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Traveler-point dynamics: A 3-vector bridge to curved spacetimes
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(Dated: April 29, 2022)

Locally-defined parameters chosen to be minimally frame-variant can be useful for describing mo-
tion in accelerated frames and in curved spacetimes. In particular the metric-equation’s synchrony-
free “traveler-point parameters”, like scalar proper-time and the 3-vectors: proper-velocity and
proper-acceleration, are useful in curved spacetime because extended arrays of synchronized clocks
(e.g. for local measurement of the denominator in ∆x/∆t) may be hard to find. Combined with
a recognition of improper (geometric) forces with approximate Lagrangian L ≡ K − U , these same
parameters can further prepare intro-physics students for “flat-patch” engineering in curved space-
times e.g. via ∆L ≃ (γ− 1)mc2, of which Newton’s approximation to gravity is the oldest example.
This strategy also suggests an “accelerated-traveler perspective” on high speed trips that are exact
at any speed in flat spacetime, and approximate in curved settings e.g. for computing gravitational
trajectories at high speed.
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I. INTRODUCTION

In an excellent 1968 article1, Robert W. Brehme dis-
cussed the advantage of teaching relativity with four-
vectors. This is not done for intro-physics courses. One
reason may be that spacetime’s 4-vector symmetry is bro-
ken locally into (3+1)D, so that e.g. engineers working
in curved spacetimes2 (including that here on earth) will
naturally want to describe time-intervals in seconds and
space-intervals e.g. in meters. In this note, we there-
fore explore in depth an idea about use of minimally
frame-variant scalars and 3-vectors, suggested by many
but perhaps first hinted at in Percy W. Bridgman’s 1928
ruminations3 about the promise of defining 3-vector ve-
locity using traveler proper time instead of an ”extended”
time system.

The problem with the former, of course, is that mini-
mally frame-variant quantities like proper time, 3-vector
proper velocity4, and 3-vector proper acceleration5 are
inherently local to one traveler’s perspective, hence we
refer to them as ”traveler-point” quantities. The advan-
tage is that they are either frame-invariant (in the case
of proper time and the magnitude of proper-acceleration)
or synchrony-free6 (i.e. do not require an extended net-
work of synchronized clocks which is often unavailable in
curved space time and accelerated frames).

In a larger context, general-relativity revealed a cen-
tury ago why we can get by with using Newton’s laws
in spacetime so curvy that it’s tough to jump higher
than a meter. It’s because those laws work locally in all
frames of reference7,8, provided we recognize that mo-
tion is generally affected by both proper and “geomet-
ric” (i.e. accelerometer-invisible connection-coefficient)
forces. The emergent “metric-first” approach to explor-
ing curved spacetimes with calculus9 can choose to re-
strict all measurement to locally-flat patches of space-
time in this context, which can then be sewn together by
a global metric10,11.

This opens the door to engineering use of spatial 3-
vectors and temporal scalars at any speed, and locally in
curved spacetimes, for engineers who have little interest
in ignoring the local (3+1)D break in our global 4-vector
symmetry which gives rise to fundamental differences in
the way that space and time are experienced. The met-
ric equation also contents itself with a single definition
of extended simultaneity (cf. Fig. 1) i.e. that associated
with the set of book-keeper (or map) coordinates with
which one chooses to describe one’s local patch (for mea-
surement) and one’s global spacetime metric (e.g. for
formally defining extended simultaneity). Avoiding the
Lorentz transform’s need for two frames with synchro-
nized clocks in special relativity12 of course opens the
door to simple treatments of accelerated motion in flat
spacetime as well.
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FIG. 1. Even one extended-frame with synchronized clocks
may be more than we have in curved spacetime.

II. PROPER TIME

Proper-time is the time elapsed locally along the world-
line of any physical clock (broadly defined). It is also the
frame-invariant time-interval δτ that shows up in metric
equations of the form (cδτ)2 = ΣµΣνgµνδXµδXν , which
in the flat-space Cartesian case takes the Pythagorean
form (cδτ)2 = (cδt)2− (δx)2− (δy)2− (δz)2, where book-
keeper or map coordinates are found on the right-hand
side of the equation, and c is the “lightspeed” spacetime
constant for converting e.g. seconds into meters.

When simultaneity is defined by a flat-spacetime book-
keeper coordinate frame, time-elapsed on traveling clocks
is always “dilated” (e.g. spread out), since from the
metric equation the differential-aging or Lorentz factor
γ ≡ dt/dτ ≥ 1. Expressions for this in terms of velocity
will be discussed below.

We won’t discuss the utility of proper-time τ in detail
here because it is widely used now even by introductory
textbook authors13. However it’s worth pointing out that
early treatments of special relativity were so focused on
the equivalence between frames, each with their own ex-
tended set of synchronized clocks, that proper-time (if
discussed14) was generally a late-comer to the discussion,
and of course used only for “rest frame” (i.e. unacceler-
ated) travelers12.

Moving yardsticks also have a “proper-length” associ-
ated with them, which can be useful too. However this
is a “non-local” quantity not defined by the metric equa-
tion, the concept of “rigid body” is only an approxima-
tion in spacetime, and length contraction itself involves
three separate events as distinct from the two involved in

FIG. 2. Proper-velocity addition for a sci-fi puzzler, in which
your starfleet battle-cruiser drops in from hyperspace heading
away from a nearby star, only to find the enemy ship heading
off in another direction.

time-dilation. Hence we don’t include proper-length in a
collection of those traveler-point parameters which show
promise of wide-ranging usefulness in accelerated frames
and curved spacetime.

III. PROPER VELOCITY

Proper-velocity15 ~w ≡ d~x/dτ is the rate at which book-
keeper or map 3-vector position ~x is changing per unit-
time elapsed locally on traveler clocks. Because it is
proportional to momentum (i.e. ~p = m~w), unlike co-
ordinate velocity ~v ≡ d~x/dt it has no upper limit. Also
unlike coordinate velocity, its measurement does not de-
pend on map-clock readings (synchronized or not) along
that world line. Proper-velocity is also represented by
the space-like components of a traveling object’s velocity
4-vector.
An interesting thought problem for future engineers

(as well as teachers) might be to ask if speed-limit signs,
in a “Mr. Tompkins” world16 with a much slower light-
speed spacetime constant, would use coordinate-speed or
proper-speed. Four criteria to consider might involve the
measure’s connection to momentum, kinetic-energy, and
to reaction-times (after the “warning photons” arrive) for
both the driver, and a pedestrian who is tempted to cross
the street.
The time-like component of that 4-vector is cγ, where

γ ≡ dt/dτ is the also-useful (but not synchrony free)
Lorentz differential-aging or “speed of map-time” fac-
tor mentioned above. In flat spacetime, from the met-
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ric equation it is easy to show that γ = w/v =
√

1 + (w/c)2 ≥ 1. This works better at high speeds than
the version in terms of coordinate speed because there is
no difference in the denominator between numbers very
near to 1.
This same proper velocity form also emerges directly

for circular orbits around a spherically symmetric mass,
as the exact azimutal motion factor in the Schwarzchild
time-dilation equation γ ≡ dt/dτ = γr

√

1 + (wφ/c)2,
where the gravitational time-dilation factor is γr ≡
1/

√

1− (rs/r) ≥ 1 and r ≥ rs is distance from the
center of a mass M object whose Schwarzschild radius
rs = 2GM/c2. Global positioning system satellites have
to consider both of these factors in compensating for the
rate of time’s passage in their orbits around earth.
For unidirectional velocity addition, the advantage of a

collider over an accelerator is easily seen because wAC =
γABγBC(vAB+vBC). In other words, the Lorentz-factors
multiply even though the coordinate-velocites (which
add) never exceed c. Proper velocity’s direct connection
to momentum makes it more relevant to speed-limits e.g.
in worlds with a reduced value for lightspeed, and its di-
rect connection to traveler time makes it more relevant
to passengers and crew when planning long high-speed
trips.
More generally, unlike coordinate-velocities, proper ve-

locities add vectorially provided that one rescales (in
magnitude only) the “out of frame” component. In other
words ~wAC = γAC~vAC = (~wAB)C + ~wBC . Here C’s view
of the out-of-frame proper-velocity (~wAB)C is in the same
direction as ~wAB but rescaled in magnitude by a factor
of (γBC + (γAB − 1)~wBC · ~wAB/w

2
AB) ≥ 0. Hence vector

diagrams, and even the original low-speed equation for
velocity-addition (almost), survive intact when proper-
velocity is used.
This would open the door to new settings for those rela-

tive motion problems (that students dislike so much). For
example, suppose that a starfleet battle-cruiser drops out
of hyperspace in the orbital plane of a ringworld, travel-
ing at a proper-velocity of 1[ lightyear/traveler-year] ra-
dially away from the ringworld’s star. An enemy cruiser
drops out of hyperspace nearby at the same time, trav-
eling 1[ly/ty] in the rotation-direction of the ringworld’s
orbit, and in a direction perpendicular to the starfleet
cruiser’s radial-trajectory. What is the proper-velocity
(magnitude in [ly/ty] and direction) of the enemy cruiser
relative to the starfleet ship? The vector solution to this
is illustrated in the Fig. 2.

IV. PROPER ACCELERATION

The felt or proper-acceleration 3-vector ~α is defined
as the acceleration felt by accelerometers (broadly de-
fined) that are moving with an object17 relative to the
tangent free-float (or geodesic as a generalization of
“inertial”) frame. In flat spacetime its magnitude is
the frame-invariant magnitude of the net-acceleration 4-

FIG. 3. Accelerometer data from a phone dropped and caught
three times. During the free-fall segments, the accelerometer
reading drops to zero because gravity is a geometric force
(like centrifugal) which acts on every ounce of the phone’s
structure, and is hence not detected. The positive spikes occur
when the fall is arrested as the falling phone is caught (also
by hand) before it hit the floor.

vector Aλ ≡ δUλ

δτ
≡ δ2Xλ

δτ2 . This four-vector has a null
time-component in the frame of the accelerated traveler,
from whose “traveler-point” perspective its 3-vector di-
rection is defined.

In flat spacetime, this 3-vector is simply related to
the rate of proper-velocity change through ~α = δ ~w

δt ||~w
+

γ δ ~w
δt ⊥~w

, which in the unidirectional case reduces to ~α =
δ ~w
δt
. This link between proper acceleration and proper ve-

locity will be important when we look at traveler-point
dynamics in the next section.

To illustrate what happens in curved spacetime (and
accelerated frames), try running an accelerometer app on
your phone and performing a hold, drop, catch sequence
as shown in Fig. 3. Because accelerometers only detect
proper-accelerations, like that due to the upward force
of your hand when holding the phone in place before the
drop, nothing is detected when the phone is released even
through the net acceleration 4-vector in that case has a
vertically downward component of g.

Thus in curved spacetimes and accelerated frames, un-
derstanding motion requires a recognition of geometric
(connection-coefficient) effects which thankfully (follow-
ing Newton) can often be approximated locally as gravi-
tational and inertial forces. The bottom line is that in flat
spacetime motion is explained by the forces that cause
proper acceleration, but as soon as we move to curved
spacetimes and accelerated frames (even here on earth)
a second kind of cause comes into play. As we’ll see,
these geometric effects act on every ounce of their target,
vanish locally from the perspective of a comoving free-
float frame, and are therefore undetected by on-board
accelerometers.
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FIG. 4. Metric-1st equations of (1+1)D motion. The dot over the equals sign means this works only for unidirectional motion.
The Lorentz transform section at far right is the only place which requires more than one map (or bookkeeper) reference frame
of yardsticks and synchronized clocks.

Returning to flat spacetime for the moment, let’s also
consider the equations of constant proper-acceleration
(cf. Fig. 4). In flat spacetime, it is proper and not co-
ordinate acceleration that can be (and normally is) held
constant.
If we stick to (1+1)D i.e. unidirectional motion, con-

stant proper acceleration yields some wonderfully simple
integrals of motion, namely α = ∆w/∆t = c∆η/∆τ =
c2∆γ/∆x, where “hyperbolic velocity angle” or rapid-
ity η = sinh−1[w/c] = tanh−1[v/c]. These are ap-
proximated by the familiar introl-physics relationships
a = ∆v/∆t = 1

2
∆(v2)/∆x at low speed, but also al-

low beginning students to explore interstellar constant
proper-acceleration round-trip problems almost as easily
as one does low-speed constant acceleration problems.
In (3+1)D the integrals are also analytical, but messy

and perhaps best expressed18 in terms of a characteristic
time τo equal to

√

(γo + 1)/2c/α, which connects to a
hyperbolic velocity angle τ/τo. Here γo is the “aging
factor at turnaround”, which for unidirectional motion
yields the (1+1)D rapidity discussed above.

V. CAUSES OF MOTION

We’ve discussed a robust strategy for describing mo-
tion (kinematics) at any speed plus locally in curved
spacetime & accelerated frames, using (3+1)D param-
eters which are either frame-invariant or synchrony free.
The causes of motion (dynamics) on the other hand are

traditionally described by a connection between net 3-
vector force as the cause, and the second time derivative
of position where e.g. at low speed we normally write

Σ~F = mδ2~x/δt2.

To extend this (3+1)-vector analysis to high speeds
and curved spacetimes we simply follow the tradition al-
ready established with gravity, but add some new nota-
tion. For instance, we might denote the proper forces
(with frame-invariant magnitudes which are felt by on-

board accelerometers) with the greek letter xi (~ξ). For

inertial frames in flat spacetime, then, Σ~ξ ≡ m~α =
mδ2~x/δτ2.

In the “local patch” of curved spacetimes and accel-
erated frames, we can often approximate the effects of
metric connection coefficients on the equation of motion
by imagining geometric forces which: (a) are unfelt by
on-board accelerometers, (b) act on every ounce of an
object’s being, and (c) disappear when seen from the van-
tage point of a local “free-float frame”. We denote these
geometric forces (like gravity and inertial forces such as

centrifugal) with the greek letter zeta (~ζ). Locally then

we can write Σ~ξ +Σ~ζ ≃ mδ2~x/δτ2.

Although these force expressions work well for tracking
map position versus time, energies, accelerometer read-
ings and differential aging, etc., in the special case of high
speed non-unidirectional motion a kinematic correction is
needed when looking at momentum transfers (e.g. in col-
lisions). This is because rates of proper velocity change
(proportional to momentum change) are frame variant
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even in flat spacetime when proper acceleration is not.
As a result δ~p/δt is equal instead to a net sum of apparent

forces Σ~f = δ~p/δt = mδ~w/δt, where ~f = ~ξ||~w+(1/γ)~ξ⊥~w,
depends on that object’s proper velocity ~w.
The idea that rates of momentum change depend on

one’s frame of reference may seem odd, but rates of en-

ergy change (δE/δt = Σ~ξ · ~v → Σ~f · ~v) are frame-variant
even at low speeds. This in spite of the fact that when
I asked an AAPT audience in 1998 for a show of hands
by those who thought that classical rates of an object’s
energy change are frame-variant, the only hand to go up
in the audience was that of Edwin F. Taylor (that year’s
Oersted Medal winner).
As mentioned above, in curved spacetimes the move

from 4-vector to local (3+1)D dynamics is normally done
by the “geometric force” approximation, in which motion
is seen as caused by adding geometric to proper forces.
These relations are inspired by the general-relativistic
4-vector equation of motion, written in force-units as
mDUλ/dτ −mΓλ

µνU
µUν = mdUλ/dτ , which may be de-

scribed as “net proper 4-vector force” + “net geometric
4-vector force” = mass times the “net 4-vector acceler-
ation”. As usual here m is frame-invariant mass, upper
caseD denotes the covariant derivative of 4-velocity com-
ponent Uλ, Γλ

µν denotes one of 4× 4× 4 = 64 connection
coefficients defined in terms of metric tensor derivatives,
and repeated indices in products like Γλ

µνU
µUν are im-

plicitly summed over all (spatial and temporal) values of
those indices.
The traveler-point approach expresses this in terms of

a locally-useful set of 3-vector and scalar relations, like

Σ~ξ + Σ~ζ ≃ mδ2~x/δτ2 and δE ≃ (Σ~ξ + Σ~ζ) · δ~x. The
scalar part connects to energy conservation, while the
vector part connects to momentum conservation locally
through the flat spacetime connection to frame-variant

forces ~f discussed above. Both the “geometric force” ap-

proximation which gives rise to the ~ζ’ vectors, and the
connection of ”felt plus geometric” forces to rates of mo-
mentum change, rely on the general assertions: (a) that
spacetime is ”locally flat” even in curved spacetimes and
accelerated frames, and (b) that the proper acceleration
4-vector is purely spacelike (i.e. a.spatial 3-vector) from
the perspective of the traveling object. The locality re-
quirement, of course, may be more severe as spacetime
curvature increases.
For example, if we imagine a stationary charge q held

in place by some combination of electromagnetic forces in
a Schwarzschild (non-spinning spherical mass) potential,
the net proper force is the Lorentz 4-vector qFλ

β U
β =

qγ{ ~E ·~v/c, ~E+~v× ~B}. In traveler-point form19 for charge

q this becomes Σ~ξ = q ~E′ = q( ~E||~w+γ ~E⊥~w+ ~w× ~B), where
~E and ~B are the bookkeeper-frame field vectors, and ~E′

is only the electric field seen by charge q.

The magnetic field ~B′ seen by the charge has no effect
on its motion, so that in traveler-point terms such prob-
lems become purely electrostatic even in curved space-
time! As an aside in this context, the above relations may

be used to show how frame-variant proper forces can in
general be decomposed into “static” and “kinetic” com-

ponents, ~fs = γ3m~a = ~ξ||~w + γ~ξ⊥~w and ~fk = ( 1
γ
− γ)~ξ⊥~w,

which are analog to the electrostatic and magnetic forces
(respectively) associated with electromagnetic fields.
The net geometric force, on the other hand, is ob-

tained by summing the 13 out of 64 non-zero connec-
tion coefficients (8 of 40 with independent values) for a
Schwarzschild object of mass M and “far-coordinate” ra-

dius r, to get Σ~ζ = −GMmr̂/r2. If we wish to support
the object in place so that net acceleration 3-vector ~α is
zero, then we require an E-field directed in the radial di-
rection for which upward proper force qE′ = GMm/r2.
One nice thing about discussing this force-balance in
traveler-point terms is that all observers, those using far-
time in a Schwarzschild potential as well as e.g. those
passing by in a star ship accelerating at 1 gee, will be
talking about the same thing in terms of time-intervals
and forces experienced by the traveler, albeit with posi-
tion coordinates of their own choosing.
The net proper-force that our cell-phones measure is

frame-invariant in magnitude as is proper time, with a
3-vector direction presumably defined in traveler terms.
This makes it useful20 for comparing electromagnetic
forces in different frames (e.g. to see how magnetic at-
traction becomes purely electrostatic), and makes curved
spacetime (like that we experience on earth’s surface as
illustrated in Fig. 5) a bit simpler to understand than
we might have imagined in a world where time passes
differently according to your location as well as your rate
of travel.
Thus Einstein’s general relativity, far from invalidat-

ing Newton, revealed that the classical laws work locally
in all frames (including accelerated-frames in curved-
spacetime) provided that, in addition to proper-forces,
we recognize geometric (i.e. connection-coefficient) forces
like gravity and inertial-forces (acceleration “gees”, cen-
trifugal, etc.) that “act on every ounce” of an object’s
being.
These highly frame-dependent geometric forces also

have effective potentials ∆U linked to the differential-
aging (generalized Lorentz) factor γ ≡ dt/dτ (equal to
√

1/g00 for motionless objects even when the metric is
non-diagonal) via Lτ−Lt = (γ−1)mc2 where Lagrangian
L ≡ K − U , e.g. in rotating habitats, accelerating
spaceships21, and gravity on earth8. Potential energies
associated with proper forces instead involve delocalized
interactions linked to the total rest mass-energy m of a
composite system, and do not involve differential aging.

VI. DISCUSSION

The foregoing, summarized in Fig. 4, is targeted to-
ward university physics teachers, but uses concepts which
may be unfamiliar to some. In that context, in Ap-
pendix A we provide notes that may provide shortcuts
for intro-physics “relativity sections”, and we are work-
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FIG. 5. Two views of proper (red) and geometric (dark blue or brown) forces in some everyday settings.

FIG. 6. Years elapsed in proper time (blue) and map time
(red) on a 16+12+20 = 48 lightyear 1-gee acceleration round
trip lasting about 17.2 traveler years and 53.7 map years.

ing on a one-class intro to Newtonian variables as useful
approximations22.
The traveler-point proper coordinate perspective on

the importance of specifying “which clock”, and on the
distinction between proper and geometric forces with
help from your cell-phone, can be helpful for students at
the very beginning of their engineering physics education.
It also provides “Newtonian-like” tools for the 3-vector
addition of proper-velocities and momenta, as well as for

proper-force/acceleration analysis at any speed using si-
multaneity defined by a free-float bookkeeper frame. In
curved spacetimes the best bet for this reference frame
may be the tangent free-float9 frame (or Fermi-normal8)
coordinate system, like for instance the “shell frame” that
we use for our inertial reference here on earth.

This traveler-point perspective perhaps does not do
much for rigorous simplification of “geometric-force”
analysis in curved spacetime, because e.g. the geodesic
equation (i.e. without proper-forces) for arbitrary
coordinate-systems is not reducible to purely 3-vector
form. However, the electromagnetic example discussed
above would make it quite straightforward e.g. to define
a “gravitational proper-force” of the form mGλ

µνU
µUν .

This proper-force approximation for including gravito-
magnetic effects at any speed might, for example, come
in handy for making 3-vector simulators of interstellar
travel, e.g. using the celestiaproject.net database, which
would work pretty well in the vicinity of main-sequence
stars and planets, as well as between stars.

In that case, interesting extreme-gravity effects might
have to be patched into the algorithms after the fact,
e.g. with help from a mean-field estimate of gravitational
dt/dτ . Regardless of whether one uses geometric-force
gravity23 or its proper-force approximation, metric-first
simulations of accelerated motion between and around
stars using simultaneity defined by bookkeeper far-time,
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but which are predicted on actions taken by a single trav-
eler on their proper-time clock (cf. Fig. 6), will likely
become quite robust in the days ahead.
In summary, traveler-point parameters can help open

the door: (a) to introductory students wanting to explore
the consequences of life in accelerated frames and curved
spacetime here on earth, as well as (b) to engineers want-
ing to apply Newton’s laws locally in environments where
high speeds and differential aging must be taken into ac-
count.
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Appendix A: possible course notes

The sections to follow might be dropped into the in-
troductory physics schedule as the usual “relativity sec-
tion”, near the end of the course, or may be rearranged
for piecemeal discussion earlier so that the Newtonian
models, that students will be working with, are framed
as approximations from the start.

1. spacetime version of Pythagoras’ theorem

Time is local to a given clock, and simultaneity is
determined by your choice of reference frame. Al-
though Maxwell’s equations on electromagnetism were
“informed” to this reality in the mid 1800’s, humans re-
ally didn’t start to get the picture until the early 1900’s.
But how might one deal with this quantitatively?
Start with the (1+1)D flat-space metric equation,

namely (cδτ)2 = (cδt)2 − (δx)2 where x and t are po-
sition and time coordinates associated with your refer-
ence “map-frame” of yardsticks and synchronized clocks.
The quantity τ is the proper-time elapsed on the clocks
of a traveling observer whose map-position x may be
written as a function of map-time t. As usual c is the
spacetime constant (literally the number of meters in a
second) which is traditionally referred to as lightspeed
because it equals the speed of light in a vacuum.
The term on the left in the metric equation is referred

to as a frame-invariant. Just like a given hypotenuse
(cf. Fig. 7) can be expressed in terms of a bunch of
different xy coordinate systems, all of which agree on its
length, so a given proper-time interval e.g. on a traveling
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FIG. 7. Pythagorean frame-invariance of the hypotenuse
(in black), from the metric equation (δh)2 = (δx)2 + (δy)2

for seven different Cartesian coordinate systems, whose unit-
vectors are shown in color. Although none of these coor-
dinate systems agrees on the coordinates of the black line’s
endpoints, all agree that the length of the hypotenuse is 5.

object’s clock, can be expressed in terms of many differ-
ent “bookkeeper” reference-frames, all of which will also
agree on its duration even if they can’t agree on which of
two spatially-separated events happened first.
This equation is seriously powerful. As Einstein illus-

trated, if one tweaks the “unit” coefficients of the terms
on the right by only “one part per billion”, we find our-
selves in a gravitational field like that on earth where a
fall of only a few meters can do you in.

2. traveler-point kinematics

A (2+1)D acceleration puzzler schematic of a starfleet
battlecruiser traveling upward which, on seeing light from
an enemy spaceship dropping out of hyperspace (dot-
ted red circle), accelerates rightward in order to inter-
cept. The enemy trajectory is in gray, while the starfleet
cruiser trajectory is in black. Proper-time intervals are
marked on both trajectories in 2 traveler-month intervals.
Units for distance are lightyears, for proper-velocity vec-
tors (green) are lightyears/traveler-year, and for proper-
acceleration (red) is in lightyears/year2 or (to first order)
”gees”. The battlecruiser then reverses acceleration di-
rection in order to (eventually) recover its original tra-
jectory, amazingly about four months of ship time ahead
of schedule following a detour that took 4 years!

From the foregoing, it is easy to define a proper-

velocity ~w ≡ d~x/dτ = γ~v, where ~v ≡ d~x/dt is
coordinate-velocity as usual, and speed of map-

time or “differential-aging factor” γ ≡ dt/dτ =

FIG. 8. A (2+1)D acceleration puzzler schematic of a starfleet
battlecruiser traveling upward which, on seeing light from
an enemy spaceship dropping out of hyperspace (dotted red
circle), accelerates rightward in order to intercept. The en-
emy trajectory is in gray, while the starfleet cruiser trajec-
tory is in black. Proper-time intervals are marked on both
trajectories in 2 traveler-month intervals. Units for dis-
tance are lightyears, for proper-velocity vectors (green) are
lightyears/traveler-year, and for proper-acceleration (red) is
in lightyears/year. The battlecruiser then reverses acceler-
ation direction in order to (eventually) recover its original
trajectory, amazingly about four months of ship time ahead

of schedule following a detour that took 4 years. A detour
that saved time, at least for the traveler!

√

1 + (w/c)2 = 1/
√

1− (v/c)2 ≥ 1. This last relation
tells us that when simultaneity is defined by a network of
synchronized map clocks, a moving traveler’s clock will
always run slow. These relationships follow directly from
the metric equation itself.

Thus having a new time-variable τ also gives us some
new ways to measure rate of travel. Proper-velocity, as
we’ll see, has no upper limit and is related to conserved-
quantity momentum by the simple vector relation ~p =
m~w where m is our traveler’s frame-invariant rest-mass.
The upper limit of c ≥ dx/dt on coordinate-velocity re-
sults simply from the fact that momentum (and dx/dτ)
have to be finite. Speed of map-time γ, on the other
hand, relates to total energy by E = γmc2, and to
kinetic energy by K = (γ − 1)mc2.

At this point, a variety of famiilar time-dilation and
relativistic energy/momentum topics might be covered as
examples. If there is added time, one path to take is
to introduce length-contraction, velocity addition, and
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Doppler effect with or without Lorentz transforms, his-
torical notes on lightspeed measurement, etc. In what
follows, we instead push the alignment with traveler-point
concepts and the Newtonian treatment of kinematics and
mechanics a bit further.

It is also conceptually interesting to note that proper-
acceleration, in turn, is simply the vector-acceleration
detected by a cell-phone accelerometer in the traveler’s
pocket. This quantity, after a couple of proper-time
derivatives, pops up on the left side of the metric equa-
tion as a frame-invariant as did “hypotenuse” and proper-
time.

For unidirectional motion in flat-spacetime (i.e. us-
ing map-coordinates in an inertial frame), proper-
acceleration ~αo = γ3~a, where ~a ≡ d2~x/dt2 is the usual
coordinate-acceleration. These relations also yield a
few simple integrals for “constant” proper-acceleration,
namely α = ∆w/∆t = c∆η/∆τ = c2∆γ/∆x.

That 2nd equality involves “hyperbolic velocity-angle”
or rapidity η = sinh−1[w/c] = tanh−1[v/c], so that
γ = cosh[η]. The first and third equalities reduce to the
familiar conceptual-physics relationships a = ∆v/∆t =
1
2
∆(v2)/∆x at low speed. However they allow begin-

ning students to explore interstellar constant proper-
acceleration round-trip problems, almost as easily as they
do problems involving projectile trajectories on earth.

3. dynamics in flat spacetime

The net proper-force may in general be written as

Σ~Fo ≡ m~αo. In flat (and unaccelerated) spacetime
coordinate-systems, all forces are proper, and proper-
acceleration ~αo equals the net-acceleration ~α observed
by a traveler. Under a constant net proper-force, we can
therefore expect constant net-acceleration.

At high speeds the constant proper-force equations are
messier because of that pesky γ in equations like ∆w =
∆(γv) = αo∆t. The low speed approximation (namely
∆v = a∆t) is therefore a bit simpler to deal with, and
works fine for speeds well below c.

4. dynamics in curved spacetime

In both curved spacetime and in accelerated frames,
Newton’s equations still work (at least locally) provided
that we recognize the existence of non-proper or geomet-
ric forces, like gravity as well as inertial forces that arise
in accelerated frames. Newton’s law for causes of motion
“in the neighborhood of a traveling object” then takes

the 3-vector form Σ~Fo +Σ~Fg = m~α, where ~α is the net-
acceleration actually observed by the traveler.
The reason that your cell-phone’s accelerometer can’t

see gravity (or centrifugal force), even when gravity is
causing a net-acceleration downward, is that these are

geometric forces. Geometric forces (Σ~Fg), which act on
“every ounce” of an object, result from being in an ac-
celerated frame or in curved spacetime. Accelerometers

can only detect the result of net proper-forces (Σ~Fo), i.e.
one’s proper-acceleration ~αo.
It’s traditional to approximate gravity on the surface of

the earth as simply a proper-force that is proportional to

mass m, for which ~F = m~g where ~g is a downward vector
with a magnitude of about 9.8 [m/s2]. This works quite
well for most applications. However unlike geometric-
forces, proper-forces are not associated with positional
time-dilation like that which must be figured into GPS
system calculations.
Just as kinetic energy in flat spacetime is related via

(dt/dτ−1)mc2 to the faster passage of map-time (t) with
respect to traveler time (τ) when simultaneity is defined
by the map-frame, so is the position-dependent potential-
energy well-depth of some geometric-forces in accelerat-
ing frames and curved spacetime. Thus (dt/dτ − 1)mc2

also describes the potential-energy well-depth for mass-
m travelers located: (i) at radius r from the axis in a
habitat rotating with angular velocity ω, which in the
low-speed limit reduces to the classical value 1

2
mω2r2;

(ii) a distance L behind the leading edge of a spaceship
undergoing constant proper acceleration α, which in the
small L limit reduces to the classical value mαL; and
(iii) on the radius R surface of a mass M planet, which
in the R ≫ 2GM/c2 limit reduces to the classical value
of GMm/R where G is the gravitational constant.


