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Traveler-point dynamics

P. Fraundorf∗
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(Dated: August 17, 2017)

Locally-defined parameters chosen to be minimally frame-variant can be useful for describing mo-
tion in accelerated frames and in curved spacetimes. In particular the metric-equation’s synchrony-
free “traveler-point parameters”, namely proper-time, plus 3-vectors proper-velocity and proper-
force, are useful in curved spacetime because extended arrays of synchronized clocks (e.g. for local
measurement of the denominator in ∆x/∆t) may be hard to find. Combined with a recognition of
improper (geometric) forces, these same parameters can better prepare intro-physics students for
their everyday world, as well as for the technological world e.g. of GPS systems where differential
aging must be considered explicitly. The approach also suggests a traveler-perspective path to 3-
vector simulations that are exact at any speed in flat spacetime, and will soon help frame on-line
simulations of interstellar navigation including effects of gravitational fields.
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I. INTRODUCTION

In an imagined BBC interview, a friendly electric
charge was quoted as saying that: “I see magnetic fields
interacting with charges moving around me all the time,
but according to the phone accelerometer in my pocket,
those magnetic fields never have any effect on me!” In
this paper we show that our friendly electron’s assertion
makes sense! More importantly we show that the purely-
electrostatic proper force felt by a traveling charge, and
other “traveler-point parameters”, serve as a common
point of reference (just as does proper time along a world
line) for discussion of object-trajectories by observers in
all kinds of curved-spacetime situations, including the
curved spacetime in which we live on earth.
In a larger context, general-relativity revealed a cen-

tury ago why we can get by with using Newton’s laws
in spacetime so curvy that it’s tough to jump higher

FIG. 1. Even one extended-frame with synchronized clocks
may be more than we have in curved spacetime.

than a meter. It’s because those laws work locally in
all frames of reference1, provided we recognize that mo-
tion is generally affected by both proper and “geometric”
(i.e. connection-coefficient) forces.

In that context, it’s probably time to give introductory
students the good news. Here we discuss a way to do
this without telling them to measure time and distance
in kilograms (for example), and without asking them to
juggle more than one concurrent defintion of simultane-
ity.

The metric equation of course avoids these things (cf.
Fig. 1) by specifying locally-defined frame invariants like
proper-time, and contenting itself with a single defintion
of simultaneity i.e. that associated with the set of book-
keeper (or map) coordinates that one chooses to describe
the spacetime metric. Hence the focus here is on a metric-
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first, as distinct from transform-first, strategy for describ-
ing motion in accelerated frames, in curved spacetime, as
well as at high speeds.

To facilitate this, the (proper1 or Riemann-normal2

coordinate-frame) variables discussed here are chosen to
be minimally frame-variant, synchrony-free3, and inher-
ently local so as to maximize their utility in accelerated
frames and in curved spacetime. They are referred to as
elements of a traveler-point, rather than a traveler-frame,
dynamic in part to clarify that they involve distances
with respect to the chosen map or bookkeeper frame,
but that they are indexed to frame-invariant proper-time
local to the traveler’s clock. Their lack of dependence on
synchronized clocks arises because they involve neither
distributed-clocks synchronized to the “map time” vari-
able used in the metric-equation, nor an extended (e.g.
tangent free-float) frame of yardsticks and clocks linked
to a traveling object.

II. PROPER TIME

Proper-time is the time elapsed locally along the world-
line of any physical clock (broadly defined). It is also the
frame-invariant time-interval δτ that shows up in metric
equations of the form (cδτ)2 = ΣµΣνgµνδXµδXν , which
in the flat-space Cartesian case takes the Pythagorean
form (cδτ)2 = (cδt)2− (δx)2− (δy)2− (δz)2, where book-
keeper or map coordinates are found on the right-hand
side of the equation, and c is the “lightspeed” spacetime
constant for converting e.g. seconds into meters.

When simultaneity is defined by a flat-spacetime book-
keeper coordinate frame, time-elapsed on traveling clocks
is always “dilated” (e.g. spread out), since from the
metric equation the differential-aging or Lorentz factor
γ ≡ dt/dτ ≥ 1. Expressions for this in terms of velocity
will be discussed below.

We won’t discuss the utility of proper-time τ in detail
here because it is widely used now even by introductory
textbook authors4. However it’s worth pointing out that
early treatments of special relativity were so focused on
the equivalence between frames, each with their own ex-
tended set of synchronized clocks, that proper-time (if
discussed5) was generally a late-comer to the discussion,
and of course used only for “rest frame” (i.e. unacceler-
ated) travelers6.

Moving yardsticks also have a “proper-length” associ-
ated with them, which can be useful too. However this
is a “non-local” quantity not defined by the metric equa-
tion, the concept of “rigid body” is only an approxima-
tion in spacetime, and length contraction itself involves
three separate events as distinct from the two involved in
time-dilation. Hence we don’t include proper-length in a
collection of those traveler-point parameters which show
promise of wide-ranging usefulness in accelerated frames
and curved spacetime.

FIG. 2. Proper-velocity (momentum/mass) vector addition
for a sci-fi puzzler, in which your starfleet battle-cruiser B
drops in from hyperspace heading away from a nearby star R,
only to find the enemy ship E heading off in another direction.
Note that the blue resultants (proper-velocities of enemy rel-
ative to battleship and vice-versa) are “precessed” relative to
the simple vector sum since B and E use different definitions
of simultaneity.

III. PROPER VELOCITY

Proper-velocity7 ~w ≡ d~x/dτ is the rate at which book-
keeper or map 3-vector position ~x is changing per unit-
time elapsed locally on traveler clocks. Because it is
proportional to momentum (i.e. ~p = m~w), unlike co-
ordinate velocity ~v ≡ d~x/dt it has no upper limit. Also
unlike coordinate velocity, its measurement does not de-
pend on map-clock readings (synchronized or not) along
that world line. Proper-velocity is also represented by
the space-like components of a traveling object’s velocity
4-vector.
An interesting thought problem for future engineers

(as well as teachers) might be to ask if speed-limit signs,
in a “Mr. Tompkins” world8 with a much slower light-
speed spacetime constant, would use coordinate-speed or
proper-speed. Four criteria to consider might involve the
measure’s connection to momentum, kinetic-energy, and
to reaction-times (after the “warning photons” arrive) for
both the driver, and a pedestrian who is tempted to cross
the street.
The time-like component of that 4-vector is cγ, where

γ ≡ dt/dτ is the also-useful (but not synchrony free)
Lorentz differential-aging or “speed of map-time” fac-
tor mentioned above. In flat spacetime, from the met-
ric equation it is easy to show that γ = w/v =
√

1 + (w/c)2 ≥ 1.
In gravitationally-curved Schwarzschild spacetime
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with “far-coordinate” map distances and times, one gets
instead from the metric for non-radial proper-velocity wφ

that γ ≡ dt/dτ = γr
√

1 + (wφ/c)2 ≥ 1, where the grav-

itational time-dilation factor is γr ≡ 1/
√

1− (rs/r) ≥ 1
and r ≥ rs is distance from the center of a mass M
object whose Schwarzschild (event-horizon) radius rs =
2GM/c2. Global positioning system satellites have to
consider both of these factors in compensating for the
rate of time’s passage in their orbits around earth.
For unidirectional velocity addition, the advantage of a

collider over an accelerator is easily seen because wAC =
γABγBC(vAB+vBC). In other words, the Lorentz-factors
multiply even though the coordinate-velocites (which
add) never exceed c. Proper velocity’s direct connection
to momentum makes it more relevant to speed-limits e.g.
in worlds with a reduced value for lightspeed, and its di-
rect connection to traveler time makes it more relevant
to passengers and crew when planning long high-speed
trips.
More generally, unlike coordinate-velocities, proper ve-

locities as “momenta per unit mass” add as 3-vectors, in
analogy to the classical prescription ~vAC = ~vAB + ~vBC ,
provided that one reframes ~vAB in terms of the sum
velocity’s metric (B → C) and ~vBC in terms of the
sum velocity’s clock (B → A). In other words ~wAC =
~wA,B:C + ~wB:A,C . Here the second term is increased
only in magnitude to correct for differences between B
and A’s clock i.e. ~wB:A,C = γAB ~wBC, while the first
term increases in magnitude and is “Thomas precessed”
toward the second because of the shift from B to C’s
map-frame and thus metric distance and simultaneity
i.e. ~wA,B:C = ~wAB⊥~wBC

+ γBC ~wAB||~wBC
. Hence vector

diagrams, and even the original low-speed equation for
velocity-addition (almost), survive intact when proper-
velocity is used. Because proper-velocities are synchrony
free, these relationships should hold up locally in curved
spacetime and accelerated frames as well.
This would open the door to new settings for those rela-

tive motion problems (that students dislike so much). For
example, suppose that a starfleet battle-cruiser drops out
of hyperspace in the orbital plane of a ringworld, trav-
eling at a proper-velocity of 1[ lightyear/traveler-year]
obliquely away from the ringworld’s star. An enemy
cruiser drops out of hyperspace nearby at the same time,
traveling 1[ly/ty] in the rotation-direction of the ring-
world’s orbit. What is the proper-velocity (magnitude in
[ly/ty] and direction) of the enemy cruiser relative to the
starfleet ship, or vice-versa? The vector solution to this
is illustrated in the Fig. 2.

IV. PROPER ACCELERATION

The proper-acceleration 3-vector ~αo is the acceleration
felt by accelerometers (broadly defined) that are mov-
ing with an object9 relative to the tangent free-float (or
geodesic as a generalization of “inertial”) frame. Accel-
eration in curved space time with respect to bookkeeper

FIG. 3. Accelerometer data from a phone dropped and caught
three times. During the free-fall segments, the accelerometer
reading drops to zero because gravity is a geometric force
(like centrifugal) which acts on every ounce of the phone’s
structure, and is hence not detected. The positive spikes occur
when the fall is arrested as the falling phone is caught (also
by hand) before it hit the floor.

coordinates is instead desribed by the net-acceleration 4-
vector {cdγ/dτ, ~α} ≡ dUλ/dτ . Both of these 4-vectors
have frame-invariant magnitudes.

To illustrate the difference in curved spacetime, try
running an accelerometer app on your phone and per-
forming a hold, drop, catch sequence as shown in Fig.
3. Because accelerometers only detect (frame-invariant)

net proper-forces Σ~Fo ≡ m~αo, like the upward force of
your hand when holding the phone in place before the
drop, nothing is detected when the phone is released even
through the net acceleration 4-vector in that case has a
vertically downward component of g.

The proper-acceleration 4-vector also has a null time-
component from the traveler’s point of view, and hence
becomes a spatial 3-vector with directions that are de-
fined only locally in the frame of the traveling object
(much as is the magnitude of the proper-time elapsed
on traveling object clocks). In flat spacetime, the two
4-vectors are one and the same.

In flat spacetime, coordinate-acceleration ~a ≡
d2~x/dt2 = ~α||~w/γ

3 + ~α⊥~w/γ
2 scales differently with

proper-acceleration components parallel and perpendic-
ular to the direction of our traveling object’s proper-
velocity ~w. If we stick to (1+1)D i.e. unidirectional
motion, this yields some wonderfully simple integrals
for constant proper-acceleration, namely α = ∆w/∆t =
c∆η/∆τ = c2∆γ/∆x, where “hyperbolic velocity angle”
or rapidity η = sinh−1[w/c] = tanh−1[v/c].

These reduce to the familiar conceptual-physics rela-
tionships a = ∆v/∆t = 1

2
∆(v2)/∆x at low speed. How-

ever they allow beginning students to explore interstel-
lar constant proper-acceleration round-trip problems, al-
most as easily as one does low-speed constant accelera-
tion problems.
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V. PROPER FORCE

The general-relativistic equation of motion may be
written in force-units as mDUλ/dτ − mΓλ

µνU
µUν =

mdUλ/dτ in the form “net proper 4-vector force” +
“net geometric 4-vector force” = mass times the “net
4-vector acceleration”. Notation is standard in that m is
frame-invariant mass, upper case D denotes the covari-
ant derivative of 4-velocity component Uλ, Γλ

µν denotes
one of 4 × 4 × 4 = 64 connection coefficients defined in
terms of metric tensor derivatives, and repeated indices
in products like Γλ

µνU
µUν are implicitly summed over all

(spatial and temporal) values of those indices.

The foregoing is a 4-vector equation, which in “frame-
invariant” traveler-point terms (i.e. when projected into
3-space along the traveler’s time direction) may be re-

duced to the locally-valid 3-vector equation Σ~Fo+Σ~Fg =
m~α. The first term corresponds to the net proper force
(equal to m~αo) detectable by “on-board” accelerometers,
the second to the spatial part of the net geometric force
which might be locally made to vanish by choice of a
“free-float” frame, while the last corresponds to the spa-
tial part of the net acceleration 4-vector.

For example, if we imagine a stationary charge q held
in place by some combination of electromagnetic forces in
a Schwarzschild (non-spinning spherical mass) potential,
the net proper force is the Lorentz 4-vector qFλ

β U
β =

qγ{ ~E · ~v/c, ~E + ~v × ~B}, which in traveler-point form10

for charge q becomes Σ~Fo = q ~E′ = q( ~E||~w + γ ~E⊥~w +

~w × ~B), where ~E and ~B are the bookkeeper-frame field

vectors, and ~E′ is only the electric field seen by charge q.

The magnetic field ~B′ seen by the charge indeed has no
effect on its motion, so that in traveler-point terms such
problems become electrostatic even in curved spacetime!

The net geometric force, on the other hand, is ob-
tained by summing the 13 out of 64 non-zero connec-
tion coefficients (8 of 40 with independent values) for a
Schwarzschild object of mass M and “far-coordinate” ra-

dius r, to get Σ~Fg = −GMmr̂/r2. If we wish to support
the object in place so that net acceleration 3-vector ~α is
zero, then we require an E-field directed in the radial di-
rection for which upward proper force qE′ = GMm/r2.
One nice thing about discussing this force-balance in
traveler-point terms is that all observers, those using far-
time in a Schwarzschild potential as well as e.g. those
passing by in a star ship accelerating at 1 gee, will be
talking about the same thing in terms of time-intervals
and forces experienced by the traveler, albeit with posi-
tion coordinates of their own choosing.

The net proper-force Σ~Fo that our cell-phones measure
(which is generally NOT a rate of momentum change) is
frame-invariant in magnitude as is proper time, with a
3-vector direction presumably defined in traveler terms.
This makes it useful11 for comparing electromagnetic
forces in different frames (e.g. to see how magnetic at-
traction becomes purely electrostatic), and makes curved

spacetime (like that we experience on earth’s surface as
illustrated in Fig. 4) a bit simpler to understand than
we might have imagined in a world where time passes
differently according to your location as well as your rate
of travel.
Thus Einstein’s general relativity, far from invalidat-

ing Newton, revealed that the classical laws work locally
in all frames (including accelerated-frames in curved-
spacetime) provided that, in addition to proper-forces,
we recognize geometric (i.e. connection-coefficient) forces
like gravity and inertial-forces (acceleration “gees”, cen-
trifugal, etc.) that “act on every ounce” of an object’s be-
ing. These highly frame-dependent geometric forces (esp.
when the metric is diagonal) link to differential-aging
(γ ≡ dt/dτ) with “well-depth” as well as kinetic ener-
gies (e.g. in rotating habitats, accelerating spaceships12,
and gravity on earth2) that go something like (γ−1)mc2.
To give you a taste of the other traveler-point variables

in classic terms, imagine a traveler with book-keeper co-
ordinates ~x[t] from the vantage point of a “free-float” or
inertial frame in flat spacetime with no geometric forces,
so that the equation of motion predicts that the net

proper-force Σ~Fo alone will equal m~α. Then differential-
aging factor γ ≡ dt/dτ =

√

1 + (w/c)2, proper-velocity
~w ≡ d~x/dτ = γ~v where coordinate-velocity ~v ≡ d~x/dt,
kinetic energy K = (γ − 1)mc2, momentum ~p = m~w,
rate of energy change dK/dτ = m~α · ~w, and the rate
of momentum change is d~p/dτ = m~α + (γ − 1)m~α||~w.
As Tony French suggested in his classic text, coordinate-
acceleration ~a ≡ d2~x/dt2 is simply related to neither en-
ergy nor momentum, and so mainly serves to approxi-
mate the net-acceleration ~α at low speeds (e.g. as mea-
sured by your phone in the absence of geometric forces).

VI. DISCUSSION

The foregoing is targeted toward university physics
teachers, but needless to say uses concepts which may
be unfamiliar to some. In that context, in Appendix A
we outline an introduction to this material that might
be useful for introductory students as well as teachers.
In particular, we address there possibilities for an ”after-
the-fact” traveler-point relativity section, as well as some
ways this material might be introduced from the very be-
ginning.
The traveler-point proper coordinate perspective on

the importance of specifying “which clock”, and on the
distinction between proper and geometric forces with
help from your cell-phone, can be helpful for students at
the very beginning of their engineering physics education.
It also provides “Newtonian-like” tools for the 3-vector
addition of proper-velocities and momenta, as well as for
proper-force/acceleration analysis at any speed using si-
multaneity defined by a free-float bookkeeper frame. In
curved spacetimes the best bet for this reference frame
may be the tangent free-float13 frame (or Fermi-normal2)
coordinate system, like for instance the “shell frame” that
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FIG. 4. Two views of proper (red) and geometric (dark blue or brown) forces in some everyday settings.

FIG. 5. Years elapsed in proper time (blue) and map time
(red) on a 16+12+20 = 48 lightyear 1-gee acceleration round
trip lasting about 17.2 traveler years and 53.7 map years.

we use for our inertial reference here on earth.
This traveler-point perspective perhaps does not do

much for rigorous simplification of “geometric-force”
analysis in curved spacetime, because e.g. the geodesic
equation (i.e. without proper-forces) for arbitrary
coordinate-systems is not reducible to purely 3-vector
form. However, the electromagnetic example discussed
above would make it quite straightforward e.g. to define
a “gravitational proper-force” of the form mGλ

µνU
µUν .

This proper-force approximation for including gravito-
magnetic effects at any speed might, for example, come
in handy for making 3-vector simulators of interstellar
travel, e.g. using the celestiaproject.net database, which
would work pretty well in the vicinity of main-sequence
stars and planets, as well as between stars.

In that case, interesting extreme-gravity effects might
have to be patched into the algorithms after the fact,
e.g. with help from a mean-field estimate of gravitational
dt/dτ . Regardless of whether one uses geometric-force
gravity14 or its proper-force approximation, metric-first
simulations of accelerated motion between and around
stars using simultaneity defined by bookkeeper far-time,
but which are predicted on actions taken by a single trav-
eler on their proper-time clock (cf. Fig. 5), will likely
become quite robust in the days ahead.

In summary, traveler-point parameters can help open
the door: (a) to introductory students wanting to explore
the consequences of life in accelerated frames and curved
spacetime here on earth, as well as (b) to engineers want-
ing to apply Newton’s laws locally in environments where
high speeds and differential aging must be taken into ac-
count.
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Appendix A: possible course notes

The sections to follow might be dropped into the in-
troductory physics schedule as the usual “relativity sec-
tion”, near the end of the course, or may be rearranged
for piecemeal discussion earlier so that the Newtonian
models, that students will be working with, are framed
as approximations from the start.

FIG. 6. Pythagorean frame-invariance of the hypotenuse
(in black), from the metric equation (δh)2 = (δx)2 + (δy)2

for seven different Cartesian coordinate systems, whose unit-
vectors are shown in color. Although none of these coor-
dinate systems agrees on the coordinates of the black line’s
endpoints, all agree that the length of the hypotenuse is 5.

1. spacetime version of Pythagoras’ theorem

Time is local to a given clock, and simultaneity is
determined by your choice of reference frame. Al-
though Maxwell’s equations on electromagnetism were
“informed” to this reality in the mid 1800’s, humans re-
ally didn’t start to get the picture until the early 1900’s.
But how might one deal with this quantitatively?

Start with the (1+1)D flat-space metric equation,
namely (cδτ)2 = (cδt)2 − (δx)2 where x and t are po-
sition and time coordinates associated with your refer-
ence “map-frame” of yardsticks and synchronized clocks.
The quantity τ is the proper-time elapsed on the clocks
of a traveling observer whose map-position x may be
written as a function of map-time t. As usual c is the
spacetime constant (literally the number of meters in a
second) which is traditionally referred to as lightspeed
because it equals the speed of light in a vacuum.

The term on the left in the metric equation is referred
to as a frame-invariant. Just like a given hypotenuse
(cf. Fig. 6) can be expressed in terms of a bunch of
different xy coordinate systems, all of which agree on its
length, so a given proper-time interval e.g. on a traveling
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object’s clock, can be expressed in terms of many differ-
ent “bookkeeper” reference-frames, all of which will also
agree on its duration even if they can’t agree on which of
two spatially-separated events happened first.
This equation is seriously powerful. As Einstein illus-

trated, if one tweaks the “unit” coefficients of the terms
on the right by only “one part per billion”, we find our-
selves in a gravitational field like that on earth where a
fall of only a few meters can do you in.

2. traveler-point kinematics

From the foregoing, it is easy to define a proper-

velocity ~w ≡ d~x/dτ = γ~v, where ~v ≡ d~x/dt is
coordinate-velocity as usual, and speed of map-

time or “differential-aging factor” γ ≡ dt/dτ =
√

1 + (w/c)2 = 1/
√

1− (v/c)2 ≥ 1. This last relation
tells us that when simultaneity is defined by a network of
synchronized map clocks, a moving traveler’s clock will
always run slow. These relationships follow directly from
the metric equation itself.
Thus having a new time-variable τ also gives us some

new ways to measure rate of travel. Proper-velocity, as
we’ll see, has no upper limit and is related to conserved-
quantity momentum by the simple vector relation ~p =
m~w where m is our traveler’s frame-invariant rest-mass.
The upper limit of c ≥ dx/dt on coordinate-velocity re-
sults simply from the fact that momentum (and dx/dτ)
have to be finite. Speed of map-time γ, on the other
hand, relates to total energy by E = γmc2, and to
kinetic energy by K = (γ − 1)mc2.
At this point, a variety of famiilar time-dilation and

relativistic energy/momentum topics might be covered as
examples. If there is added time, one path to take is
to introduce length-contraction, velocity addition, and
Doppler effect with or without Lorentz transforms, his-
torical notes on lightspeed measurement, etc. In what
follows, we instead push the alignment with traveler-point
concepts and the Newtonian treatment of kinematics and
mechanics a bit further.
It is also conceptually interesting to note that proper-

acceleration, in turn, is simply the vector-acceleration
detected by a cell-phone accelerometer in the traveler’s
pocket. This quantity, after a couple of proper-time
derivatives, pops up on the left side of the metric equa-
tion as a frame-invariant as did “hypotenuse” and proper-
time.
For unidirectional motion in flat-spacetime (i.e. us-

ing map-coordinates in an inertial frame), proper-
acceleration ~αo = γ3~a, where ~a ≡ d2~x/dt2 is the usual
coordinate-acceleration. These relations also yield a
few simple integrals for “constant” proper-acceleration,
namely α = ∆w/∆t = c∆η/∆τ = c2∆γ/∆x.
That 2nd equality involves “hyperbolic velocity-angle”

or rapidity η = sinh−1[w/c] = tanh−1[v/c], so that
γ = cosh[η]. The first and third equalities reduce to the
familiar conceptual-physics relationships a = ∆v/∆t =

1

2
∆(v2)/∆x at low speed. However they allow begin-

ning students to explore interstellar constant proper-
acceleration round-trip problems, almost as easily as they
do problems involving projectile trajectories on earth.

3. dynamics in flat spacetime

The net proper-force may in general be written as

Σ~Fo ≡ m~αo. In flat (and unaccelerated) spacetime
coordinate-systems, all forces are proper, and proper-
acceleration ~αo equals the net-acceleration ~α observed
by a traveler. Under a constant net proper-force, we can
therefore expect constant net-acceleration.
At high speeds the constant proper-force equations are

messier because of that pesky γ in equations like ∆w =
∆(γv) = αo∆t. The low speed approximation (namely
∆v = a∆t) is therefore a bit simpler to deal with, and
works fine for speeds well below c.

4. dynamics in curved spacetime

In both curved spacetime and in accelerated frames,
Newton’s equations still work (at least locally) provided
that we recognize the existence of non-proper or geomet-
ric forces, like gravity as well as inertial forces that arise
in accelerated frames. Newton’s law for causes of motion
“in the neighborhood of a traveling object” then takes

the 3-vector form Σ~Fo +Σ~Fg = m~α, where ~α is the net-
acceleration actually observed by the traveler.
The reason that your cell-phone’s accelerometer can’t

see gravity (or centrifugal force), even when gravity is
causing a net-acceleration downward, is that these are

geometric forces. Geometric forces (Σ~Fg), which act on
“every ounce” of an object, result from being in an ac-
celerated frame or in curved spacetime. Accelerometers

can only detect the result of net proper-forces (Σ~Fo), i.e.
one’s proper-acceleration ~αo.
It’s traditional to approximate gravity on the surface of

the earth as simply a proper-force that is proportional to

mass m, for which ~F = m~g where ~g is a downward vector
with a magnitude of about 9.8 [m/s

2
]. This works quite

well for most applications. However unlike geometric-
forces, proper-forces are not associated with positional
time-dilation like that which must be figured into GPS
system calculations.
Just as kinetic energy in flat spacetime is related via

(dt/dτ−1)mc2 to the faster passage of map-time (t) with
respect to traveler time (τ) when simultaneity is defined
by the map-frame, so is the position-dependent potential-
energy well-depth of some geometric-forces in accelerat-
ing frames and curved spacetime. Thus (dt/dτ − 1)mc2

also describes the potential-energy well-depth for mass-
m travelers located: (i) at radius r from the axis in a
habitat rotating with angular velocity ω, which in the
low-speed limit reduces to the classical value 1

2
mω2r2;
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(ii) a distance L behind the leading edge of a spaceship
undergoing constant proper acceleration α, which in the
small L limit reduces to the classical value mαL; and

(iii) on the radius R surface of a mass M planet, which
in the R ≫ 2GM/c2 limit reduces to the classical value
of GMm/R where G is the gravitational constant.


