objective
function mean value while the six other columns represent the
detailed mean absolute value of the ETDs; the black bars on
each column correspond from bottom to top to the first quartile
the median and the third quartile of distributions of the 20 runs

Fig. 11 Evolution of the objective in the 5D problem
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model k (among the 17 models listed in Table 2) was selected at
blackbox evaluation i over the 20 runs. Figure 13 depicts the
selection maps for these two strategies.

5.3 Discussion. The results are very promising and show sig-
nificant improvements in the intonation of the instrument in both
cases. The solution of the 2D problem improves the objective by
up to 75% (average value for the OECV solver). For the 5D prob-
lem, the objective is improved by up to 79% (average value for
the OECV solver). The optimal designs of the 2D problem are
close to the global minimizer as can be seen in Fig. 8. This dem-
onstrates that the algorithm formulations converge toward the
minimum (recall that the computation budget was limited to 100
“true” model function evaluations). The ensemble surrogate strat-
egy with OECV is the most successful in both cases though this
advantage is very mild for the 2D problem. From an acoustic point
of view, it is worth noting that both for the 2D and for the 5D
problem, the optimum improves the intonation of every note. The
optimal designs for the 2D problem are plausible. For the 5D
problem, the optimum (best design of the OECV method over 20
runs) is counterintuitive since the leadpipe does not have a posi-
tive slope along the whole trumpet axis (the diameter at the first
control point, 6.48mm, is larger than at the previous and next con-
trol point, respectively, 4.8mm and 4.13mm). This kind of form
for a leadpipe is not common among trumpets because they are
very difficult to manufacture. We see thus that the optimization
algorithm was able to explore the design space in order to find
exotic designs, which significantly improve instrument intonation.
Finally, the three additional degrees-of-freedom considered in the
5D problem improve the capability of the algorithm to find a
slightly better optimum.

From an optimization point of view, it is interesting to observe
that the PRESS and OECV metrics lead to different models being
selected. The use of the PRESS metric strongly favors the PRS
models of degree 1 and 2 with regularization and the models KS 1
and KS 3. The OECV metrics favor a more diverse model selec-
tion, i.e., the use of Kernel smoothing with a high shape parameter
(KS 10), and the use of RBF models, which are nearly ignored
when the PRESS metric is used. It is also interesting to see that,
for both metrics, the shape parameter of the selected Kernel
smoothing models tends to increase, which implies the ability to
model more local variations as the number of data points
increases. The fact that OECV metric leads to a more diverse
model selection and to more efficient optimization makes it an
interesting option for surrogate-assisted optimization.

6 Conclusions

This work proposes a new paradigm for design optimization of
brass instruments. The originality of the approach lies in the fact
that the objective function is not limited to a characterization of
the instrument alone, but is based on the complex interaction
between the instrument and the musician. The main challenge
consists in the integration of physics-based simulations in an itera-
tive optimization loop, which requires that simulations converge
toward auto-oscillations for every considered point of the design
space. This property is ensured by means of a preprocessing step
of the virtual embouchures of the musician and a stochastic
approach that assesses the objective function using a Monte Carlo
method. The sound simulations are conducted using a physics-
based model that relies on the harmonic balance technique. This
allows to define the objective function by computing the global

Fig. 12 Details of the intonation improvements obtained using
the OECV method for the 5D case: the dark gray columns corre-
spond to the initial geometry while the light gray columns cor-
respond to the optimum; the two left columns are the objective
function mean value while the six other columns represent the
detailed mean absolute value of the ETDs; the black bars on
each column correspond from bottom to top to the first quartile
the median and the third quartile of distributions of the 20 runs

Fig. 13 Model selection map Si,k for PRESS and OECV strat-
egies on the 5D problem; the upper (respectively, lower) map
indicates which models were selected with the PRESS (respec-
tively, OECV) error metric; the gray intensity indicates how
often the model k was selected during blackbox evaluation i
over the 20 runs; darker gray indicates a model selected more
frequently (a) selection with PRESS metric, (b) selection with
OECV metric, and (c) legend: never selected always selected
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instrument’s intonation for a set of different virtual embouchure.
The MADS optimization algorithm is used, and different formula-
tions of the surrogate-based search step have been tested to
improve its efficiency. The results are encouraging both from an
acoustics and from an algorithmic point of view. The intonation
improvements are significant, and the obtained optimal designs
are rational.

This work can be extended in many directions. Regarding
acoustics, more design variables can be considered, in particular
with respect to the mouthpiece. One could modify its thinnest
radius and the length proportion between the hemisphere and the
divergent cone. Another direction considers the objective func-
tion. Since a sound in a permanent regime provides us with the
amplitudes of the harmonics, objective functions based on the
instrument timbre can be formulated. The influence of some
embouchure parameters on the optimal solutions can also be con-
sidered, for example the intonation variations under a modifica-
tion of the embouchure’s dynamics. As several sound quality
descriptors are available, a bi-objective optimization or an optimi-
zation of one descriptor subject to constraints based on some other
descriptors would be a natural consideration. In particular, it
would be interesting to investigate a timbre descriptor under an
intonation constraint, because trumpeters may be able to accept a
slightly out-of-tune trumpet if its “global” sound is outstanding.
Concerning the optimization process, it may be interesting to use
the two metrics “PRESS” and “OECV” for aggregating different
models instead of selecting only one. Moreover, if constrained
problems are considered, an ensemble of models may be very
effective for selecting different surrogates for different functions
(objective and constraints).
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