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Smooth finite elements
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RESUME. A définir par la commande \resume{. ..}

ABSTRACT. We present a method which we believe can serve as a mid-way solution between com-
putationally expensive meshfree methods and mesh-distortion-sensitive finite element methods.
The method is almost insensitive to mesh distortion and is naturally suited to polygonal meshes.
More precisely, we show results concerning the application of strain smoothing or stabilized
conforming nodal integration to the finite element method. The technique was coined the Smooth
Finite Element Method (SFEM) by G.R. Liu et al. We show that some versions of the method
completely suppress locking in incompressible elasticity and elasto-plasticity. Additionally,
locking can be suppressed in the case of plate and shell formulations. More importantly per-
haps, these smooth finite elements helped discover a remarkable link between displacement and
equilibrium finite elements.

MOTs-CLES : A définir par la commande \motscles{...}

KEYWORDS: Smooth finite elements; locking; incompressibility; plates; shells; equilibrium ele-
ments; displacement elements; plasticity; selective integration.
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1. Introduction

The stabilized conforming nodal integration finite element method, based on strain
smoothing stabilization, presented recently as the Smooth Finite Element Method
(SFEM) by (Liu et al., 2006) is studied theoretically and numerically in (Nguyen-
Xuan et al., 2007e). The integration of the stiffness matrix is performed on the boun-
daries of subcells in each finite element. A rigorous variational framework based on
the Hu-Washizu assumed strain variational form was developed in (Nguyen-Xuan et
al., 2007e).

We prove that smooth finite element solutions are in a space bounded by the stan-
dard finite element solution (infinite number of subcells) and an equilibrium finite
element solution (one subcell) (Nguyen-Xuan et al., 2007d).

It 1s remarkable that the lower the number of cells, the more accurate the dual
unknown and the less accurate the primal unknown, a characteristic of equilibrium
finite elements. The converse effect is noted for high numbers of subcells where the
dual unknown is not as accurate as the primal unknown, characteristic of standard
finite element solutions.

We show numerically that the one-cell smoothed four-noded quadrilateral finite
element does not lock, has a convergence rate of 2.0 in the energy norm for pro-
blems with smooth solutions. For problems with singular solutions, this element al-
ways converges faster than standard finite elements (Nguyen-Xuan et al., 2007¢).

Additionally, selective cell-wise smoothing can be constructed, where the devia-
toric and volumetric parts of the strain field are approximated with a smooth finite
element approximation based on a different number of subcells (Nguyen-Xuan et al.,
2007a).

Smooth finite elements are Chen et alalso remarkable means to suppress locking
in plate (Nguyen-Xuan et al., 2007b) and shell (Nguyen-Xuan et al., 2007¢) formula-
tions.

This communication only presents the key ingredients behind smooth finite ele-
ment theory and concentrates on a summary of the principal features of the method,
and how it may be applied to engineering analysis. The interested readers are referred
to the articles in the bibliography for more detail.

2. Basic idea

The strain-smoothing method (SSM) was proposed in (Chen et al., 2001). A strain
smoothing stabilization is created to compute the nodal strain as the divergence of
a spatial average of the strain field. This strain smoothing avoids evaluating deriva-
tives of mesh-free shape functions at nodes and thus eliminates defective modes. We
show in this contribution how such strain smoothing approaches may be useful in a
finite element context. Strain smoothing can be seen as a stabilized conforming nodal
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integration method, as in Galerkin mesh-free methods applied to the finite element
method. The smooth strain field at an arbitrary point X is written as

El(xc) = /Q el (x)®(x — x¢)d [1]

where ® is a smoothing function that generally satisfies the following properties (Yoo
etal., 2004)

® >0 and / ®d) =1 [2]
Oh
The smoothed discretized gradient operator B is defined by

&" =Beq [3]

The smoothed element stiffness matrix for element e is computed by
K=Y [ BIDBed2 =Y BEDBeAc 4]
c=17%¢ c=1

where nc is the number of the smoothing cells of the element. Here, the integrands are
constant over each {2¢ and the non-local strain displacement matrix reads

Be; = — 0 Nn, |dl=— n’ N;(x)dl' Vi=1,2,3,4
AC e Nmy me AC Le

[5]

Introducing (5) into (4), the smoothed element stiffness matrix is evaluated along
boundary of the smoothing cells of the element :

3. Application to incompressible elasto-plasticity

Consider a thick cylinder under pressure, the material is assumed to follow von
Mises plasticity. Hill (Hill, 1950) shows the exact solution for this problem. The yield
stress is o, = 24, Poisson’s ratio v = 0.49999, and the internal pressure p is varied
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between 8 and 20. We denote the plastic radius, i.e. the value of r below which the
cylinder undergoes plastic deformation by c. The return mapping algorithm (Simo et
al., 1999) combined with four-noded smooth finite elements is employed to simulate
the plastic behavior. Here we evaluate the development of the plastic domain in the
case of isotropic hardening plasticity.

Figures 1 present elastic-plastic results for the thick cylinder in three cases : a)
perfectly plastic material, H = 0, b) hardening case, H = F/3 andc) H = 2E/3.
The numerical results show that the development of the plastic domain slows down
with increasing hardening factor, H. Also, the proposed method agrees well with the
exact solution (Hill, 1950) and other published results (Owen et al., 1980, Commend
etal., 2001).
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Figure 1. View of the hoop stress for the perfectly plastic behavior : (a) p = 12; (b)
p = 14; and (c) p = 18. QEE stands for quasi-equilibrium element (see (Nguyen-
Xuan et al., 2007d) where it is proven equivalent to the one-subcell SFEM).
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4. Application to plate formulations

A clamped plate subjected to a center point load F' = 16.3527 with geometry and
material parameters : length L = 100, thickness ¢t = 1, Young’s modulus £ = 104,
Poisson’s ratio v = (0.3. Only a quarter of the plate is modelled with a mesh of 8 x 8
elements. To study the effect of mesh distortion on the results, the position of interior
nodes is perturbed.

The results of our presented method are more accurate than those of the Q4-R
element and the MITC4 element, especially for extremely distorted meshes. Here, the
MISCI1 element gives the best result. However, this element contains two zero-energy
modes. In simple problems, these hourglass modes can be automatically eliminated
by the boundary conditions. However, this is not in general the case. Otherwise, the
MISC2, MISC3 and MISC4 elements retain a sufficient rank of the element stiffness
matrix and give excellent results.

Figure 2. An example of a distorted mesh for the square plate.
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Figure 3. The center deflection with influence of mesh distortion for a clamped square
plate subjected to a concentrated load
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5. Conclusions

Strain smoothing in finite elements yields superconvergent elements alleviates
shortcomings related to mesh distortion, singularities, locking in incompressible, plate
and shell formulations, allows polygonal meshes and contour integration and applies
to linear and non-linear problems. It seems clear that the contour integration, stability
and robustness of this formulation will lend itself to important improvements of the
extended finite element methods.
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