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A variational proof of partial regularity for optimal transportation maps

We provide a new proof of the known partial regularity result for the optimal transportation map (Brenier map) between two Hölder continuous densities. Contrary to the existing regularity theory for the Monge-Ampère equation, which is based on the maximum principle, our approach is purely variational. By constructing a competitor on the level of the Eulerian (Benamou-Brenier) formulation, we show that locally, the velocity is close to the gradient of a harmonic function provided the transportation cost is small. We then translate back to the Lagrangian description and perform a Campanato iteration to obtain an ε-regularity result.

Introduction

For α ∈ (0, 1), let ρ 0 and ρ 1 be two probability densities with bounded support which are C 0,α continuous, bounded and bounded away from zero on their support and let T be the solution of the optimal transportation problem min

T ♯ρ 0 =ρ 1 R d |T (x) -x| 2 ρ 0 (x)dx, (1.1) 
where with a slight abuse of notation T ♯ρ 0 denotes the push-forward by T of the measure ρ 0 dx (existence and characterization of T as the gradient of a convex function ψ are given by Brenier's Theorem, see [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 2.12]). Our main result is a partial regularity theorem for T :

Theorem 1. [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]. There exist open sets E ⊆ spt ρ 0 and F ⊆ spt ρ 1 of full measure such that T is a C 1,α -diffeomorphism between E and F .

This theorem is a consequence of Alexandrov Theorem [START_REF]Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften[END_REF]Th. 14.25] and the following ε-regularity theorem (plus a bootstrap argument): Theorem 1.2. Let T be the minimizer of (1.1) and assume that ρ 0 (0) = ρ 1 (0) = 1. There exists ε(α, d) such that if i

1 (2R) d+2 B 2R |T -x| 2 ρ 0 dx+ 1 (2R) d+2 B 2R |T -1 -x| 2 ρ 1 dx+R 2α [ρ 0 ] 2 α,2R +R 2α [ρ 1 ] 2 α,2R ≤ ε(α), then, T is C 1,α inside B R .
Theorem 1.1 was already obtained by Figalli and Kim [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] (see also [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] for a far-reaching generalization), but our proof departs from the usual scheme for proving regularity for the Monge-Ampère equation. Indeed, while most proofs use some variants of the maximum principle, our proof is variational. The classical approach operates on the level of the convex potential ψ and the ground-breaking paper in that respect is Caffarelli's [5]: By comparison with simple barriers it is shown that an Alexandrov (and thus viscosity) solution ψ to the Monge-Amp +ere equation is C 1 , provided its convexity does not degenerate along a line crossing the entire domain of definition. The same author shows in [START_REF]The regularity of mappings with a convex potential[END_REF] by similar arguments that the potential ψ of the Brenier map is a strictly convex Alexandrov solution, and thus regular, provided the target domain spt ρ 1 is convex. The challenge of the ε-regularity theorem in [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] is to follow the above line of arguments while avoiding the notion of Alexandrov solution, that is, without having access to the comparison argument by below. The ε-regularity theorem in [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] in turn is used by Figalli and De Philippis as the core for a generalization to general cost functions by means of a Campanato iteration. On the contrary to these papers, we work directly at the level of the optimal transportation map T , and besides the L ∞ bound (4.11) given by McCann's displacement convexity, we only use variational arguments. The main idea behind the proof is the well-known fact that the linearization of the Monge-Ampère equation gives rise to the Laplace equation [START_REF] Villani | Topics in optimal transportation[END_REF]Sec. 7.6]. We prove that if the energy in a given ball is small enough, then in the half-sized ball, T is close to the gradient of harmonic function (see Proposition 4.6). This result is actually established at the Eulerian level (i.e. for the solutions of the Benamou-Brenier formulation of optimal transportation, see [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 8.1] or [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chap. 8]), see Proposition 4.3. It is for this result that we need the outcome of McCann's displacement convexity, cf. (4.11), since it is required for the quasi-orthogonality property (4.26). Our argument is variational and proceeds by defining a competitor based on the solution of a Poisson equation with suitable flux boundary conditions, and a boundary-layer construction. The boundary-layer construction is carried out in Lemma 3.4; by a duality argument it reduces to the trace estimate (3.10). This part of the proof is reminiscent of arguments from [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]. Once we have this approximation result, using that by classical elliptic regularity, harmonic functions are close to their second-order Taylor expansion, we establish "improvement of flatness by tilting", see Proposition 4.7. This means that if the energy in a given ball is small then, up to a change of coordinates, the energy has a geometric decay on a smaller scale. The last step is to perform a Campanato iteration of this one-step improvement. This is done in Proposition 4.8, where we use our last fundamental ingredient, namely the

i here [ρ] α,R := sup x,y∈BR |ρ(x)-ρ(y)| |x-y| α denotes the C 0,α -semi-norm.
invariance of the variational problem under affine transformations. This entire approach to ε-regularity is guided by De Giorgi's strategy for minimal surfaces (see [START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF] for instance).

Let us notice that because of the natural scaling of the problem, our Campanato iteration operates directly at the C 1,α -level for T , as opposed to [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF][START_REF] Philippis | Partial regularity for optimal transport maps[END_REF], where C 0,α -regularity is obtained first.

The plan of the paper is the following. In Section 2 we gather some notation that we will use throughout the paper. Then, in Section 3, we recall some well-known facts about the Poisson equation and then prove estimate (3.14), the proof of which is based on the trace estimate (3.10). In the final section, we prove Theorem 1.2 and then Theorem 1.1.

Motivated by applications to the optimal matching problem, we are currently working together with M. Huesmann on the extension of Proposition 4.6 to arbitrary target measures. A previous version of this paper treating the simpler case of transportation between sets is available on our webpages. Since the proofs are more streamlined there, we recommend to read it first.

Notation

In the paper we will use the following notation. The symbols ∼, , indicate estimates that hold up to a global constant C, which typically only depends on the dimension d and the Hölder exponent α (if applicable). For instance, f g means that there exists such a constant with f ≤ Cg, f ∼ g means f g and g f . An assumption of the form f ≪ 1 means that there exists ε > 0, typically only depending on dimension and the Hölder exponent, such that if f ≤ ε, then the conclusion holds. We write |E| for the Lebesgue measure of a set E. Inclusions will always be understood as holding up to a set of Lebesgue measure zero, that is for two sets E and F , E ⊆ F means that |E\F | = 0. When no confusion is possible, we will drop the integration measures in the integrals. For R > 0 and x 0 ∈ R d , B R (x 0 ) denotes the ball of radius R centered in x 0 . When x 0 = 0, we will simply write B R for B R (0). We will also use the notation

- B R f := 1 |B R | B R f.
For a function ρ defined on a ball B R we introduce the Hölder semi-norm of exponent α ∈ (0, 1)

[ρ] α,R := sup

x =y∈B R |ρ(x) -ρ(y)| |x -y| α .

Preliminaries

In this section, we first recall some well-known estimates for harmonic functions.

Lemma 3.1. Given f ∈ L 2 (∂B 1 ) with average zero, we consider a solution ϕ of

-∆ϕ = 0 in B 1 ∂ϕ ∂ν = f on ∂B 1 , (3.1) 
where ν denotes the outer normal to ∂B 1 . We have

B 1 |∇ϕ| 2 ∂B 1 f 2 , (3.2) 
sup

B 1/2 |∇ 3 ϕ| 2 + |∇ 2 ϕ| 2 + |∇ϕ| 2 B 1 |∇ϕ| 2 , (3.3) 
and for every r ≤ 1, letting

A r := B 1 \B 1-r , Ar |∇ϕ| 2 r ∂B 1 f 2 . (3.4)
Proof. We start with (3.2). Changing ϕ by an additive constant, we may assume that B 1 ϕ = 0. Testing (3.1) with ϕ, we obtain

B 1 |∇ϕ| 2 = ∂B 1 f ϕ ≤ ∂B 1 f 2 1/2 ∂B 1 ϕ 2 1/2 ∂B 1 f 2 1/2 B 1 |∇ϕ| 2 1/2
, where we used the trace estimate in conjunction with Poincaré's estimate for mean-value zero. This yields (3.2). Estimate (3.3) follows from the mean-value property of harmonic functions applied to ∇ϕ and its derivatives.

We finally turn to (3.4). By sub-harmonicity of |∇ϕ| 2 (which can for instance be inferred from the Bochner formula), we have the mean-value property in the form

∂Br |∇ϕ| 2 ≤ ∂B 1 |∇ϕ| 2 for r ≤ 1.
Integrating this inequality between r and 1, using Pohozaev identity, that is,

(d -2) ∂ϕ ∂ν 2 , (3.5) 
where ∇ τ is the tangential part of the gradient of ϕ, and (3.2), we obtain (3.4).

We also need similar estimates for solutions of Poisson equation.

Lemma 3.2. Given g ∈ C 0,α (B 1 ) such that g(0) = 0, we consider a solution ϕ of

-∆ϕ = g in B 1 ∂ϕ ∂ν = - 1 H d-1 (∂B 1 ) B 1 g on ∂B 1 , (3.6) 
where ν denotes the outer normal to ∂B 1 . We have

sup B 1 |∇ 2 ϕ| 2 + |∇ϕ| 2 [g] 2 α,1 . (3.7) 
In particular,

B 1 |∇ϕ| 2 [g] 2 α,1 , (3.8) 
and letting for r ≤ 1,

A r := B 1 \B 1-r , it holds Ar |∇ϕ| 2 r[g] 2 α,1 . (3.9) 
Proof. Estimate (3.7) follows from global Schauder estimates [START_REF] Nardi | Schauder estimate for solutions of Poisson's equation with Neumann boundary condition[END_REF] and the fact that since

g(0) = 0, g L ∞ (B 1 ) [g] α,1 .
We will need a trace estimate in the spirit of [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]Lem. 3.2].

Lemma 3.3. For r ≤ 1, letting A r := B 1 \B 1-r , it holds for every function ψ,

1 0 ∂B 1 (ψ -ψ) 2 1/2 r 1/2 1 0 Ar |∇ψ| 2 1/2 + 1 r (d+1)/2 1 0 Ar |∂ t ψ|, (3.10) 
where ψ(x) := 1 0 ψ(t, x)dt.

Proof. By a standard density argument, we may assume

ψ ∈ C 1 (A r × [0, 1]). Because of 1 0 |∇(ψ -ψ)| 2 ≤ 1 0 |∇ψ| 2 , we may rewrite (3.10) in terms of v := ψ -ψ as 1 0 ∂B 1 v 2 1/2 r 1/2 1 0 Ar |∇v| 2 1/2 + 1 r (d+1)/2 1 0 Ar |∂ t v|.
Since for every x ∈ ∂B 1 ,

1 0 v = 0, we have 1 0 v 2 1/2 ≤ 1 0 |∂ t v|, so that it is enough to prove ∂B 1 1 0 v 2 1/2 r 1/2 Ar 1 0 |∇v| 2 1/2 + 1 r (d+1)/2 Ar 1 0 v 2 1/2 . Introducing V := 1 0 v 2 1/2
and noting that |∇V | 2 ≤ 1 0 |∇v| 2 , we see that it is sufficient to establish

∂B 1 V 2 1/2 r 1/2 Ar |∇V | 2 1/2 + 1 r (d+1)/2 Ar |V |.
(3.11)

We now cover the sphere ∂B 1 by (geodesic) cubes Q of side-length ∼ r in such a way that there is only a locally finite overlap. Then the annulus A r is covered by the corresponding conical sets Q r . By summation over Q and the super-additivity of the square function, for (3.11) it is enough to prove for every

Q Q V 2 1/2 r 1/2 Qr |∇V | 2 1/2 + 1 r (d+1)/2 Qr |V |.
Since Q r is the bi-Lipschitz image of the Euclidean cube (0, r) d , it is enough to establish

{0}×(0,r) d-1 V 2 r (0,r) d |∇V | 2 + 1 r d+1 (0,r) d |V | 2 .
(3.12)

By rescaling, for (3.12) it is sufficient to consider r = 1. By a one-dimensional trace inequality we have for every

x ′ ∈ (0, 1) d-1 |V (0, x ′ )| 1 0 |∂ 1 V (x 1 , x ′ )|dx 1 + 1 0 |V (x 1 , x ′ )|dx 1 .
Taking squares, integrating and using Jensen's inequality, we get

{0}×(0,1) d-1 V 2 (0,1) d |∂ 1 V | 2 + (0,1) d V 2 .
Using Poincaré inequality in the form (0,1

) d V 2 (0,1) d |∇V | 2 + (0,1) d |V | 2
, we obtain (3.12). This trace estimate is used in a similar spirit as in [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]Lem. 3.3] 

to obtain Lemma 3.4. Let f ∈ L 2 (∂B 1 × (0, 1)) be such that for a.e. x ∈ ∂B 1 , 1 0 f (x, t)dt = 0. For r > 0 we introduce A r := B 1 \B 1-r and define Λ as the set of pairs (s, q) with |s| ≤ 1/2 and such that for ψ ∈ C 1 (B 1 × [0, 1]) ii , 1 0 Ar s∂ t ψ + q • ∇ψ = 1 0 ∂B 1 f ψ. (3.13) Provided r ≫ 1 0 ∂B 1 f 2 1/(d+1)
we then have

inf (s,q)∈Λ 1 0 Ar 1 2 |q| 2 r 1 0 ∂B 1 f 2 . (3.14)
ii For (s, q) regular, (3.13) just means

∂ t s+div q = 0 in A r , s(•, 0) = s(•, 1) = 0, q •ν = 0 on ∂B 1-r ×(0, 1) and q • ν = f on ∂B 1 × (0, 1)
Proof. We first note that the class Λ is not empty: For t ∈ (0, 1), let u t be defined as the (mean-free) solution of the Neumann problem

       -∆u t = -1 |Ar| ∂B 1 f in A r × (0, 1) ∂ut ∂ν = f on ∂B 1 × (0, 1) ∂ut ∂ν = 0 on ∂B 1-r × (0, 1),
and set q(x, t) := ∇u t (x). The definition s(x, t) := -

t 0 div q(x, z)dz = -1 |Ar| t 0 ∂B 1 f then ensures that (3.13) is satisfied, and r ≫ 1 0 ∂B 1 f 2 1 2 yields |s| ≤ 1/2.
As in [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]Lem. 3.3], we now prove (3.14) with help of duality:

inf (s,q)∈Λ 1 0 Ar 1 2 |q| 2 = inf (s,q),|s|≤1/2 sup ψ 1 0 Ar 1 2 |q| 2 - 1 0 Ar s∂ t ψ + q • ∇ψ + 1 0 ∂B 1 f ψ = sup ψ inf (s,q),|s|≤1/2 1 0 Ar 1 2 |q| 2 - 1 0 Ar s∂ t ψ + q • ∇ψ + 1 0 ∂B 1 f ψ ,
where the swapping of the sup and inf is allowed since the functional is convex in (s, q) and linear in ψ (see for instance [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Prop. 1.1]). Minimizing in (s, q), and using

1 0 f = 0 which allows us to smuggle in ψ := 1 0 ψ, we obtain inf (s,q)∈Λ 1 0 Ar 1 2 |q| 2 = sup ψ - 1 0 Ar 1 2 (|∇ψ| 2 + |∂ t ψ|) + 1 0 ∂B 1 f ψ = sup ψ - 1 0 Ar 1 2 (|∇ψ| 2 + |∂ t ψ|) + 1 0 ∂B 1 f (ψ -ψ) ≤ sup ψ - 1 0 Ar 1 2 (|∇ψ| 2 + |∂ t ψ|) + 1 0 ∂B 1 f 2 1/2 1 0 ∂B 1 (ψ -ψ) 2 1/2
.

With the abbreviation F :=

1 0 ∂B 1 f 2 1/2
we have just established the inequality inf

(s,q)∈Λ 1 0 Ar 1 2 |q| 2 ≤ sup ψ F 1 0 ∂B 1 (ψ -ψ) 2 1/2 - 1 2 
1 0 Ar |∇ψ| 2 + |∂ t ψ| .
Using now (3.10), where we denote the constant by C 0 , and Young's inequality, we find that provided r ≥ (2C 0 F )2/(d+1) (in line with our assumption r ≫

1 0 ∂B 1 f 2 1/(d+1) ), inf (s,q)∈Λ 1 0 Ar 1 2 |q| 2 ≤ sup ψ 1 2 C 2 0 F 2 r + C 0 F r (d+1)/2 1 0 Ar |∂ t ψ| - 1 2 1 0 Ar |∂ t ψ| F 2 r = r 1 0 ∂B 1 f 2 .
This concludes the proof of (3.14).

Proofs of the main results

Let ρ 0 and ρ 1 be two densities with compact support in R d and equal mass and let T be the minimizer of min

T ♯ρ 0 =ρ 1 R d |T (x) -x| 2 ρ 0 (x)dx, (4.1) 
where by a slight abuse of notation T ♯ρ 0 denotes the push-forward by T of the measure ρ 0 dx. If T ′ is the optimal transportation map between ρ 1 and ρ 0 , then (see for instance [3, Rem. 6.2.11])

T ′ (T (x)) = x, and 
T (T ′ (y)) = y for a.e. (x, y) ∈ spt ρ 0 × spt ρ 1 . (4.2) 
By another abuse of notation, we will denote T -1 := T ′ . Now for t ∈ [0, 1] and x ∈ R d we set T t (x) := tT (x) + (1 -t)x and consider the non-negative and R d -valued measures respectively defined through

ρ(•, t) := T t ♯ρ 0 and j(•, t) := T t ♯ [(T -Id)ρ 0 ] . (4.3) 
It is easy to check that j(•, t) is absolutely continuous with respect to ρ(•, t). The couple (ρ, j) solves the Eulerian (or Benamou-Brenier) formulation of optimal transportation (see [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 8.1] or [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chap. 8], see also [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Prop. 5.32] for the uniqueness), i.e. it is the minimizer of min

1 0 R d 1 ρ |j| 2 : ∂ t ρ + div j = 0, ρ(•, 0) = ρ 0 , ρ(•, 1) = ρ 1 , (4.4) 
where the continuity equation including its boundary conditions are imposed in a distributional sense and where the functional is defined through (see [2, Th. 2.34]),

1 0 R d 1 ρ |j| 2 :=      1 0 R d dj dρ
Since T is the gradient of a convex function, by Alexandrov Theorem [18, Th. 14.25], T is differentiable a.e., that is for a.e. x 0 , there exists a symmetric matrix A such that

T (x) = T (x 0 ) + A(x -x 0 ) + o(|x -x 0 |).
Moreover, A coincide a.e. with the absolutely continuous part of the distributional derivative DT of the map T . We will from now on denote ∇T (x 0 ) := A. For t ∈ [0, 1], by [17, Prop. 5.9], ρ(•, t) (and thus also j) is absolutely continuous with respect to the Lebesgue measure. The functional can be therefore rewritten as

1 0 R d 1 ρ |j| 2 = 1 0 R d 1 ρ |j| 2 (x, t)dxdt, where 1 ρ |j| 2 (x, t) := 1 ρ(x,t) |j(x, t)| 2 if ρ(x, t) = 0 0 otherwise.
Moreover, the Jacobian equation

ρ(t, T t (x)) det ∇T t (x) = ρ 0 (x), (4.5) 
holds a.e. (see [START_REF]Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften[END_REF]Ex. 11.2] or [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 4.8]) and in particular,

ρ 1 (T (x)) det ∇T (x) = ρ 0 (x).
The proof of Theorem 1.2 is based on the decay properties of the excess energy

E(ρ 0 , ρ 1 , T, R) := R -2 - B R |T -x| 2 ρ 0 . (4.6)
As will be shown in the proofs of Proposition 4.8 and Theorem 4.9, up to a change of variables it is not restrictive to assume that ρ 0 (0) = ρ 1 (0) = 1. Before proceeding with the proof of Theorem 1.2, let us gather few useful lemmas.

Lemma 4.1. Let T be a minimizer of (4.1) and assume that

1 2 ≤ ρ 0 ≤ 2 in B 1 and that E(ρ 0 , ρ 1 , T, 1) ≪ 1. Then, sup B 3/4 |T -x| + |T -1 -x| B 1 |T -x| 2 ρ 0 1/(d+2) . (4.7)
As a consequence,

T t (B 1/8 ) ⊆ B 3/16 . (4.8)
Moreover, for t ∈ [0, 1], we have for the pre-image

T -1 t (B 1/2 ) ⊆ B 3/4 . (4.9)
Proof. We begin with the proof of (4.7). Since we assume that 1 2 ≤ ρ 0 ≤ 2, it is enough to prove that sup

B 3/4 |T -x| + |T -1 -x| B 1 |T -x| 2 1/(d+2)
.

We first prove the estimate on T . Let u(x) := T (x) -x. By monotonicity of T , for a.e.

x, y ∈ B 1 , (u(x) -u(y)) • (x -y) ≥ -|x -y| 2 . (4.10)
Let y ∈ B 3/4 be such that (4.10) holds for a.e. x ∈ B 1 . By translation we may assume that y = 0. By rotation, it is enough to prove for the first coordinate of u that

u 1 (0) B 1/4 |u| 2 1/(d+2)
.

Taking y = 0 in (4.10), we find for a.e.

x ∈ B 1/4 u(0) • x ≤ u(x) • x + |x| 2 |u(x)| 2 + |x| 2 .
Integrating the previous inequality over the ball B r (re 1 ), we obtain

u(0) • re 1 - Br(re 1 ) |u| 2 + r 2 , so that u 1 (0) 1 r d+1 B 1 |u| 2 + r.
Optimizing in r yields (4.7). We now prove the estimate on T -1 . By the above argument for T in the ball B 4/5 instead of B 3/4 , it is enough to show that T -1 (B 3/4 ) ⊆ B 4/5 . Assume that there exists y ∈ B 3/4 and x ∈ R d with T

(x) = y but |x| ≥ 4/5. Let then z ∈ ∂B 1 2 ( 3 4 + 4 5 ) ∩ [x, y]. By monotonicity of T , 0 ≤ (T (x) -T (z)) • (x -z) = (y -z) • (x -z) + (z -T (z)) • (x -z) ≤ - 1 40 |x -z| + |x -z||T (z) -z| ≤ |x -z|   - 1 40 + sup B 1 2 ( 3 4 + 4 5 ) |T -x|   , which is absurd if E(ρ 0 , ρ 1 , T, 1) ≪ 1 by the L ∞ bound on T on the ball B 1 2 ( 3 4 + 4 5 ) . 10 
Since (4.8) is a direct consequence of (4.7), we are left with the proof of (4.9). If x ∈ R d is such that T t (x) ∈ B 1/2 , then by (4.7) in the form of |T t (0)| = o(1), where o(1) denotes a function that goes to zero as E(ρ 0 , ρ 1 , T, 1) goes to zero,

1 4 (1 + o(1)) ≥ |T t (x) -T t (0)| 2 = t 2 |T (x) -T (0)| 2 + 2t(1 -t)(T (x) -T (0)) • x + (1 -t) 2 |x| 2 (4.10) ≥ t 2 |T (x) -T (0)| 2 + (1 -t) 2 |x| 2 ≥ 1 2 min |T (x) -T (0)| 2 , |x| 2 .
From this we see that

x or T (x) is in B 1 √ 2
+o(1) ⊆ B 3/4 . In the first case, (4.9) is proven while in the second, we have thanks to (4.7) that

x ∈ T -1 (T (x)) ⊆ T -1 (B 1 √ 2
+o(1) ) ⊆ B 3/4 from which we get (4.9) as well.

Our second lemma is a localized version of McCann's displacement convexity (see [START_REF] Mccann | A convexity theory for interacting gases and equilibrium crystals[END_REF]Cor. 4.4]).

Lemma 4.2. Assume that ρ 0 (0) = ρ 1 (0) = 1 and that E(ρ 0 , ρ 1 , T, 1) + [ρ 0 ] α,1 + [ρ 1 ] α,1 ≪ 1. Then for t ∈ [0, 1], it holds sup B 1/2 ρ(t, •) ≤ 1 + [ρ 0 ] α,1 + [ρ 1 ] α,1 . (4.11) 
Proof. We start by pointing out that since ρ 0 (0) = ρ 1 (0) = 1 and [ρ 0 ] α,1 + [ρ 1 ] α,1 ≪ 1 we have for i = 0, 1, sup

B 1 |1 -ρ i | ≤ [ρ i ] α,1 ≪ 1. (4.12)
For every t ∈ (0, 1), the map T t has a well-defined inverse ρ(t, •)-a.e. (see the proof of [17, Th. 8.1]) so that for x ∈ B 1/2 , (4.5) can be written as

ρ(t, x) = ρ 0 (T -1 t (x)) det ∇T t (T -1 t (x))
.

By concavity of det(•) 1/d on non-negative symmetric matrices, we have

det ∇T t (T -1 t (x)) ≥ det ∇T (T -1 t (x)) t . By (4.5), det ∇T (T -1 t (x)) = ρ 0 (T -1 t (x)) ρ 1 (T (T -1 t (x))) , so that ρ(t, x) ≤ ρ 0 (T -1 t (x) 1-t ρ 1 (T (T -1 t (x))) t .
Since E(ρ 0 , ρ 1 , T, 1) ≪ 1 and (4.12) holds, by (4.9) and (4.7), we have

T -1 t (B 1/2 ) ⊆ B 1 and T (T -1 t (B 1/2 )) ⊆ B 1
. By (4.12), we then have

ρ(t, x) ≤ (1 + [ρ 0 ] α,1 ) 1-t (1 + [ρ 1 ] α,1 ) t ,
which by Young's inequality concludes the proof of (4.11).

We now can turn to the proof of Theorem 1.2. We first prove that the deviation of the velocity field v := dj dρ from being the gradient of a harmonic function is locally controlled by the Eulerian energy. The construction we use is somewhat reminiscent of the Dacorogna-Moser construction (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]). Proposition 4.3. Let (ρ, j) be the minimizer of (4.4). Assume that ρ 0 (0) = ρ 1 (0) = 1 and that

E(ρ 0 , ρ 1 , T, 1) + [ρ 0 ] α,1 + [ρ 1 ] α,1 ≪ 1. (4.13)
Then, there exists ϕ harmonic in B 1/2 and such that

B 1/2 |∇ϕ| 2 1 0 B 1 1 ρ |j| 2 + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 , (4.14 
)

and 1 0 B 1/2 1 ρ |j -ρ∇ϕ| 2 1 0 B 1 1 ρ |j| 2 d+2 d+1 + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 . (4.15) 
Remark 4.4. The crucial point in (4.15) is that the right-hand side is strictly super-linear in

1 0 B 1 1 ρ |j| 2 , and at least quadratic in [ρ 0 ] α,1 + [ρ 1 ] α,1 .
Proof. Without loss of generality, we may assume that

1 0 B 1 1 ρ |j| 2 ≪
1 since otherwise we can take ϕ = 0. Notice that since ρ 0 (0) = ρ 1 (0) = 1, thanks to (4.13), if we let

γ := [ρ 0 ] α,1 + [ρ 1 ] α,1
and δρ := ρ 1 -ρ 0 , we have by (4.11) ρ ≤ 1 + γ (4.16)

and since ρ 0 (0

) = ρ 1 (0) = 1, sup B 1 |δρ| [ρ 0 ] α,1 + [ρ 1 ] α,1 ≤ γ. (4.17)
Step 1 [Choice of a good radius] Using (4.16), and Fubini, we can find a radius R ∈ (1/2, 1) such that

∂B R 1 0 |j| 2 B 1 1 0 |j| 2 1 0 B 1 1 ρ |j| 2 (4.18)
with the understanding that R is a Lebesgue point of r → j ∈ L 2 (∂B r ) with respect to the weak topology. Notice in particular that (4.18) implies that j ∈ L 2 (B R ). We claim that for every function

ζ ∈ H 1 (B R × (0, 1)) iii , 1 0 B R ρ∂ t ζ + j • ∇ζ = 1 0 ∂B R ζf + B R ζ(•, 1)ρ 1 -ζ(•, 0)ρ 0 , (4.19) 
iii we consider here are larger class of test functions than C 1 (B R × [0, 1]) since we want to apply (4.19) to the function ϕ defined in (4.21).

where f := j • ν denotes the normal component of j. To this purpose, for 0 < ε ≪ 1 we introduce the cut-off function

η ε (x) :=      1 if |x| ≤ R -ε R-|x| ε if R -ε ≤ |x| ≤ R 0 otherwise
and obtain by admissibility of (ρ, j)

R 2 η ε (ζ(•, 1)ρ 1 -ζ(•, 0)ρ 0 ) = 1 0 R 2 ∂ t (ζη ε )ρ + ∇(ζη ε ) • j = 1 0 R 2 η ε ∂ t ζρ + η ε ∇ζ • j - 1 ε 1 0 B R \B R-ε ζj • ν.
Letting ε go to zero and using the above Lebesgue-point property of R, we obtain (4.19).

Step 2 [Definition of ϕ] We will argue that it is enough to establish

1 0 B R 1 ρ |j -ρ∇ ϕ| 2 1 0 B 1 1 ρ |j| 2 d+2 d+1 + γ 2 , (4.20) 
where ϕ is defined via

-∆ ϕ = δρ in B R ∂ ϕ ∂ν = f on ∂B R , (4.21) 
with f := 1 0 f dt and is estimated as

B R |∇ ϕ| 2 1 0 B 1 1 ρ |j| 2 + γ 2 . (4.22)
Moreover, defining for 1 ≫ r > 0, A r := B R \B R(1-r) , we will show that

Ar |∇ ϕ| 2 r ∂B R |f | 2 + γ 2 . (4.23) By (4.19) applied to ζ = 1, we get B R δρ = - ∂B R f ,
so that (4.21) is indeed solvable. We decompose ϕ = ϕ + φ with ϕ and φ solutions of

-∆ϕ = 0 in B R ∂ϕ ∂ν = f + 1 H d-1 (∂B R ) B R δρ on ∂B R , -∆ φ = δρ in B R ∂ φ ∂ν = - 1 H d-1 (∂B R ) B R δρ on ∂B R , (4.24) 
Applying (3.2) from Lemma 3.1 (with the radius 1 replaced by R ∼ 1) we have, 

B 1/2 |∇ϕ| 2 ≤ B R |∇ϕ| 2 ∂B R |f | 2 +
B R |∇ ϕ| 2 B R |∇ϕ| 2 + B R |∇ φ| 2 1 0 B 1 1 ρ |j| 2 + γ 2 .
Similarly, (4.23) follows from (3.4) and (3.9). Assume now that (4.20) is established. We then get (4.15):

1 0 B R 1 ρ |j -ρ∇ϕ| 2 = 1 0 B R 1 ρ |j -ρ∇ ϕ + ρ∇ φ| 2 1 0 B R 1 ρ |j -ρ∇ ϕ| 2 + 1 0 B R ρ|∇ φ| 2 (4.20)&(4.16)&(4.25) 1 0 B 1 1 ρ |j| 2 d+2 d+1 + γ 2 .
Step 3 [Quasi-orthogonality] We start the proof of (4.20). In order to keep notation light, we will assume from now on that R = 1/2. Here we prove that

1 0 B 1/2 1 ρ |j -ρ∇ ϕ| 2 ≤ 1 0 B 1/2 1 ρ |j| 2 -(1 -γ) B 1/2 |∇ ϕ| 2 . (4.26)
Notice that if ρ = 0 then j = 0 and thus also j -ρ∇ ϕ = 0, so that the left-hand side of (4.26) is well defined (see the discussion below (4.4)). Based on this we compute 1 2

1 0 B 1/2 1 ρ |j -ρ∇ ϕ| 2 = 1 2 1 0 B 1/2 1 ρ |j| 2 - 1 0 B 1/2 j • ∇ ϕ + 1 2 1 0 B 1 ρ|∇ ϕ| 2 = 1 2 1 0 B 1/2 1 ρ |j| 2 - 1 0 B 1/2 1 - ρ 2 |∇ ϕ| 2 - 1 0 B 1/2 (j -∇ ϕ) • ∇ ϕ (4.16) ≤ 1 2 1 0 B 1/2 1 ρ |j| 2 - 1 -γ 2 1 0 B 1/2 |∇ ϕ| 2 - 1 0 B 1/2 (j -∇ ϕ) • ∇ ϕ.
Using (4.19) with ζ = ϕ and testing (4.21) with ϕ, we have

1 0 B 1/2 (j -∇ ϕ) • ∇ ϕ = ∂B 1/2 ϕ 1 0 f -f = 0,
where we recall that f = 1 0 f . This proves (4.26).

Step 4 [The main estimate] In this last step, we establish that

1 0 B 1/2 1 ρ |j| 2 - B 1/2 |∇ ϕ| 2 1 0 B 1 1 ρ |j| 2 d+2 d+1 + γ 2 . (4.27)
Thanks to (4.26) and (4.22), this would yield (4.20). By minimality of (ρ, j), it is enough to construct a competitor ( ρ, j) that agrees with (ρ, j) outside of B 1/2 × (0, 1) and that satisfies the upper bound given through (4.27). We now make the following ansatz

( ρ, j) := (tρ 1 + (1 -t)ρ 0 , ∇ ϕ) in B 1/2(1-r) × (0, 1), (tρ 1 + (1 -t)ρ 0 + s, ∇ ϕ + q) in A r × (0, 1),
with (s, q) ∈ Λ, where Λ is the set defined in Lemma 3.4 with f replaced by f -f and the radius 1 replaced by 1/2. Notice that if |s| ≤ 1/2, by (4.13) and ρ 0 (0

) = ρ 1 (0) = 1, 1 4 ≤ ρ. (4.28)
Thanks to (4.21) for ϕ, (3.13) for (s, q) and (4.19) for (ρ, j), ( ρ, j) extended by (ρ, j) outside of B 1/2 × (0, 1) is indeed admissible for (4.4).

By Lemma 3.4, if r ≫ 1 0 ∂B 1/2 (f -f ) 2 1/(d+1)
, we may choose (s, q) ∈ Λ such that

1 0 Ar |q| 2 r 1 0 ∂B 1/2 (f -f ) 2 . (4.29)
By definition of ( ρ, j),

1 0 B 1/2 1 ρ | j| 2 - B 1/2 |∇ ϕ| 2 ≤ 1 0 B 1/2(1-r) 1 tρ 1 + (1 -t)ρ 0 |∇ ϕ| 2 - B 1/2(1-r) |∇ ϕ| 2 + 1 0 Ar 1 ρ |∇ ϕ + q| 2 . (4.30)
The first two terms on the right-hand side can be estimated as

1 0 B 1/2(1-r) 1 tρ 1 + (1 -t)ρ 0 |∇ ϕ| 2 -|∇ ϕ| 2 = 1 0 B 1/2(1-r) t(1 -ρ 0 ) + (1 -t)(1 -ρ 1 ) tρ 1 + (1 -t)ρ 0 |∇ ϕ| 2 (4.13) γ B 1/2 (1-r) |∇ ϕ| 2 (4.22) γ 1 0 B 1 1 ρ |j| 2 + γ 2 . ( 4 

.31)

We now estimate the last term of (4.30):

1 0 Ar 1 ρ |∇ ϕ + q| 2 (4.28) 1 0 Ar |∇ ϕ| 2 + |q| 2 (4.29) Ar |∇ ϕ| 2 + r ∂B 1/2 (f -f ) 2 (4.23) r ∂B 1/2 f 2 + γ 2 .
Taking r to be a large but order-one multiple of

1 0 ∂B 1/2 (f -f ) 2 1/(d+1) ≤ 1 0 ∂B 1/2 f 2 1/(d+1) (4.18) 1 0 B 1 1 ρ |j| 2 1/(d+1) yields 1 0 Ar 1 ρ |∇ ϕ + q| 2 1 0 B 1 1 ρ |j| 2 1/(d+1) 1 0 B 1 1 ρ |j| 2 + γ 2 .
Plugging this and (4.31) into (4.30),

1 0 B 1/2 1 ρ | j| 2 - B 1/2 |∇ ϕ| 2 1 0 B 1 1 ρ |j| 2 1/(d+1) + γ 1 0 B 1 1 ρ |j| 2 + γ 2 1 0 B 1 1 ρ |j| 2 d+2 d+1 + γ 2 ,
where we have used Young's inequality and the fact that 2 > d+2 d+1 . This proves (4.27). Remark 4.5. The quasi-orthogonality property (4.26) is a generalization of the following classical fact: If ϕ is a harmonic function with ∂ϕ ∂ν = f on ∂B 1 , then for every divergencefree vector-field b with b

• ν = f on ∂B 1 B 1 |b -∇ϕ| 2 = B 1 |b| 2 - B 1 |∇ϕ| 2 ,
so that the minimizers b of the left-hand side coincide with the minimizers of the right-hand side. See for instance [START_REF] Merlet | A highly anisotropic nonlinear elasticity model for vesicles II: Derivation of the thin bilayer bending theory[END_REF]Lem. 2.2] for an application of this idea in a different context.

We now prove that (4.15) implies a similar statement in the Lagrangian setting, namely that the distance of the displacement T -x to the set of gradients of harmonic functions is (locally) controlled by the energy. This is reminiscent of the harmonic approximation property for minimal surfaces (see [START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF]Sec. III.5]). Proposition 4.6. Let T be the minimizer of (4.1) and assume that ρ 0 (0) = ρ 1 (0) = 1. Then there exists a function ϕ harmonic in B 1/8 , such that

B 1/8 |T -(x + ∇ϕ)| 2 ρ 0 E(ρ 0 , ρ 1 , T, 1) d+2 d+1 + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 (4.32) 
and

B 1/8 |∇ϕ| 2 E(ρ 0 , ρ 1 , T, 1) + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 . (4.33) 
Proof. To lighten notation, let E := E(ρ 0 , ρ 1 , T, 1). Notice first that we may assume that

E + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 ≪ 1 since otherwise we can take ϕ = 0.
We recall the definitions of the measures

ρ(•, t) := T t ♯ρ 0 and j(•, t) := T t ♯ [(T -Id)ρ 0 ] .
We note that the velocity field v = dj dρ satisfies v(T t (x), t) = T (x) -x for a.e. x ∈ spt ρ 0 (this can be seen arguing for instance as in the proof of [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 8.1]). Hence, by definition of the expression 1 ρ |j| 2 and that of ρ,

1 0 B 1/2 1 ρ |j| 2 = 1 0 B 1/2 |v| 2 dρ = 1 0 T -1 t (B 1/2 )
|T -x| 2 ρ 0 (4.9)

B 1 |T -x| 2 ρ 0 = E.
By Proposition 4.3, we infer that there exists a function ϕ harmonic in B 1/4 such that

1 0 B 1/4 1 ρ |j -ρ∇ϕ| 2 E d+2 d+1 +[ρ 0 ] 2 α,1 +[ρ 1 ] 2 α,1
and

B 1/4 |∇ϕ| 2 E +[ρ 0 ] 2 α,1 +[ρ 1 ] 2 α,1 .
(4.34) We now prove (4.32). By the triangle inequality we have

B 1/8 |T -(x + ∇ϕ)| 2 ρ 0 1 0 B 1/8 |T -(x + ∇ϕ • T t )| 2 ρ 0 + 1 0 B 1/8 |∇ϕ -∇ϕ • T t | 2 ρ 0 .
Using that for t ∈ [0, 1], |T t (x) -x| ≤ |T (x) -x|, the second term on the right-hand side is estimated as above:

1 0 B 1/8 |∇ϕ -∇ϕ • T t | 2 ρ 0 (4.8) sup B 3/16 |∇ 2 ϕ| 2 1 0 B 1/8 |T t -x| 2 ρ 0 (3.3) E B 1/4 |∇ϕ| 2 (4.34) E E + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 .
We thus just need to estimate the first term. Recall that v = dj dρ satisfies v(T t (x), t) = T (x) -x, so that we obtain for the integrand T (x) -(x + ∇ϕ(T t (x)) = (v(t, •) -∇ϕ)(T t (x)) for a.e. x ∈ spt ρ 0 . Hence, by definition of ρ and by our convention on how to interpret

1 ρ |j -ρ∇ϕ| 2 when ρ vanishes, 1 0 B 1/8 |T -(x + ∇ϕ • T t )| 2 ρ 0 = 1 0 Tt(B 1/8 ) |v -∇ϕ| 2 dρ = 1 0 Tt(B 1/8 ) 1 ρ |j -ρ∇ϕ| 2 (4.8) ≤ 1 0 B 1/4 1 ρ |j -ρ∇ϕ| 2 (4.34) E d+2 d+1 + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 .
Analogously to De Giorgi's proof of regularity for minimal surfaces (see for instance [12, Chap. 25.2]), we are going to prove an "excess improvement by tilting"-estimate. By this we mean that if at a certain scale R, the map T is close to the identity, i.e. if

E(ρ 0 , ρ 1 , T, R) + R 2α ([ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1
) ≪ 1, then on a scale θR, after an affine change of coordinates, it is even closer to be the identity. Together with (4.32) from Proposition 4.6, the main ingredient of the proof are the regularity estimates (3.3) from Lemma 3.1 for harmonic functions. Proposition 4.7. For every α ′ ∈ (0, 1) there exist θ = θ(d, α, α ′ ) > 0 and C θ (d, α, α ′ ) > 0 with the property that for every R > 0 such that ρ 0 (0) = ρ 1 (0) = 1 and

E(ρ 0 , ρ 1 , T, R) + R 2α ([ρ 0 ] 2 α,R + [ρ 1 ] 2 α,R ) ≪ 1, (4.35) 
there exist a symmetric matrix B with det B = 1 and a vector b with 

|B -Id| 2 + 1 R 2 |b| 2 E(ρ 0 , ρ 1 , T, R) + R 2α ([ρ 0 ] 2 α,R + [ρ 1 ] 2 α,R ), ( 4 
it holds ρ0 (0) = ρ1 (0) = 1, |λ -1| 2 E(ρ 0 , ρ 1 , T, R) + R 2α [ρ 1 ] 2 α,R , (4.38) 
and

E(ρ 0 , ρ1 , T , θR) ≤ θ 2α ′ E(ρ 0 , ρ 1 , T, R) + C θ R 2α [ρ 0 ] 2 α,R + [ρ 1 ] 2 α,R . (4.39)
Proof. By a rescaling x = R -1 x, which amounts to the re-definition T ( x) := R -1 T (R x) (which preserves optimality) and b := R -1 b, we may assume that R = 1. As in the previous proof, we will let E := E(ρ 0 , ρ 1 , T, 1). Let ϕ be the harmonic function given by Proposition 4.6 and then define b := ∇ϕ(0), A := ∇ 2 ϕ(0) and set B := e -A/2 , so that det B = 1. Using (3.3) from Lemma 3.1 and (4.33) from Proposition 4.6, we see that (4.36) is satisfied. By definition of λ and since ρ 1 (0) = 1, and

[ρ 0 ] α,1 + [ρ 1 ] α,1 1, |λ -1| 2 = |ρ 1 (b) -1| 2 ≤ |b| 2α [ρ 1 ] 2 1,α (4.36 
)

(E α + 1) [ρ 1 ] 2 α,1 .
Using Young's inequality with p = α -1 and q = (1 -α) -1 we obtain for δ > 0,

|λ -1| 2 ≤ δE + C α δ [ρ 1 ] 2 α,1 , (4.40) 
where C α is a constant which depends only on α. In particular, taking δ = 1 we obtain (4.38).

Defining ρi and T as in (4.37) we have by (4.36) and (4.35)

- B θ | T -x| 2 ρ0 = - BB θ |λB(T -b) -B -1 x| 2 ρ 0 λ 2 - B 2θ |T -(B -2 x + b)| 2 ρ 0 + |1 -λ| 2 - B 2θ |B -1 x| 2 ρ 0 - B 2θ |T -(B -2 x + b)| 2 ρ 0 + θ 2 θ 2 E + θ -2 [ρ 1 ] 2 α,1 ,
where in the last line we used (4.40) with δ = θ and the fact that ρ 0 1 on B 1 . We split the first term on the right-hand side into three terms

- B 2θ |T -(B -2 x + b)| 2 ρ 0 - B 2θ |T -(x + ∇ϕ)| 2 ρ 0 + - B 2θ |(B -2 -Id -A)x| 2 ρ 0 + - B 2θ |∇ϕ -b -Ax| 2 ρ 0 - B 2θ |T -(x + ∇ϕ)| 2 ρ 0 + θ 2 |B -2 -Id -A| 2 + sup B 2θ |∇ϕ -b -Ax| 2 .
Recalling B = e -A/2 , A = ∇ 2 ϕ(0), and b = ∇ϕ(0), we obtain

θ -2 - B θ | T -x| 2 ρ0 (4.32) θ -(d+2) E d+2 d+1 + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 + |∇ 2 ϕ(0)| 4 + θ 2 sup B 2θ |∇ 3 ϕ| 2 + θ 2 E + θ -2 [ρ 1 ] 2 α,1 (3.3)&(4.33) θ -(d+2) E d+2 d+1 + E + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 2 + θ 2 E + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 + θ 2 E + θ -2 [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 . Since d+2 d+1 < 2 and E + [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 ≪ θ 2 (
recall that θ has not been fixed yet), this simplifies to

θ -2 - B θ | T -x| 2 ρ0 θ -(d+2) E d+2 d+1 + θ 2 E + θ -2 [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 . (4.41) 
We may thus find a constant C(d, α) > 0 such that

θ -2 - B θ | T -x| 2 ρ0 ≤ C θ -(d+2) E d+2 d+1 + θ 2 E + θ -2 [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 .
We now fix θ(d, α, α ′ ) such that

Cθ 2 ≤ 1 2 θ 2α ′ , which is possible because α ′ < 1. If E is small enough, Cθ -(d+2) E d+2 d+1 ≤ 1 2 θ 2α ′ E and thus θ -2 - B θ | T -x| 2 ρ0 ≤ θ 2α ′ E + θ -2 [ρ 0 ] 2 α,1 + [ρ 1 ] 2 α,1 .
Equipped with the one-step-improvement of Proposition 4.7, the next proposition is the outcome of a Campanato iteration (see for instance [START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF]Chap. 5] for an application of Campanato iteration to obtain Schauder theory for linear elliptic systems). It is a Campanato iteration on the C 1,α level for the transportation map T and thus proceeds by comparing T to affine maps. The main ingredient is the affine invariance of transportation. Proposition 4.8 amounts to an ε-regularity result. Proposition 4.8. Assume that ρ 0 (0) = ρ 1 (0) = 1 and that

E(ρ 0 , ρ 1 , T, 2R) + R 2α ([ρ 0 ] 2 α,2R + [ρ 1 ] 2 α,2R ) ≪ 1, (4.42) then T is of class C 1,α in B R , with [∇T ] α,R R -α E(T, 2R) 1/2 + [ρ 0 ] α,2R + [ρ 1 ] α,2R . 
Proof. By Campanato's theory, see [START_REF] Campanato | Proprietà di una famiglia di spazi funzionali[END_REF]Th. 5.I], we have to prove that (4.42) implies sup

x 0 ∈B R sup r≤ 1 2 R min A,b 1 r 2(1+α) - Br(x 0 ) |T -(Ax + b)| 2 R -2α E(T, 2R) + [ρ 0 ] 2 α,2R + [ρ 1 ] 2 α,2R . (4.43)
Let us first notice that (4.42) implies that for every

x 0 ∈ B R E := R -2 - B R (x 0 ) |T -x| 2 ρ 0 ≪ 1 and R α ([ρ 0 ] α,2R + [ρ 1 ] α,2R ) ≪ 1. (4.44)
Therefore, in order to prove (4.43), it is enough to prove that (4.44) implies that for r ≤

1 2 R, min A,b 1 r 2 - Br(x 0 ) |T -(Ax + b)| 2 r 2α R -2α E + [ρ 0 ] 2 α,2R + [ρ 1 ] 2 α,2R . (4.45) 
Arguing as for (4.47), we obtain that there exists C

1 (d, α) > 0 such that [ρ k i ] α,θ k R ≤ 1 + C 1 (E 1/2 k-1 + R α θ kα [ρ k-1 0 ] α,θ k-1 R + [ρ k-1 0 ] α,θ k-1 R [ρ k-1 i ] α,θ k-1 R . (4.52)
Let us prove by induction that the above together with (4.44) implies that there exists 

C 2 (d, α, α ′ ) > 0 such that for every 1 ≤ k ≤ K, [ρ k i ] α,θ k R ≤ (1 + θ kα )[ρ k-1 i ] α,θ k-1 R , θ -2kα E k ≤ C 2 E + R 2α [ρ 0 ] 2 α,R + R 2α [ρ 1 ] 2 α,R . ( 4 
ρ K-1 i ] α,θ K-1 R ≤ K-2 k=1 (1 + θ kα )[ρ i ] α,R ≤ C 3 [ρ i ] α,R , (4.54) 
where C 3 := ∞ k=1 (1 + θ kα ) < ∞. From (4.53) and (4.54) for k = K -1 we learn that we may choose the implicit small constant in (4.44) such that we have

C 1 θ -α sup 1≤k≤K-1 θ -2kα E k 1/2 + R α sup 1≤k≤K-1 [ρ k 0 ] α,θ k R + [ρ k 1 ] α,θ k R ≤ 1.
Plugging this into (4.52), we obtain the first part of (4.53) for k = K.

Let us now turn to the second part of (4.53). Dividing (4.48) by θ 2kα and taking the sup over k ∈ [1, K], we obtain by (4.54),

sup 1≤k≤K θ -2kα E k ≤ θ 2(α ′ -α) (E + sup 1≤k≤K-1 θ -2kα E k ) + C θ C 2 3 R 2α [ρ 0 ] 2 α,R + [ρ 1 ] 2 α,R . Since α ′ > α, θ 2(α ′ -α) < 1 and thus sup 1≤k≤K θ -2kα E k ≤ (1 -θ 2(α ′ -α) ) -1 E + C θ C 2 3 R 2α [ρ 0 ] 2 α,R + [ρ 1 ] 2 α,R . Choosing C 2 := (1 -θ 2(α ′ -α) ) -1 max {1, C θ C 2 3
} we see that also the second part of (4.53) holds for k = K. 

Letting Λ k := k i=1 λ i , A k := B k B k-1 • • • B 1 and d k := k i=1 (λ k B k )(λ k-1 B k-1 ) • • • (λ i B i )b i , we see that T k (x) = Λ k A k T (A * k x) -d k .
|A k -Id| 2 E + R 2α [ρ 0 ] 2 α,R + R 2α [ρ 1 ] 2 α,R ≪ 1, (4.55) so that B 1 2 θ k R ⊆ A * k (B θ k R )
. By the same reasoning, we obtain from (4.51),

|Λ k -1| ≪ 1. ( 4 

.56)

We then conclude by definition of T k that min 

A,b 1 ( 1 2 θ k R) 2 - B 1 2 θ k R |T -(Ax + b)| 2 1 (θ k R) 2 - A * k (B θ k R ) |T -Λ -1 k A -1 k A - * k x + Λ -1 k A -1 k d k )| 2 = 1 (θ k R) 2 - B θ k R |A -1 k Λ -1 k (T k -x)| 2
θ 2kα E + R 2α [ρ 0 ] 2 α,R + R 2α [ρ 1 ] 2 α,R .
From this (4.45) follows, which concludes the proof of (4.43).

With this ε-regularity result at hand, we now may prove that T is a C 1,α diffeomorphism outside of a set of measure zero. Theorem 4.9. For E and F two bounded open sets, let ρ 0 : E → R + and ρ 1 : F → R + be two C 0,α densities with equal masses, both bounded and bounded away from zero and let T be the minimizer of (4.1). There exist open sets E ′ ⊆ E and F ′ ⊆ F with |E\E ′ | = |F \F ′ | = 0 and such that T is a C 1,α diffeomorphism between E ′ and F ′ . Proof. By the Alexandrov Theorem [START_REF]Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften[END_REF]Th. 14.25], there exist two sets of full measure E 1 ⊆ E and F 1 ⊆ F such that for all (x 0 , y 0 ) ∈ E 1 × F 1 , T and T -1 are differentiable at x 0 and y 0 , respectively, in the sense that there exist A, B symmetric such that for a.e. (x, y) ∈ E × F , T (x) = T (x 0 )+A(x-x 0 )+o(|x-x 0 |) and T -1 (y) = T -1 (y 0 )+B(y-y 0 )+o(|y-y 0 |). (4.57) Moreover, we may assume that (4.2) holds for every (x 0 , y 0 ) ∈ E 1 × F 1 . Using (4.2), it is not hard to show that if T (x 0 ) = y 0 , then A = B -1 and then by (4.5) ρ 1 (y 0 ) det A = ρ 0 (x 0 ). (4.58)

We finally let E ′ := E 1 ∩ T -1 (F 1 ) and F ′ := T (E ′ ) = F 1 ∩ T (E 1 ). Notice that since T sends sets of measure zero to sets of measure zero, |E\E ′ | = |F \F ′ | = 0. We are going to prove that E ′ and F ′ are open sets and that T is a C 1,α diffeomorphism from E ′ to F ′ . Let x 0 ∈ E ′ , and thus automatically y 0 := T (x 0 ) ∈ F ′ , be given; we shall prove that T is of class C 1,α in a neighborhood of x 0 . By (4.57) and the fact that ρ 0 and ρ 1 are bounded we have in particular

lim R→0 1 R 2 - B R (x 0 )
|T -y 0 -A(x -x 0 )| 2 ρ 0 = 0. (4.59)

We make the change of variables x = A -1/2 x + x 0 , y = A 1/2 ŷ + y 0 , which leads to T (x) := A -1/2 (T (x)-y 0 ), and then define ρ0 (x) := ρ 0 (x 0 ) -1 ρ 0 (x) and ρ1 (ŷ) := ρ 0 (x 0 ) -1 det -2 Aρ 1 (y). Note that T is the optimal transportation map between ρ0 and ρ1 (indeed, if T = ∇ψ for a convex function ψ, then T = ∇ ψ, where ψ(x) = ψ(x) -y 0 • x) and that by (4.58), ρ0 (0) = ρ1 (0) = 1. Moreover, since ρ 0 and ρ 1 are bounded and bounded away from zero, ρ0 and ρ1 are C 0,α continuous with Hölder semi-norms controlled by the ones of ρ 0 and ρ 1 , so that lim

R→0 R α ([ρ 0 ] α,B R + [ρ 1 ] α,R ) = 0.
Finally, the change of variables is made such that (4.59) turns into lim

R→0 1 R 2 - B R | T -x| 2 ρ0 = 0.
Hence, we may apply Proposition 4.8 to T to obtain that T is of class C 1,α in a neighborhood of zero. Similarly, we obtain that T -1 is C 1,α in a neighborhood of zero. Going back to the original map, this means that T is a C 1,α diffeomorphism of a neighborhood U of x 0 on the neighborhood T (U) of T (x 0 ). In particular, U × T (U) ⊆ E ′ × F ′ so that E ′ and F ′ are both open and thanks to (4.2), T is a global C 1,α diffeomorphism from E ′ to F ′ .

Remark 4.10. If ψ is a convex function function such that ∇ψ = T , Theorem 4.9 shows that in ψ ∈ C 2,α (E ′ ) and it solves (in the classical sense) the Monge-Ampère equation which is now a uniformly elliptic equation. If the densities are more regular then by the Evans-Krylov Theorem (see [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]) and Schauder estimates we may obtain higher regularity of T .

1 d

 1 .36) such that, letting λ := ρ 1 (b) , x := B -1 x, ŷ := λB(y -b) and then T (x) := λB(T (x) -b), ρ0 (x) := ρ 0 (x) and ρ1 (ŷ) := λ -d ρ 1 (y), (4.37)

  sup

	B R	|δρ| 2	(4.18)&(4.17)	0	1	B 1	1 ρ	|j| 2 + γ 2 ,
	and thus (4.14) holds. Since by (3.8) from Lemma 3.2 (with the radius 1 replaced by
	R ∼ 1),							
	|∇ φ| 2 γ 2 ,						(4.25)
	B R							
	estimate (4.22) is obtained by							

dρ if j ≪ ρ,+∞otherwise.
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Replacing ρ 0 by ρ 0 (x 0 ) -1 ρ 0 and ρ 1 by ρ 1 (x 0 ) -1 ρ 1 (x 0 + ρ 0 (x 0 ) ρ 1 (x 0 ) 1 d (• -x 0 )) and thus T by x 0 + ρ 1 (x 0 ) ρ 0 (x 0 ) 1 d (T -x 0 ) which still satisfies (4.44) thanks to ρ 0 (0) = ρ 1 (0) = 1 and (4.42), we may assume that ρ 0 (x 0 ) = ρ 1 (x 0 ) = 1. Without loss of generality we may thus assume that x 0 = 0.

Fix from now on an α ′ ∈ (α, 1). Thanks to (4.44), Proposition 4.7 applies and there exist a (symmetric) matrix B 1 of unit determinant, a vector b 1 and a positive number

If T is a minimizer of (4.1), then so is T 1 with (ρ 0 , ρ 1 ) replaced by (ρ 1 0 , ρ 1 1 ). Indeed, because det

) is also a convex function, which characterizes optimality [17, Th. 2.12]. Moreover, for i = 0, 1

Indeed, (we argue only for ρ 1 1 since the proof for ρ 1 0 is simpler), using that λ -1

. By (4.36) and (4.38), we get (4.47). Therefore, we may iterate Proposition 4.7 K > 1 times to find a sequence of (symmetric) matrices B k with det B k = 1, a sequence of vectors b k , a sequence of real numbers λ k and a sequence of maps T k such that setting for 1

)