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A branched transport limit of the Ginzburg-Landau
functional

Sergio Conti∗ Michael Goldman† Felix Otto‡ Sylvia Serfaty§

Abstract

We study the Ginzburg-Landau model of type-I superconductors in the regime of
small external magnetic fields. We show that, in an appropriate asymptotic regime,
flux patterns are described by a simplified branched transportation functional. We
derive the simplified functional from the full Ginzburg-Landau model rigorously via
Γ-convergence. The detailed analysis of the limiting procedure and the study of the
limiting functional lead to a precise understanding of the multiple scales contained
in the model.

1 Introduction

In 1911, K. Onnes discovered the phenomenon of superconductivity, manifested in the
complete loss of resistivity of certain metals and alloys at very low temperature. W.
Meissner discovered in 1933 that this was coupled with the expulsion of the magnetic field
from the superconductor at the critical temperature. This is now called the Meissner effect.
After some preliminary works of the brothers F. and H. London, V. Ginzburg and L. Landau
proposed in 1950 a phenomenological model describing the state of a superconductor. In
their model (see (1.1) below), which belongs to Landau’s general theory of second-order
phase transitions, the state of the material is represented by the order parameter u : Ω→ C,
where Ω is the material sample. The density of superconducting electrons is then given
by ρ := |u|2. A microscopic theory of superconductivity was first proposed by Bardeen-
Cooper-Schrieffer (BCS) in 1957, and the Ginzburg-Landau model was derived from BCS
by Gorkov in 1959 (see also [FHSS12] for a rigorous derivation).

One of the main achievements of the Ginzburg-Landau theory is the prediction and the
understanding of the mixed (or intermediate) state below the critical temperature. This is a
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state in which, for moderate external magnetic fields, normal and superconducting regions
coexist. The behavior of the material in the Ginzburg-Landau theory is characterized by
two physical parameters. The first is the coherence length ξ which measures the typical
length on which u varies, the second is the penetration length λ which gives the typical
length on which the magnetic field penetrates the superconducting regions. The Ginzburg-
Landau parameter is then defined as κ := λ

ξ
. The Ginzburg-Landau functional is given

by ∫
Ω

|∇Au|2 +
κ2

2
(1− |u|2)2dx+

∫
R3

|∇ × A−Bext|2dx (1.1)

where A : R3 → R3 is the magnetic potential (so that B := ∇× A is the magnetic field),
∇Au := ∇u−iAu is the covariant derivative of u and Bext is the external magnetic field. In
these units, the penetration length λ is normalized to 1. As first observed by A. Abrikosov
this theory predicts two types of superconductors. On the one hand, when κ < 1/

√
2, there

is a positive surface tension which leads to the formation of normal and superconducting
regions corresponding to ρ ' 0 and ρ ' 1 respectively, separated by interfaces. These are
the so-called type-I superconductors. On the other hand, when κ > 1/

√
2, this surface

tension is negative and one expects to see the magnetic field penetrating the domain
through lines of vortices. These are the so-called type-II superconductors. In this paper
we are interested in better understanding the former type but we refer the interested
reader to [Tin96, SS07, Ser15] for more information about the latter type. In particular, in
that regime, there has been an intensive work on understanding the formation of regular
patterns of vortices known as Abrikosov lattices.

In type-I superconductors, it is observed experimentally [PH09, Pro07, PGPP05] that
complex patterns appear at the surface of the sample. It is believed that these patterns are
a manifestation of branching patterns inside the sample. Although the observed states are
highly history-dependent, it is argued in [CKO04, PGPP05] that the hysteresis is governed
by low-energy configurations at vanishing external magnetic field. The scaling law of the
ground-state energy was determined in [CCKO08, CKO04] for a simplified sharp interface
version of the Ginzburg-Landau functional (1.1) and in [COS16] for the full energy, these
results indicate the presence of a regime with branched patterns at low fields.

This paper aims at a better understanding of these branched patterns by going beyond
the scaling law. Starting from the full Ginzburg-Landau functional, we prove that in
the regime of vanishing external magnetic field, low energy configurations are made of
nearly one-dimensional superconducting threads branching towards the boundary of the
sample. In a more mathematical language, we prove Γ−convergence [Bra02, DM93] of
the Ginzburg-Landau functional to a kind of branched transportation functional in this
regime. We focus on the simplest geometric setting by considering the sample Ω to be a box
QL0,T := (−L0

2
, L0

2
)2 × (−T, T ) for some T, L0 > 0 and consider periodic lateral boundary

conditions. The external magnetic field is taken to be perpendicular to the sample, that
is Bext := bexte3 for some bext > 0 and where e3 is the third vector of the canonical basis
of R3. After making an isotropic rescaling, subtracting the bulk part of the energy and
dropping lower order terms (see (3.5) and the discussion after it), minimizing (1.1) can be
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seen as equivalent to minimizing

ET (u,A) :=
1

L2

∫
QL,1

|∇TAu|2 + (B3 − α(1− ρ))2 + |B′|2dx+ ‖B3 − αβ‖2
H−1/2({x3=±1}),

(1.2)

where we have let B := (B′, B3) := ∇× A,

κT :=
√

2α, bext :=
βκ√

2
and L := L0/T.

If u = ρ1/2 exp(iθ), since |∇TAu|2 = |∇ρ1/2|2 + ρ|∇θ − TA|2, in the limit T → +∞ we
obtain, at least formally, that A is a gradient field in the region where ρ > 0 and therefore
the Meissner condition ρB = 0 holds. Moreover, in the regime α � 1, from (1.2) we see
that B3 ' α(1 − ρ) and ρ takes almost only values in {0, 1}. Hence divB = 0 can be
rewritten as

∂3χ+
1

α
div′χB′ = 0,

where χ := (1− ρ) and div′ denotes the divergence with respect to the first two variables.
Therefore, from the Benamou-Brenier formulation of optimal transportation [AGS05, Vil03]
and since from the Meissner condition, B′ ' 1

χ
B′, the term∫

QL,1

|B′|2dx '
∫
QL,1

1

χ
|B′|2dx

in the energy (1.2) can be seen as a transportation cost. We thus expect that inside the
sample (this is, in QL,1), superconducting domains where ρ ' 1 and B ' 0 alternate with
normal ones where ρ ' 0 and B3 ' α. Because of the last term ‖B3−αβ‖2

H−1/2({x3=±1}) in

the energy (1.2), one expects B ' αβe3 outside the sample. This implies that close to the
boundary the normal domains have to refine. The interaction between the surface energy,
the transportation cost and the penalization of an H−1/2 norm leads to the formation of
complex patterns (see Figure 1).

It has been proven in [COS16] that in the regime T � 1, α� 1 and β � 1,

minET (u,A) ∼ min{α4/3β2/3, α10/7β} . (1.3)

The scaling minET (u,A) ∼ α4/3β2/3 (relevant for α−2/7 � β) corresponds to uniform
branching patterns whereas the scaling minET (u,A) ∼ α10/7β corresponds to non-uniform
branching ones. We focus here for definiteness on the regime minET (u,A) ∼ α4/3β2/3,
although we believe that our proof can be extended to the other one. Based on the
construction giving the upper bounds in (1.3), we expect that in the first regime there are
multiple scales appearing (see Figure 1):

penetration
length �

coherence
length �

diameter of the
threads in the bulk �

distance between the
threads in the bulk , (1.4)
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Figure 1: The various lengthscales

which amounts in our parameters to

T−1 � α−1 � α−1/3β1/3 � α−1/3β−1/6.

In order to better describe the minimizers we focus on the extreme region of the phase
diagram T, Tα−1, β−1, αβ7/2 → +∞, with L = L̃α−1/3β−1/6 for some fixed L̃ > 0. In this
regime, we have in particular α−1 � α−1/3β1/3 so that the separation of scales (1.4) holds.
We introduce an anisotropic rescaling (see Section 3) which leads to the functional

ẼT (u,A) :=
1

L̃2

[ ∫
Q
L̃,1

α−2/3β−1/3
∣∣∣∇′α1/3β−1/3TAu

∣∣∣2 + α−4/3β−2/3
∣∣(∇α1/3β−1/3TAu)3

∣∣2 (1.5)

+ α2/3β−2/3
(
B3 − (1− |u|2)

)2
+ β−1|B′|2dx+ α1/3β7/6‖β−1B3 − 1‖2

H−1/2(x3=±1)

]
.

Our main result is a Γ−convergence result of the functional ẼT towards a functional defined
on measures µ living on one-dimensional trees. These trees correspond to the normal
regions in which ρ ' 0 and where the magnetic field B penetrates the sample. Roughly
speaking, if for a.e. x3 ∈ (−1, 1) the slice of µ = µx3 ⊗ dx3 has the form µx3 =

∑
i ϕiδXi(x3)

where the sum is at most countable, then we let (see Section 5 for a precise definition)

I(µ) :=
1

L̃2

∫ 1

−1

K∗
∑
i

√
ϕi + ϕi|Ẋi|2dx3, (1.6)
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where K∗ = 8
√
π/3 and Ẋi denotes the derivative (with respect to x3) of Xi(x3). The

Xi’s represent the graphs of each branch of the tree (parametrized by height) and the ϕi’s
represent the flux carried by the branch. We can now state our main result

Theorem 1.1. Let Tn, αn, β
−1
n → +∞ with Tnα

−1
n , αnβ

7/2
n → +∞, L̃ > 0, then:

(i). For every sequence (un, An) with supn ẼT (un, An) < +∞, up to subsequence , β−1
n (1−

|un|2) weakly converges to a measure µ of the form µ = µx3⊗dx3 with µx3 =
∑

i ϕiδXi
for a.e. x3 ∈ (−1, 1), µx3 ⇀ dx′ (where dx′ denotes the two dimensional Lebesgue
measure on QL̃) when x3 → ±1 and such that

lim inf
n→+∞

ẼT (un, An) ≥ I(µ).

(ii). If in addition L2
nαnβnTn ∈ 2πZ, where Ln := L̃α

−1/3
n β

−1/6
n , then for every measure µ

such that I(µ) < +∞ and µx3 ⇀ dx′ as x3 → ±1 , there exists (un, An) such that
β−1
n (1− |un|2) ⇀ µ and

lim sup
n→+∞

ẼT (un, An) ≤ I(µ).

Proof. By scaling, it suffices to consider the case L̃ = 1. The first assertion follows from
Proposition 6.1, the second one from Proposition 7.1.

Let us stress once again that our result could have been equivalently stated for the full
Ginzburg-Landau energy (1.1) instead of ẼT (see Section 3).
Within our periodic setting, the quantization condition L2

nαnβnTn ∈ 2πZ for the flux is a
consequence of the fact that the phase circulation of the complex-valued function in the
original problem is naturally quantized. It is necessary in order to make our construction
but we believe that it is also a necessary condition for having sequences of bounded energy
(see the discussion in Section 3 and the construction in Section 7.3). We remark that scal-
ing back to the original variables this condition is the physically natural one L2

0bext ∈ 2πZ.

Before going into the proof of Theorem 1.1 we address the limiting functional I(µ),
which has many similarities with irrigation (or branched transportation) models that have
recently attracted a lot of attention (see [BCM09] and more detailed comments in Section
5.4 or the recent papers [BW15, BRW16] where the connection is also made to some urban
planning models). In Section 5, we first prove that the variational problem for this limiting
functional is well-posed (Proposition 5.5) and show a scaling law for it (Proposition 5.2
and Proposition 5.3). In Proposition 5.7, we define the notion of subsystems which allows
us to remove part of the mass carried by the branching measure. This notion is at the basis
of Lemma 5.8 and Proposition 5.11 which show that minimizers contain no loops and that
far from the boundary, they are made of a finite number of branches. From the no-loop
property, we easily deduce Proposition 5.10 which is a regularity result for minimizers of
I. The main result of Section 5 is Theorem 5.15 which proves the density of “regular”
measures in the topology given by the energy I(µ). As in nearly every Γ−convergence
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result, such a property is crucial in order to implement the construction for the upper
bound (ii).

We now comment on the proof of Theorem 1.1. Let us first point out that if the
Meissner condition ρB = 0 were to hold, and A could be written as a gradient field in the
set {ρ > 0}, then |∇TAu|2 = |∇ρ1/2|2 and we would have∫
QL,1

|∇TAu|2 + (B3 − α(1− ρ))2 dx =

∫
QL,1

|∇ρ1/2|2 + α2χρ>0(1− ρ)2 + χρ=0(B3 − α)2dx.

(1.7)
This is a Modica-Mortola [Mod87] type of functional with a degenerate double-well po-
tential given by W (ρ) := χρ>0(1 − ρ)2. Thanks to Lemma 6.2, one can control how far
we are from satisfying the Meissner condition. From this, we deduce that (1.7) almost
holds (see Lemma 6.5). This implies that the Ginzburg-Landau energy gives a control
over the perimeter of the superconducting region {ρ > 0}. In addition, β � 1 imposes a
small cross-area fraction for {ρ > 0}. Using then isoperimetric effects to get convergence
to one-dimensional objects (see Lemma 6.6), we may use Proposition 6.1 to conclude the
proof of (i).

In order to prove (ii), thanks to the density result in Theorem 5.15, it is enough to
consider regular measures. Given such a measure µ, we first approximate it with quantized
measures (Lemma 5.18). Far from branching points the construction is easy (see Lemma
7.3). At a branching point, we need to pass from one disk to two (or vice-versa); this is
done passing through rectangles (see Lemma 7.6 and Figure 3). Close to the boundary we
use instead the construction from [COS16], which explicitly generates a specific branching
pattern with the optimal energy scaling; since the height over which this is done is small
the prefactor is not relevant here (Proposition 7.7). The last step is to define a phase and
a magnetic potential to get back to the full Ginzburg-Landau functional. This is possible
since we made the construction with the Meissner condition and quantized fluxes enforced,
see Proposition 7.8.

From (1.2) and the discussion around (1.7), for type-I superconductors, the Ginzburg-
Landau functional can be seen as a non-convex, non-local (in u) functional favoring oscil-
lations, regularized by a surface term which selects the lengthscales of the microstructures.
The appearance of branched structures for this type of problem is shared by many other
functionals appearing in material sciences such as shape memory alloys [KM92, KM94,
Con00, KKO13, BG15, Zwi14, CC15, CZ16], uniaxial ferromagnets [CKO99, OV10, KM11]
and blistered thin films [BCDM00, JS01, BCDM02]. Most of the previously cited results
on branching patterns (including [CCKO08, CKO04, COS16] for type-I superconductors)
focus on scaling laws. Here, as in [OV10, CDZ17], we go one step further and prove that,
after a suitable anisotropic rescaling, configurations of low energy converge to branched
patterns. The two main difficulties in our model with respect to the one studied in [OV10]
are the presence of an additional lengthscale (the penetration length) and its sharp limit
counterpart, the Meissner condition ρB = 0 which gives a nonlinear coupling between u
and B. Let us point out that for the Kohn-Müller model [KM92, KM94], a much stronger
result is known, namely that minimizers are asymptotically self-similar [Con00] (see also
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[Vie09, ACO09] for related results). In [Gol17], the optimal microstructures for a two-
dimensional analogue of I(µ) are exactly computed.

The paper is organized as follows. In section 2, we set some notation and recall some no-
tions from optimal transport theory. In Section 3, we recall the definition of the Ginzburg-
Landau functional together with various important quantities such as the superconducting
current. We also introduce there the anisotropic rescaling leading to the functional ẼT . In
Section 4, we introduce for the sake of clarity intermediate functionals corresponding to
the different scales of the problem. Let us stress that we will not use them in the rest of
the paper but strongly believe that they help understanding the structure of the problem.
In Section 5, we carefuly define the limiting functional I(µ) and study its properties. In
particular we recover a scaling law for the minimization problem and prove regularity of
the minimizers. We then prove the density in energy of ’regular’ measures. This is a cru-
cial result for the main Γ− convergence result which is proven in the last two sections. As
customary, we first prove the lower bound in Section 6 and then make the upper bound
construction in Section 7.

2 Notation and preliminary results

In the paper we will use the following notation. The symbols ∼, &, . indicate estimates
that hold up to a global constant. For instance, f . g denotes the existence of a constant
C > 0 such that f ≤ Cg, f ∼ g means f . g and g . f . In heuristic arguments we use
a ' b to indicate that a is close (in a not precisely specified sense) to b. We use a prime to
indicate the first two components of a vector in R3, and identify R2 with R2 × {0} ⊆ R3.
Precisely, for a ∈ R3 we write a′ = (a1, a2, 0) ∈ R2 ⊆ R3; given two vectors a, b ∈ R3

we write a′ × b′ = (a × b)3 = (a′ × b′)3. We denote by (e1, e2, e3) the canonical basis of
R3. For L > 0 and T > 0, QL := (−L

2
, L

2
)2 and QL,T := QL × (−T, T ). For a function f

defined on QL,T , we denote fx3 the function fx3(x
′) := f(x′, x3) and we analogously define

for Ω ⊆ QL,T , the set Ωx3 . For x = (x′, x3) and r > 0 we let Br(x) = B(x, r) be the ball
of radius r centered at x (in R3) and B′r(x′) = B′(x′, r) be the analogue two-dimensional
ball centered at x′. Unless specified otherwise, all the functions and measures we will
consider are periodic in the x′ variable, i.e., we identify QL with the torus R2/LZ2. In
particular, for x′, y′ ∈ QL, |x′ − y′| denotes the distance for the metric of the torus, i.e.,
|x′−y′| := mink∈Z2 |x′−y′+Lk|. We denote by Hk the k−dimensional Hausdorff measure.
We let P(QL) be the space of probability measures on QL and M(QL,T ) be the space of
finite Radon measures on QL,T , and similarly M(QL). Analogously, we define M+(QL,T )
andM+(QL) as the spaces of finite Radon measures which are also positive. For a measure
µ and a function f , we denote by f]µ the push-forward of µ by f .

We recall the definition of the (homogeneous) H−1/2 norm of a function f ∈ L2(QL)
with

∫
QL
fdx′ = 0,

‖f‖2
H−1/2 := inf

{∫
QL×[0,+∞)

|B|2dx : divB = 0, B3(·, 0) = f

}
, (2.1)
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which can be alternatively given in term of the two-dimensional Fourier series as (see, e.g.,
[CKO04])

‖f‖2
H−1/2 =

1

2π

∑
k′∈( 2π

L
Z)

2
\{0}

|f̂(k′)|2

|k′|
.

We shall write ‖f‖2
H−1/2(QL×{±T})

for ‖f‖2
H−1/2(QL×{T})

+ ‖f‖2
H−1/2(QL×{−T})

.

The 2-Wasserstein distance between two measures µ and ν ∈ M+(QL) with µ(QL) =
ν(QL) is given by

W 2
2 (µ, ν) := min

{
µ(QL)

∫
QL×QL

|x− y|2 dΠ(x, y) : Π1 = µ, Π2 = ν

}
,

where the minimum is taken over measures on QL × QL and Π1 and Π2 are the first and
second marginal of Π1, respectively. For measures µ, ν ∈ M+(QL,T ), the 2-Wasserstein
distance is correspondingly defined. We now introduce some notions from metric analysis,
see [AGS05, Vil03] for more detail. A curve µ : (a, b) → P(QL), z 7→ µz belongs to
AC2(a, b) (where AC stands for absolutely continuous) if there exists m ∈ L2(a, b) such
that

W2(µz, µz̃) ≤
∫ z̃

z

m(t)dt ∀a < z ≤ z̃ < b. (2.2)

For any such curve, the speed

|µ′|(z) := lim
z̃→z

W2(µz̃, µz)

|z − z̃|

exists for H1−a.e. z ∈ (a, b) and |µ′|(z) ≤ m(z) for H1-a.e. z ∈ (a, b) for every admissible
m in (2.2). Further, there exists a Borel vector field B such that

B(·, z) ∈ L2(QL, µz), ‖B(·, z)‖L2(QL,µz) ≤ |µ′|(z) for H1-a.e. z ∈ (a, b) (2.3)

and the continuity equation
∂3µz + div′(Bµz) = 0 (2.4)

holds in the sense of distributions [AGS05, Th. 8.3.1]. Conversely, if a weakly continuous
curve µz : (a, b)→ P(QL) satisfies the continuity equation (2.4) for some Borel vector field
B with ‖B(·, z)‖L2(QL,µz) ∈ L2(a, b) then µ ∈ AC2(a, b) and |µ′|(z) ≤ ‖B(·, z)‖L2(QL,µz) for
H1-a.e. z ∈ (a, b). In particular, we have

W 2
2 (ν, ν̂) = min

µ,B

{
2T

∫
QL,T

|B|2dµzdz : µ−T = ν, µT = ν̂ and (2.4) holds

}
, (2.5)

where by scaling the right-hand side does not depend on T .

1for p ≥ 1, we analogously defineW p
p (µ, ν) := min

{
µ(QL)

∫
QL×QL

|x− y|p dΠ(x, y) : Π1 = µ, Π2 = ν
}

.
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For a (signed) measure µ ∈M(QL), we define the Bounded-Lipschitz norm of µ as

‖µ‖BL := sup
‖ψ‖Lip≤1

∫
QL

ψdµ, (2.6)

where for a QL−periodic and Lipschitz continuous function ψ, ‖ψ‖Lip := ‖ψ‖∞ + ‖∇ψ‖∞.
By the Kantorovich-Rubinstein Theorem [Vil03, Th. 1.14], the 1−Wasserstein and the
Bounded-Lipschitz norm are equivalent.

3 The Ginzburg-Landau functional

In this section we recall some background material concerning the Ginzburg-Landau func-
tional and introduce the anisotropic rescaling leading to ẼT .
For a (non necessarily periodic) function u : QL0,T → C, called the order parameter, and a
vector potential A : QL0 ×R→ R3 (also not necessarily periodic), we define the covariant
derivative

∇Au := ∇u− iAu,

the magnetic field
B := ∇× A,

and the superconducting current

jA :=
1

2

(
−iū(∇Au) + iu(∇Au)

)
= Im(iu∇Au) . (3.1)

Let us first notice that |∇Au|2 and the observable quantities ρ, B and jA are invariant
under change of gauge. That is, if we replace u by ueiϕ and A by A+∇ϕ for any function
ϕ, they remain unchanged. We also point out that if u is written in polar coordinates as
u = ρ1/2eiθ, then

|∇Au|2 = |∇ρ1/2|2 + ρ|∇θ − A|2.

For any admissible pair (u,A), that is such that ρ, B and jA are QL0-periodic, we define
the Ginzburg-Landau functional as

EGL(u,A) :=

∫
QL0,T

|∇Au|2 +
κ2

2
(1− |u|2)2dx+

∫
QL0
×R
|∇ × A−Bext|2dx .

We remark that u and A need not be (and, if Bext 6= 0, cannot be) periodic. See [COS16]
for more details on the functional spaces we are using. Here Bext := bexte3 is the external
magnetic field and κ ∈ (0, 1/

√
2) is a material constant, called the Ginzburg-Landau

parameter. From periodicity and divB = 0 it follows that
∫
QL0
×{x3}B3 dx

′ does not depend

on x3 and therefore, if the energy is finite, necessarily∫
QL0
×{x3}

B3 dx
′ = L2

0bext for all x3 ∈ R . (3.2)
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We first remove the bulk part from the energy EGL. In order to do so, we introduce the
quantity

D3
Au := (∂2u− iA2u)− i(∂1u− iA1u) = (∇Au)2 − i(∇Au)1

and, more generally,

DkAu := (∂k+2u− iAk+2u)− i(∂k+1u− iAk+1u) = (∇Au)k+2 − i(∇Au)k+1 ,

where components are understood cyclically (i.e., ak = ak+3). The operator DA (which
corresponds to a creation operator for a magnetic Laplacian) was used by Bogomol’nyi in
the proof of the self-duality of the Ginzburg-Landau functional at κ = 1√

2
(cf. e.g. [JT80]).

His proof relied on identities similar to the next ones, which will be crucial in enabling us
to separate the leading order part of the energy.

Expanding the squares, one sees (for details see [COS16, Lem. 2.1]) that (recall that
ρ := |u|2)

|∇′Au|2 = |D3
Au|2 + ρB3 +∇′ × j′A (3.3)

and, for any k = 1, 2, 3,

|(∇Au)k+1|2 + |(∇Au)k+2|2 = |DkAu|2 + ρBk + (∇× jA)k . (3.4)

This implies

|∇′Au|2 = (1− κ
√

2)|∇′Au|2 + κ
√

2|D3
Au|2 + κ

√
2ρB3 + κ

√
2∇′ × j′A .

The last term integrates to zero by the periodicity of jA. Therefore, for each fixed x3, using
(3.2), we have∫
QL0

|∇′Au|2 dx′ =
∫
QL0

(1− κ
√

2)|∇′Au|2 + κ
√

2|D3
Au|2 + κ

√
2(ρ− 1)B3 dx

′ + L2
0κ
√

2bext .

We substitute and obtain, using
∫
QL0

(B3 − bext)
2dx′ =

∫
QL0

B2
3 − b2

extdx
′ and completing

squares,

EGL(u,A) = 2TL2
0

(
κ
√

2bext − b2
ext

)
+ E(u,A) + κ

√
2

∫
QL0,T

|D3
Au|2 − |∇′Au|2dx, (3.5)

where

E(u,A) :=

∫
QL0,T

|∇Au|2 +

(
B3 −

κ√
2

(1− ρ)

)2

dx

+

∫
QL0
×R
|B′|2dx+

∫
QL0
×(R\(−T,T ))

(B3 − bext)
2dx .

In particular, the bulk energy is 2L0
2T (κ

√
2bext − b2

ext). Since we are interested in the
regime κ� 1 and since |D3

Au|2 ≤ 2|∇′Au|2, the contribution of the last term in (3.5) to the

10



energy is (asymptotically) negligible with respect to the first term in E, and therefore it
can be ignored in the following.

Applying (2.1) to B− bexte3 and minimizing outside QL0× [−T, T ] if necessary, the last
two terms in E(u,A) can be replaced by∫

QL0,T

|B′|2dx+ ‖B3 − bext‖2
H−1/2({x3=T}) + ‖B3 − bext‖2

H−1/2({x3=−T}) ,

so that E(u,A) becomes

E(u,A) =

∫
QL0,T

|∇Au|2+

(
B3 −

κ√
2

(1− ρ)

)2

+|B′|2dx+‖B3−bext‖2
H−1/2({x3=±T}) . (3.6)

Let us notice that the normal solution ρ = 0, B = bexte3 (for which we can take
A(x1, x2, x3) = bextx1e2) is always admissible but has energy equal to

EGL(u,A) = L2
0Tκ

2 � 2L2
0T (κ

√
2bext − b2

ext),

in the regime κ� bext that we consider here.
The following scaling law is established in [COS16].

Theorem 3.1. For bext < κ/8, κ ≤ 1/2, κT ≥ 1, L0 sufficiently large, if the quantization
condition

bextL
2
0 ∈ 2πZ, (3.7)

holds then
minE(u,A) ∼ min

{
b

2/3
extκ

2/3T 1/3, bextκ
3/7T 3/7

}
L2

0. (3.8)

We believe that (3.7) is also a necessary condition for (3.8) to hold. Indeed, we expect
that if (u,A) is such that

E(u,A) .
{
b

2/3
extκ

2/3T 1/3L2
0, bextκ

3/7T 3/7L2
0

}
,

then the normal phase ρ ' 0 is the minority phase (typically disconnected on every
slice) and there exist x3 ∈ (−T, T ) and (periodic) curves γ1 and γ2 such that Γ1 :=
{(γ1(s), s, x3) : s ∈ [0, 1]} ⊆ {ρ ' 1} and Γ2 := {(s, γ2(s), x3) : s ∈ [0, 1]} ⊆ {ρ ' 1},
with γi(1) = γi(0) + L0ei. If this holds then using Stokes Theorem on large domains the
boundary of which is made of concatenations of the curves Γi, it is possible to prove that
(3.7) must hold. As in [COS16], we will need to assume (3.7) in order to build the recovery
sequence in Section 7.3.

The first regime in (3.8) corresponds to uniform branching patterns while the second
corresponds to well separated branching trees (see [CCKO08, CKO04, COS16]). We focus
here on the first regime, that is κ5/7 � bextT

2/7, and replace κ and bext by the variables α,
β, defined according to

κT =
√

2α bext =
βκ√

2
=
αβ

T
,

and then rescale

11



x̂ := x/T , L := L0/T ,

û(x̂) := u(x), Â(x̂) := A(x)

ET (û, Â) := 1
TL2E(u,A),

so that in particular B̂(x̂) = ∇̂×Â(x̂) = TB(x) and∇Au(x) = T−1∇̂û(x/T )−iÂ(x/T )û(x/T ).
Changing variables and removing the hats yields

ET (u,A) =
1

L2

(∫
QL,1

|∇TAu|2 + (B3 − α(1− ρ))2 + |B′|2dx+ ‖B3 − αβ‖2
H−1/2({x3=±1})

)
.

as was anticipated in (1.2). In these new variables, the scaling law (3.8) becomes ET ∼
min{α4/3β2/3, α10/7β} and the uniform branching regime corresponds to ET ∼ α4/3β2/3

which amounts to α−2/7 � β � 1, see also (1.3). Constructions (leading to the upper
bounds in [COS16, CKO04, CCKO08]), suggest that in this regime, typically, the pene-
tration length of the magnetic field inside the superconducting regions is of the order of
T−1, the coherence length (or domain walls) is of the order of α−1, the width of the normal
domains in the bulk is of the order of α−1/3β1/3 and their separation of order α−1/3β−1/6.
These various lengthscales motivate the anisotropic rescalings that we will introduce in
Section 4.

In closing this section we present the anisotropic rescaling that will lead to the functional
defined in (1.5), postponing to the next section a detailed explanation of its motivation.
We set for x ∈ QL,1,(

x̃′

x̃3

)
:=

(
α1/3β1/6x′

x3

)
, L̃ := α1/3β1/6L,(

Ã′

Ã3

)
(x̃) :=

(
α−2/3β1/6A′

α−1/3β1/3A3

)
(x), ũ(x̃) := u(x),

to get B̃3(x̃) = α−1B3(x), B̃′(x̃) = α−2/3β1/6B′(x) inside the sample. Outside the sample,
i.e. for |x3| ≥ 1, we make the isotropic rescaling x̃ := ±e3 + α1/3β1/6(x ∓ e3) to get

B̃(x̃) = α−1B(x). A straightforward computation leads to ẼT (ũ, Ã) = α−4/3β−2/3ET (u,A),
where

ẼT (u,A) :=
1

L̃2

[ ∫
Q
L̃,1

α−2/3β−1/3
∣∣∣∇′α1/3β−1/3TAu

∣∣∣2 + α−4/3β−2/3
∣∣(∇α1/3β−1/3TAu)3

∣∣2
+ α2/3β−2/3

(
B3 − (1− |u|2)

)2
+ β−1|B′|2dx+ α1/3β7/6‖β−1B3 − 1‖2

H−1/2(x3=±1)

]
,

with ∇ × A = B (and in particular divB = 0). We assume that L̃ is a fixed quantity of

order 1. For simplicity of notation, the detailed analysis is done only for the case L̃ = 1.
Let us point out that in these units, the penetration length is of order T−1α1/3β1/6, the
coherence length of order α−2/3β1/6, the width of the normal domains in the bulk of order
β1/2 and the distance between the threads of order one. That is, the scale separation (1.4)
reads now

T−1α1/3β1/6 � α−2/3β1/6 � β1/2 � 1. (3.9)
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4 The intermediate functionals

In this section we explain the origin of the rescaling leading from ET to ẼT , and the
different functionals which appear at different scales. This material is not needed for the
proofs but we think it is important to illustrate the meaning of our results. We carry out
the scalings in detail but the relations between the functionals are here discussed only at
a heuristic level.

We want to successively send T → +∞, α → +∞ and β → 0. For this we are going
to introduce a hierarchy of models starting from ET (u,A) and finishing at I(µ). When
sending first T → +∞ with fixed α and β, the functional ET approximates

Fα,β(ρ,B) :=
1

L2

(∫
QL,1

|∇ρ1/2|2 + (B3 − α(1− ρ))2 + |B′|2dx+ ‖B3 − αβ‖2
H−1/2(x3=±1)

)
,

with the constraints
divB = 0 and ρB = 0. (4.1)

The main difference between ET and Fα,β is that for the latter, since the penetration length
(which corresponds to T−1) was sent to zero, the Meissner condition (4.1) is enforced. We
now want to send the coherence length (of order α−1) to zero at fixed β, while keeping
superconducting domains of finite size. Since the typical domain diameter is of order
α−1/3β1/3 and their distance is of order α−1/3β−1/6, we are led to the anisotropic rescaling:(

x̂′

x̂3

)
:=

(
α1/3x′

x3

)
, L̂ := α1/3L,(

B̂′

B̂3

)
(x̂) :=

(
α−2/3B′

α−1B3

)
(x), ρ̂(x̂) := ρ(x),

F̂α,β = α−4/3Fα,β.

In these variables, the coherence length is of order α−2/3 � 1 (at least horizontally) while
the diameter of the normal domains is of order β1/3 and their separation of order β−1/6.
Dropping the hats (we just keep them on the functional and on L to avoid confusion) we
obtain

F̂α,β(ρ,B) :=
1

L̂2

(∫
Q
L̂,1

α−2/3

∣∣∣∣( ∇′ρ1/2

α−1/3∂3ρ
1/2

)∣∣∣∣2 + α2/3 (B3 − (1− ρ))2 + |B′|2dx

+α1/3‖B3 − β‖2
H−1/2(x3=±1)

)
,

with the constraints (4.1). The scaling of Theorem 3.1 indicates that F̂α,β behaves as
min{β2/3, α2/21β} which is of order β2/3 if α � 1 and β is fixed. We remark that, letting
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η := α−1/3 and δ := η2 = α−2/3, one has

F̂α,β(ρ,B) =
1

L̂2

(∫
Q
L̂,1

δ

∣∣∣∣(∇′ρ1/2

η∂3ρ
1/2

)∣∣∣∣2 +
1

δ
(B3 − (1− ρ))2 + |B′|2dx

+η−1‖B3 − β‖2
H−1/2(x3=±1)

)
.

In this form, F̂α,β(ρ,B) is very reminiscent of the functional studied in [OV10]. Notice
however that besides the Meissner condition which makes our functional more rigid, the
scaling δ = η2 is borderline for the analysis in [OV10].

Recalling that (B3 − (1− ρ))2 = χρ>0(1 − ρ)2, the corresponding term in F̂α,β has

the form of a double well-potential, and so in the limit α → +∞ the functional F̂α,β
approximates

Gβ(χ,B′) :=
1

L̂2

(∫
Q
L̂,1

4

3
|D′χ|+ |B′|2dx

)
,

with the constraints χ ∈ {0, 1}, χ(·, x3) ⇀ βdx′ when x3 → ±1 and

∂3χ+ div′B′ = 0 and χB′ = B′.

This is similar to the simplified sharp-interface functional that was studied in [CKO04,
CCKO08]. In the definition of Gβ, we used the notation∫

Q
L̂,1

|D′u| := sup
ξ∈C∞(Q

L̂,1
),

|ξ|∞≤1

∫
Q
L̂,1

udiv′ξ dx,

for the horizontal BV norm of a function u ∈ L1(QL̂,1). By definition it is lower semicon-

tinuous for the L1 convergence and it is not hard to check that if we let ux3(x
′) := u(x′, x3),

then ∫
Q
L̂,1

|D′u| =
∫ 1

−1

(∫
Q
L̂

|D′ux3|

)
dx3,

where
∫
Q
L̂
|D′ux3| is the usual BV norm of ux3 in QL̂ [AFP00]. From this and the usual

co-area formula [AFP00, Th. 3.40], we infer that∫
Q
L̂,1

|D′u| =
∫
R

∫ 1

−1

H1(∂{ux3 > s})dx3ds. (4.2)

In (4.2), ∂{ux3 > s} represents the measure-theoretic boundary of {ux3 > s} in QL̂.
We finally want to send the volume fraction of the normal phase to zero and introduce

the last rescaling in β for which we let
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(
x̃′

x̃3

)
:=

(
β1/6x′

x3

)
, L̃ := β1/6L̂,

B̃′(x̃) := β1/6B′(x) χ̃(x̃) := β−1χ(x),

G̃β := β−2/3Gβ.

After this last rescaling, the domain width is of order β1/2 � 1, the separation between
domains of order 1. We obtain (dropping the tildas again) the order-one functional

G̃β(χ,B′) :=
1

L̃2

∫
Q
L̃,1

4

3
β1/2|D′χ|+ χ|B′|2dx

under the constraints χ ∈ {0, β−1}, χ(·, x3) ⇀ dx′ when x3 → ±1, and

∂3χ+ div′(χB′) = 0 and χB′ = β−1B′.

This functional converges to I(µ) as β → 0.

Let us point out that since we are actually passing directly from the functional ẼT to
I in Theorem 1.1, we are covering the whole parameter regime of interest. In particular,
our result looks at first sight stronger than passing first from ET to Fα,β, then from F̂α,β to

Gβ and finally from G̃β to I. However, because of the Meissner condition, we do not have
a proof of density of smooth objects for Fα,β and Gβ. Because of this, we do not obtain
the Γ−convergence of the intermediate functionals (the upper bound is missing).

5 The limiting energy

Before proving the Γ-limit we study the limiting functional I that was mentioned in (1.6)
and motivated in the previous section. We give here a self-contained treatment of the
functional I, which is motivated by the analysis discussed above, and will be crucial in the
proofs that follow. However, in this discussion we do not make use of the relation to the
Ginzburg-Landau functional.

Definition 5.1. For L, T > 0 we denote by AL,T the set of pairs of measures µ ∈
M+(QL,T ), m ∈M(QL,T ;R2) with m� µ, satisfying the continuity equation

∂3µ+ div′m = 0 in QL,T , (5.1)

and such that µ = µx3 ⊗ dx3 where, for a.e. x3 ∈ (−T, T ), µx3 =
∑

i ϕiδXi for some ϕi > 0
and Xi ∈ QL. We denote by A∗L,T := {µ : ∃m, (µ,m) ∈ AL,T} the set of admissible µ.

We define the functional I : AL,T → [0,+∞] by

I(µ,m) :=
K∗
L2

∫ T

−T

∑
x′∈QL

(µx3(x
′))

1/2
dx3 +

1

L2

∫
QL,T

(
dm

dµ

)2

dµ, (5.2)

where K∗ := 8
√
π

3
and (with abuse of notation) I : A∗L,T → [0,∞] by

I(µ) := min{I(µ,m) : m� µ, ∂3µ+ div′m = 0}. (5.3)
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Condition (5.1) is understood in a QL-periodic sense, i.e., for any ψ ∈ C1(R3) which
is QL-periodic and vanishes outside R2 × (0, T ) one has

∫
QL,T

∂3ψdµ + ∇′ψ · dm = 0. If

µx3 =
∑

i ϕiδXi then
∑

x′∈QL (µx3(x
′))1/2 =

∑
i ϕ

1/2
i . Because of (5.1), µx3(QL) does not

depend on x3.
Let us point out that the minimum in (5.3) is attained thanks to (2.3). Moreover, the

minimizer is unique by strict convexity of m →
∫
QL,T

(
dm
dµ

)2

dµ. As proven in Lemma 5.9

below, if µ is made of a finite union of curves then there is actually only one admissible
measure m for (5.3). More generally, Since every measure µ with finite energy is rectifiable
(see Corollary 5.20), we believe that it is actually always the case. For µ an admissible
measure and z, z̃ ∈ [−T, T ], we let

I(z,z̃)(µ) :=
K∗
L2

∫ z̃

z

∑
x′∈QL

(µx3(x
′))

1/2
dx3 +

1

L2

∫
QL×[z,z̃]

(
dm

dµ

)2

dµ, (5.4)

where m is the optimal measure for µ on [z, z̃] (which coincides with the restriction to [z, z̃]
of the optimal measure on [−T, T ]).

From (2.5) one immediately deduces for every measure µ, and every x3, x̃3 ∈ [−T, T ],
the following estimate on the Wasserstein distance

W 2
2 (µx3 , µx̃3) ≤ L2I(µ)|x3 − x̃3|. (5.5)

In particular for every measure µ with I(µ) < +∞, the curve x3 7→ µx3 is Hölder continuous
with exponent 1/2 inM+(QL) (endowed with the metric W2) and the traces µ±T are well
defined.

5.1 Existence of minimizers

Given two measures µ̄± in M+(QL) with µ̄+(QL) = µ̄−(QL), we are interested in the
variational problem

inf {I(µ) : µ±T = µ̄±} . (5.6)

We first prove that any pair of measures with equal flux can be connected with finite cost
and that there always exists a minimizer. The construction is a branching construction
which gives the expected scaling (see [CCKO08, COS16]) if the boundary data is such that
µ̄+ = µ̄−.

Proposition 5.2. For every pair of measures µ̄± ∈M+(QL) with µ̄+(QL) = µ̄−(QL) = Φ,
there is µ ∈ A∗L,T such that µ±T = µ̄± and

I(µ) .
TΦ1/2

L2
+

Φ

T
.

If µ̄+ = µ̄−, then there is a construction with

I(µ) .
TΦ1/2

L2
+
T 1/3Φ2/3

L4/3
,
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and such that the slice at x3 = 0 is given by µ0 = ΦN−2
∑

j δXj , with Xj the N2 points in

[−L/2, L/2)2 ∩ ((L/N)Z)2, and N := b1 + Φ1/6L2/3/T 2/3c. The measure µ is supported on
countably many segments, which only meet at triple points.

Proof. By periodicity we can work on [0, L)2 instead of [−L/2, L/2)2. We first perform the
construction for x3 ≥ 0. The idea is to approximate µ̄+ by linear combinations of Dirac
masses, which become finer and finer as x3 approaches T . Fix N ∈ N, chosen below. For
n ∈ N, fix x3,n := T (1 − 3−n), and let Tn := x3,n − x3,n−1 = 2

3n
T be the distance between

two consecutive planes. At level x3,n we partition QL into squares of side length Ln := L
2nN

.
More precisely, for i, j = 0, ..., 2nN − 1, we let x′ij,n := (Ln i, Ln j) be a corner of the square
Qij,n := x′ij,n + [0, Ln)2, and we let Φij,n := µ̄+(Qij,n) be the flux associated to this square.

We define the measures µbr and mbr (here the suffix br stands for branching) by

µbr
x3

:=
∑
ij

Φij,nδXij,n(x3) and mbr
x3

:=
∑
ij

dXij,n

dx3

(x3)Φij,nδXij,n(x3) for x3 ∈ [x3,n−1, x3,n),

where Xij,n : [x3,n−1, x3,n]→ QL is a piecewise affine function such that Xij,n(x3,n) = x′ij,n,
Xij,n(x3,n− 1

2
Tn) = x′i∗j,n, and Xij,n(x3,n−1) = x′i∗j∗,n, where i∗ = 2bi/2c, j∗ = 2bj/2c. Four

such curves end in every i∗, j∗ (which corresponds to the pair i∗/2, j∗/2 at level n − 1),
but they are pairwise superimposed for x3 ∈ [x3,n−1, x3,n− 1

2
Tn], therefore all junctions are

triple points (one curve goes in, two go out).
Using that

∑
ij Φij,n = Φ and

∑
ij

√
Φij,n ≤ (

∑
ij Φij,n)1/2(

∑
ij 1)1/2 = Φ1/22nN , we get

that the energy of µbr is given by

I(µbr) =
1

L2

+∞∑
n=1

∑
ij

(
K∗Tn

√
Φij,n + Φij,nTn

2L2
n

T 2
n

)

. L−2TNΦ1/2

+∞∑
n=0

(
2

3

)n
+

Φ

TN2

+∞∑
n=0

(
3

4

)n
.

If we choose N = 1, then there is only one point in the central plane, µ0 = Φδ0. Therefore
the top and bottom constructions can be carried out independently, since by assumption
the total flux is conserved, and we obtain the first assertion.

If µ̄+ = µ̄−, we can choose the value of N which makes the energy minimal. Up to
constants this is the value given in the statement. Inserting in the estimate above gives
the second assertion.

If the boundary densities are maximally spread, in the sense that they are given by the
Lebesgue measure, the scaling is optimal, as the following lower bound shows.

Proposition 5.3. For every measure µ ∈ A∗L,T such that µ±T = ΦL−2dx′ one has

I(µ) &
TΦ1/2

L2
+
T 1/3Φ2/3

L4/3
. (5.7)
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Proof. The bound I(µ) ≥ L−2TΦ1/2 follows at once from the subadditivity of the square
root. Hence we only need to prove the other one. We give two proofs of this bound. The
first uses only elementary tools while the second is based on an interpolation inequality.

First proof: Let I := I(µ, vµ), where v := dm/dµ. Fix λ > 0, chosen below. Choose
x3 ∈ (−T, T ) such that µx3 =

∑
i ϕiδXi obeys∑

i

ϕ
1/2
i ≤ L2I

T
. (5.8)

For some set I ⊆ N to be chosen below, let ψ : QL → R be a mollification of the function
max{(λ − dist(x′, Xi))+ : i ∈ I}, where as usual the distance is interpreted periodically.
By the divergence condition,∫

QL

ψdµx3 =
Φ

L2

∫
QL

ψdx′ +

∫ x3

−T

∫
QL

∇′ψ · vdµ

(to prove this, pick ξε ∈ C1
c ((−T, x3)) which converge pointwise to 1 and use ξεψ as a test

function in (5.1) and then pass to the limit). Since |∇′ψ| ≤ 1,∑
i∈I

λϕi ≤
Φ

L2

∑
i∈I

π

3
λ3 +

∫ x3

−T

∫
QL

|v|dµ ≤ Φ

L2

∑
i∈I

πλ3 + L(TΦ)1/2I1/2,

where in the second step we used Hölder’s inequality and flux conservation. We choose
I = {i ∈ N : ϕi ≥ 4Φλ2/L2}. From the definition of I, we have

Φ

L2

∑
i∈I

πλ3 ≤ π

4

∑
i∈I

λϕi.

Therefore, since π < 4, we obtain∑
i∈I

λϕi . L(TΦI)1/2 . (5.9)

At the same time, again by the definition of I and (5.8),∑
i 6∈I

ϕi ≤
2λΦ1/2

L

∑
i 6∈I

ϕ
1/2
i ≤ 2λLΦ1/2 I

T
. (5.10)

Adding (5.9) and (5.10), we obtain∑
i∈I

ϕi .
1

λ
L(TΦI)1/2 + λLΦ1/2 I

T
,

hence

Φ1/2 .
1

λ
L(TI)1/2 + λL

I

T
,
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and optimizing over λ by choosing λ = T 3/4

I1/4
yields I & Φ2/3T 1/3L−4/3.

Second Proof: As before, let x3 ∈ (−T, T ) be such that µx3 =
∑

i ϕiδXi obeys (5.8). By
Young’s inequality and (5.5), we have

I &
T

L2

(∑
i

ϕ
1/2
i

)
+
W 2

2 (µx3 ,ΦL
−2dx′)

L2T
& L−2T 1/3

(∑
i

ϕ
1/2
i

)2/3 (
W 2

2 (µx3 ,ΦL
−2dx′)

)1/3
.

The desired lower bound would then follow if we can show that for every measure µ ∈
M+(QL) with µ =

∑
i ϕiδXi and

∑
i ϕi = Φ,(∑

i

ϕ
1/2
i

)2/3 (
W 2

2 (µ,ΦL−2dx′)
)1/3

& Φ2/3L−4/3. (5.11)

By rescaling it is enough considering Φ = L = 1. The optimal transport map is necessarily
of the form ψ(x′) = Xi if x′ ∈ Ei, where Ei is a partition of Q1 with |Ei| = ϕi (the
corresponding transport plan is (Id× ψ)]dx′). By definition, it holds

W 2
2 (µ, dx′) ≥

∑
i

∫
Ei

|x′ −Xi|2dx′.

But since |Ei| = ϕi = |B′(Xi, (ϕi/π)1/2)|,∑
i

∫
Ei

|x′ −Xi|2dx′ ≥
∑
i

∫
B(Xi,(ϕi/π)1/2)

|x′|2dx′ &
∑
i

ϕ2
i .

By Hölder’s inequality, we conclude that

1 =
∑
i

ϕi ≤

(∑
i

ϕ
1/2
i

)2/3(∑
i

ϕ2
i

)1/3

.

(∑
i

ϕ
1/2
i

)2/3 (
W 2

2 (µ, dx′)
)1/3

,

as desired.

Remark 5.4. The lower bound (5.7) can also be obtained as a consequence of the scaling
law proven in [COS16] for the Ginzburg-Landau model combined with our lower bound in
Section 6 (which does not use this lower bound). However, since the proof here is much
simpler and contains some of the main ideas behind the proofs of [CCKO08, COS16],
we decided to include it. Similarly, the interpolation inequality (5.11) can be obtained by
approximation from a similar inequality proven in [CO16] (where it is used in the same
spirit as here to re-derive the lower bounds of [CCKO08]).

We end this section by proving existence of minimizers.

Proposition 5.5. For every pair of measures µ̄± with µ̄+(QL) = µ̄−(QL), the infimum in
(5.6) is finite and attained.
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Proof. In this proof we assume L = T = 1 and µ̄+(Q1) = 1. By Proposition 5.2 the
infimum is finite. Let now µn be a minimizing sequence for I. Since supn I(µn) < +∞,
thanks to (5.5), the functions x3 7→ µnx3 are equi-continuous in P(Q1) (recall that W2

metrizes the weak convergence in P(Q1)) hence by the Arzelà-Ascoli theorem there exists
a subsequence, still denoted µn, uniformly converging (in x3) to some measure µ which also
satisfies the given boundary conditions. Moreover, if mn is an optimal measure in (5.3) for
µn, since by the Cauchy-Schwarz inequality we have∫

Q1,1

d|mn| ≤

(∫
Q1,1

(
dmn

dµn

)2

dµn

) 1
2
(∫

Q1,1

dµn

) 1
2

. 1,

there also exists a subsequence mn converging to some measure m satisfying (5.1). By
[AFP00, Th. 2.34 and Ex. 2.36] we deduce that m� µ and

lim inf
n→+∞

∫
Q1,1

(
dmn

dµn

)2

dµn ≥
∫
Q1,1

(
dm

dµ

)2

dµ.

It remains to prove that µx3 =
∑

i ϕi(x3)δXi(x3) for a.e. x3 and that

lim inf
n→+∞

∫ 1

−1

∑
x′∈Q1

(
µnx3(x

′)
)1/2

dx3 ≥
∫ 1

−1

∑
x′∈Q1

(µx3(x
′))

1/2
dx3. (5.12)

If µnx3 =
∑
ϕni (x3)δXn

i
(x3), with ϕni ordered in a decreasing order, we let fn(x3) :=∑

i

√
ϕni (x3) and observe that

∫ 1

−1
fndx3 ≤ I(µn) . 1. Hence, by Fatou’s lemma,

1 & lim inf
n→+∞

∫ 1

−1

fn(x3)dx3 ≥
∫ 1

−1

lim inf
n→+∞

fn(x3)dx3, (5.13)

from which we infer that g(x3) := lim infn→+∞ fn(x3) is finite for a.e. x3. Consider
such an x3 and let ψ(n) be a subsequence (which depends on x3) such that g(x3) =
limn→+∞ fψ(n)(x3). Up to another subsequence, still denoted ψ(n), we may assume that

for every i ∈ N, ϕ
ψ(n)
i (x3) converges to some ϕi(x3) and X

ψ(n)
i (x3) converges to some

Xi(x3). By Lemma 5.6 (see below), for every N ∈ N,∑
i≤N

ϕ
ψ(n)
i (x3) ≥ 1−

fψ(n)(x3)√
N

.

This implies, by tightness, µ
ψ(n)
x3 ⇀

∑
i ϕi(x3)δXi(x3) and

∑
i(ϕi(x3))1/2 ≤ g(x3). But since

µ
ψ(n)
x3 ⇀ µx3 , we have µx3 =

∑
i ϕi(x3)δXi(x3). Finally, by the subadditivity of the square

root, (5.13) and the definition of g we obtain (5.12).

Lemma 5.6. If a nonincreasing sequence of positive numbers γi is such that∑
i

γi = c0 and
∑
i

√
γi ≤ C0,
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then for all N ∈ N one has ∑
i≤N

γi ≥ c0 − C0

√
c0

N
.

Proof. Indeed
∑

i>N γi ≤
√
γN
∑

i>N

√
γi ≤ C0

√
γN , while c0 ≥

∑
i≤N γi ≥ NγN .

5.2 Regularity of minimizers

We now want to prove regularity of the minimizing measures µ. In order to prove that
we can restrict our attention to measures containing no loops, we first define the notion of
subsystem.

Proposition 5.7 (Existence of subsystems). Given a point x := (X, x3) ∈ QL,T and
µ ∈ A∗L,T with I(µ) < +∞, there exists a subsystem µ̃ of µ emanating from x, meaning
that there exists µ̃ ∈ A∗L,T such that

(i). µ̃ ≤ µ in the sense that µ− µ̃ is a positive measure,

(ii). µ̃x3 = aδX , where a = µx3(X),

(iii).

∂3µ̃+ div ′
(
dm

dµ
µ̃

)
= 0.

In particular, (ii) implies that (µx3 − µ̃x3) ⊥ δX in the sense of the Radon-Nikodym
decomposition.

Proof. Let us for notational simplicity assume that x3 = 0, L = T = 1, µ(Q1,1) = 2. Let
us denote v = dm

dµ
. According to [AGS05, Th. 8.2.1 and (8.2.8)], since v ∈ L2(Q1,1, µ),

there exists a positive measure σ on C0([−1, 1];Q1) (endowed with the sup norm), whose
disintegration [AGS05, Th. 5.3.1] with respect to µ0, i.e. σ =

∫
Q1
σx′dµ0(x′), is made of

probability measures σx′ concentrated on the set of curves γ solving{
γ̇(x3) = v(γ(x3))
γ(0) = x′,

and such that for every x3 ∈ [−1, 1], µx3 = (ex3)#σ, where ex3 denotes the evaluation at
x3, in the sense that∫

Q1

ϕdµx3 =

∫
C0([−1,1];Q1)

ϕ(γ(x3))dσ(γ) for all ϕ ∈ C0(Q1) .

Then, the measure µ̃ = µ̃x3 ⊗ dx3 with µ̃x3 = (ex3)#(aσX), where a = µ0(X), satisfies all
the required properties.
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Lemma 5.8 (No loops). Let µ be a minimizer for the Dirichlet problem (5.6), x̄3 ∈
(−T, T ). Let x1 = (X1, x̄3), x2 = (X2, x̄3) be two points in the plane {x : x3 = x̄3}. Let
µ1 and µ2 be subsystems of µ emanating from x1 and x2. Let x+ := (X+, z+) be a point
with z+ > x̄3 and x− := (X−, z−) a point with z− < x̄3, and such that µ1,z+ , µ2,z+ both
have Diracs at X+, and µ1,z− , µ2,z− both have Diracs at X− (with nonzero mass). Then
X1 = X2.

Proof. Let ϕ1 := µx̄3(X1) be the mass of µ1 and ϕ2 be the mass of µ2. Let ϕ1,+ := µ1,x̄3(X+)
be the mass of µ1 at x+, ϕ2,+ the mass of µ2 at x+, ϕ1,− the mass of µ1 at x−, ϕ2,− the
mass of µ2 at x−. Let ϕ := min{ϕ1,+, ϕ1,−, ϕ2,+, ϕ2,−} which by assumption is positive.

We define µ1,+ as the subsystem of µ1 coming from x+, it is thus of mass ϕ1,+, and
at level x̄3 all its mass is at X1 (since it is a subsystem of µ1 for which this is the case).
Similarly with µ1,−, µ2,+, µ2,−. We can now define µ̃1 := ϕ

ϕ1,+
µ1,+ for x3 ≥ x̄3 and µ̃1 :=

ϕ
ϕ1,−

µ1,− for x3 < x̄3, and the same with µ̃2. The measures µ̃1 and µ̃2 are “systems” of

mass ϕ that join X− and X+. By construction, we have

∂x3(µ̃1 − µ̃2) [z−, z+] + div ′
(

(µ̃1 − µ̃2) [z−, z+]
dm

dµ

)
= 0

and
− ϕ

min(ϕ2,+, ϕ2,−)
µ ≤ (µ̃1 − µ̃2) [z−, z+] ≤ ϕ

min(ϕ1,+, ϕ1,−)
µ.

We now define µ̂η := µ + η(µ̃1 − µ̃2) [z−, z+], which is admissible for η small enough
(and different from µ unless X1 = X2), and evaluate

I(µ̂η)− I(µ) = K∗

∫ z+

z−

∑
x′∈Q1

(µx3(x
′) + η(µ̃1)x3(x

′)− η(µ̃2)x3(x
′))

1
2 −

∑
x′∈Q1

(µx3(x
′))

1
2 dx3

+ η

∫
Q1×[z−,z+]

(
dm

dµ

)2

(dµ̃1 − dµ̃2) .

But the function η 7→
√
a+ ηb is strictly concave for a > 0 and b 6= 0, therefore I(µ̂η) +

I(µ̂−η) < 2I(µ) for any η 6= 0, a contradiction with the minimality of µ.

A consequence of this lemma is the following. Consider a minimizing measure µ of I.
Let z− and z+ be any two slices and let X− be one of the Diracs at slice z−. Let µ̃ be a
subsystem emanating from (X−, z−). Let X+ be any point in the slice z+ where µ̃ carries
mass. Then, there is a unique “path” connecting X− to X+ (otherwise there would be a
loop). Since this is true for any couple of “sources” in two different planes, this means
that there are at most a countable number of absolutely continuous curves (absolutely
continuous because of the transport term) on which µ [z−, z+] is concentrated. So we
have a representation of the form

µ =
∑
i

ϕi√
1 + |Ẋi|2

H1 Γi , (5.14)
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where the sum is countable and Γi = {(Xi(x3), x3) : x3 ∈ [ai, bi]} with Xi absolutely
continuous and almost everywhere non overlapping.

Another consequence is that if there are two levels at which µ is a finite sum of Diracs,
then it is the case for all the levels in between. So, if there is a slice with an infinite number
of points, then either it is also the case for all the slices below or for all the slices above.

For measures which are concentrated on finitely many curves we obtain a simple rep-
resentation formula for I(µ).

Lemma 5.9. Let µ =
∑N

i=1
ϕi√

1+|Ẋi|2
H1 Γi ∈ A∗L,T with Γi = {(Xi(x3), x3) : x3 ∈ [ai, bi]}

for some absolutely continuous curves Xi, almost everywhere non overlapping. Every ϕi
is then constant on [ai, bi] and we have conservation of mass. That is, for x := (x′, x3),
letting

I+(x) := {i ∈ [1, N ] : x3 = bi, Xi(bi) = x′},
I−(x) := {i ∈ [1, N ] : x3 = ai, Xi(ai) = x′},

it holds ∑
i∈I−(x)

ϕi =
∑

i∈I+(x)

ϕi.

Moreover, m =
∑

i
ϕi√

1+|Ẋi|2
ẊiH1 Γi and

I(µ) =
1

L2

∑
i

∫ bi

ai

K∗
√
ϕi + ϕi|Ẋi|2dx3. (5.15)

Proof. Let x̄ = (x̄′, x̄3) with x̄3 ∈ (−T, T ) be such that µx̄3(x̄
′) 6= 0. Then, by continuity of

theXi’s, there exist δ > 0, ε > 0 such that every curve Γi with Γi∩(B′ε(x̄′)× [x̄3 − δ, x̄3 + δ]) 6=
∅ satisfies Xi(x̄3) = x̄′, and such that µ (B′2ε(x̄′)\B′ε(x̄′))×[x̄3−δ, x̄3+δ] = 0 (and thus also
m (B′2ε(x̄′)\B′ε(x̄′))× [x̄3 − δ, x̄3 + δ] = 0 since m� µ). Consider then ψ1 ∈ C∞c (B′2ε(x̄′))
with ψ1 = 1 in Bε(x̄′) and ψ2 ∈ C∞c (x̄3− δ, x̄3 + δ) and test (5.1) with ψ := ψ1ψ2 to obtain∫ x̄3+δ

x̄3−δ

dψ2

dx3

(x3)

 ∑
Xi(x3)∈B′ε(x̄′)

ϕi

 dx3 =

∫ x̄3+δ

x̄3−δ

∫
B′ε(x̄′)

dψ2

dx3

(x3)ψ1(x′)dµ

=

∫
Q1,1

∂ψ

∂x3

dµ = −
∫
Q1,1

∇′ψ · dm

= −
∫ x̄3+δ

x̄3−δ

∫
B2ε(x̄′)\Bε(x′)

ψ2∇′ψ1 · dm = 0,

from which the first two assertions follow. It can be easily checked that this implies that
m̄ :=

∑
i

ϕi√
1+|Ẋi|2

ẊiH1 Γi satisfies (5.1). Let m be any other measure satisfying (5.1)

and let us prove that ν := m̄−m = 0. Since div′νx3 = 0, we have for every ψ ∈ C∞(Q1)∑
i

∇′ψ(Xi(x3)) · νi(x3) = 0,
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where νx3 =
∑

i νi(x3)δXi(x3), from which the claim follows.

We remark that Corollary 5.20 below will imply that representation (5.14) holds for
every measure µ with I(µ) < +∞.

The previous results lead to the following.

Proposition 5.10. A minimizer of the Dirichlet problem (5.6) with boundary conditions
µ̄+ =

∑N
i=1 ϕ

+
i δX+

i
and µ̄− =

∑N
i=1 ϕ

−
i δX−i (some ϕi may be zero) satisfies

(i). µ =
∑M

i=1
ϕi√

1+|Ẋi|2
H1 Γi for some M ∈ N, where Γi = {(Xi(x3), x3) : x3 ∈ [ai, bi]}

are disjoint up to the endpoints, and the Xi are absolutely continuous.

(ii). Each Xi is affine.

(iii). If µ̄− = µ̄+ then there exists a symmetric minimizer with respect to the x3 = 0 plane.

Proof. Let µij be the subsystem emanating from (X−i ,−T ) of the subsystem emanating
from (X+

j , T ) of µ, so that µ =
∑

ij µ
ij by µijx3 ≤ µx3 and conservation of mass. By Lemma

5.8 we have µijx3 = ϕij(x3)δXij(x3) for all x3, otherwise there would be loops. By Lemma
5.9, ϕij(x3) does not depend on x3. By (5.5), if ϕij > 0 then X ij is absolutely continuous.
After a relabeling, (i) is proven.

Assertion (ii) follows from minimizing I(µ) as given by (5.15) with respect to Ẋi.
Let now µ̄− = µ̄+. If I(µ, (−T, 0)) ≤ I(µ, (0, T )) we obtain a symmetric minimizer µ̂

by reflection of µ (−T, 0) across {x3 = 0}, and analogously in the other case. This proves
(iii).

We now show that for symmetric minimizers, at arbitrarily small distance from the
boundary we have a finite number of Diracs. We already know that at arbitrarily small
distance we have a countable number, and then that we have a representation of µ of the
form (5.14). Let us point out that we will not use this proposition but rather include it
for its own interest.

Proposition 5.11. Fix µ̄ ∈ M+(QL). Let µ be a symmetric minimizer of I subject to
µ±T = µ̄. Then for any δ > 0 sufficiently small, the number of Diracs in each slice
x3 ∈ [−T + δT, T − δT ] is . δ−4.

Proof. We may assume L = T = 1, µ(Q1,1) = 2. By symmetry, we need only to consider
the interval [0, 1− δ]. If µ1−δ =

∑
i ϕiδXi , it suffices to prove that ϕi & δ4 for every i. For

the rest of the proof we fix a point Xi and in order to ease notation we write ϕ := ϕi and
X := Xi. Let µ̃ be the subsystem emanating from (X, 1− δ). Thanks to the symmetry of
µ and to the no-loop condition, µ and µ− µ̃ are disjoint for x3 > 1− δ. Indeed, if this was
not the case, by symmetry they would meet also for x3 < −1 + δ, and there would be a
loop, which is excluded by Lemma 5.8. Therefore

I(µ)− I(µ− µ̃) ≥
∫ 1

1−δ

∑
x′∈Q1

(µ̃x3(x
′))

1
2 dx3 ≥ δ

√
ϕ, (5.16)
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where in the second step we used subadditivity of the square root.
Let now µ̃1 be the trace of µ̃ on x3 = 1 and for z := ϕ1/4, let µ̂ be the symmetric

comparison measure constructed as follows:

• in [0, 1− z], µ̂x3 := (1 + ϕ
1−ϕ)(µx3 − µ̃x3) and

• in [1− z, 1], µ̂x3 := µx3 − µ̃x3 + νx3 where ν is a measure connecting ϕ
1−ϕ(µ− µ̃)1−z to

µ̃1 constructed in Proposition 5.2, so that (recall (5.4))

I(1−z,1)(ν) . z
√
ϕ+

ϕ

z
∼ ϕ3/4.

Since µ is a minimizer it follows by subadditivity of the energy that, for some universal
(but generic) constant C,

I(µ) ≤ I(µ̂) ≤
(

1 +
ϕ

1− ϕ

)
I(µ− µ̃) + Cϕ3/4

≤ I(µ− µ̃) + Cϕ3/4.

Indeed, I(µ − µ̃) ≤ I(µ) . 1 while ϕ � 1 without loss of generality. Recalling (5.16), we
deduce that Cϕ3/4 ≥ δϕ1/2, which yields the result.

Definition 5.12. We say that a measure µ is polygonal if

µ =
∑
i

ϕi√
1 + |Ẋi|2

H1 Γi,

where the sum is countable, Γi are segments of the form Γi = {(Xi(x3), x3) : x3 ∈ [ai, bi]}
disjoint up to the endpoints, and for any z ∈ (0, T ) only finitely many segments intersect
QL × (−z, z). We say it is finite polygonal if the total number of segments is finite.

For any polygonal measure, the representation formula (5.15) holds.

Lemma 5.13. Let µ̄ ∈ M+(QL). Then, every symmetric minimizer of I with boundary
data µ±T = µ̄ is polygonal.

Proof. It suffices to show that for any z ∈ (0, T ) the measure µ is polygonal in QL×(−z, z).
By Proposition 5.11 the measures µz and µ−z are finite sums of Diracs. Since µ is a min-
imizer, it minimizes I restricted to (−z, z) with boundary data µ±z. By Proposition 5.10
we conclude.

5.3 Density of regular and quantized measures

In this section we want to prove that when µ̄±T = ΦL−2dx′, the set of “regular” measures
is dense in energy.
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Definition 5.14. We denote by Mreg(QL,T ) ⊆ A∗L,T the set of regular measures, i.e., of
measures µ such that:

(i) The measure µ is finite polygonal, according to Def. 5.12.

(ii) All branching points are triple points. This means that any x ∈ QL,T belongs to the
closures of no more than three segments.

For N ∈ N, we say that µ is N-regular, µ ∈MN
reg(QL,T ) ⊆Mreg(QL,T ), if in addition

(iii) The traces obey µT = µ−T = ΦN−2
∑

j δXj , where the Xj are N2 points on a square
grid, spaced by L/N , and Φ ≥ 0.

We can now state the main theorem of this section:

Theorem 5.15. For every measure µ ∈ A∗L,T with I(µ) < +∞ and µ±T = ΦL−2dx′, there
exists a sequence of measures µN ∈MN

reg, with µN ⇀ µ and such that lim supN→+∞ I(µN) ≤
I(µ), µN(QL,T ) = µ(QL,T ).

The proof will be based on the following intermediate result.

Lemma 5.16. For every measure µ ∈ A∗L,T with I(µ) < +∞, and such that the traces

µT and µ−T are finite sums of Diracs, there exists a sequence of regular measures µ(N) ∈
Mreg(QL,T ) with µ(N) ⇀ µ, µ

(N)
±T = µ±T , and such that lim supN→+∞ I(µ(N)) ≤ I(µ).

Proof. We shall modify µ in two steps to make it polygonal: first on finitely many layers,
to have finitely many Diracs on each of them, and then in the rest of the volume, using
local minimization.

Fix N ∈ N and δ > 0, both chosen later. We choose levels zj ∈ (Tj/N, T (j+1)/N), for

j = −N+1, . . . , N−1, with the property that µzj =
∑

k∈N ϕj,kδx′j,k , with
∑

k∈N ϕ
1/2
j,k < +∞

for every j. We shall iteratively truncate the measure at these levels so that it is supported
on finitely many points; for notational simplicity we also define z±N := ±T . The measures
µj, j = −N, . . . , N will all satisfy µj � µ and I(µj) ≤ I(µ).

We start with µ−N := µ. In order to construct µj+1 from µj, we first choose Kj such that∑
k≥Kj ϕ

1/2
j,k ≤ δ/N . Then we define µj+1 as the sum of the subsystems of µj originating

from the points (x′j,k, zj) with k < Kj. Clearly I(µj+1) ≤ I(µj) ≤ I(µ). At the same time,

since
∑+∞

k=Kj
ϕj,k ≤ Φ1/2

∑+∞
k=Kj

ϕ
1/2
j,k ,

µj+1
zj

(QL) = µjzj(QL)−
+∞∑
k=Kj

ϕj,k ≥ µjzj(QL)− Φ1/2δ

N
,

so that |µj+1 − µj|(QL,T ) ≤ 2Φ1/2δT/N . Therefore |µN − µ|(QL,T ) . δTΦ1/2.
We define µ̂N as the minimizer with boundary data µNzj and µNzj+1

in each stripe QL ×
(zj, zj+1). Then I(µ̂N) ≤ I(µN) ≤ I(µ), and µ̂N±T = µN±T .
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At this point we fix the boundary data. For this, we let µ̃ be the minimizer on QL,T

with boundary data µ̃± := µ±T −µN±T . These boundary data are finite sums of Diracs, and
their flux is |µ̃±|(QL) = |µT −µNT |(QL) . δΦ1/2. By Proposition 5.10 the minimizer is finite
polygonal, by Proposition 5.2 it has energy no larger than a constant times δΦ1/2T−1 +
δ1/2TΦ1/4L−2. Finally we set µ(N) := µ̂N + µ̃. Then µ

(N)
±T = µ±T , and

I(µ(N)) ≤ I(µ̂N) + I(µ̃) ≤ I(µ) + C
(
δΦ1/2T−1 + δ1/2TΦ1/4L−2

)
.

Up to a small perturbation, we may further assume that all junctions are triple. We
can now choose for instance δ = 1/N . It only remains to show that µ(N) ⇀ µ as N → +∞.
Recalling that |µN−µ|(QL,T )+|µ̃|(QL,T ) . δΦ1/2T , we only need to show that µ̂N−µN ⇀ 0.

For x3 ∈ (zj, zj+1) we have by definition of µ̂N

W2(µNx3 , µ̂
N
x3

) ≤ W2(µNx3 , µ
N
zj

) +W2(µ̂Nx3 , µ̂
N
zj

),

and by (5.5)

W 2
2 (µNx3 , µ

N
zj

) +W 2
2 (µ̂Nx3 , µ̂

N
zj

) ≤ L2(zj+1 − zj)
(
I(µN) + I(µ̂N)

)
,

so that

max
x3

W 2
2 (µNx3 , µ̂

N
x3

) .
L2T

N
I(µ).

For x3 ∈ (−T, T ), let Πx3 be an optimal transport plan from µNx3 to µ̂Nx3 . Considering then
the transport plan Π := Πx3 ⊗ dx3 between µN and µ̂N , we get

W 2
2 (µN , µ̂N) ≤

∫ T

−T
W 2

2 (µNx3 , µ̂
N
x3

)dx3 .
L2T 2

N
I(µ) ,

which yields that indeed µ̂N − µN ⇀ 0.

Proof of Theorem 5.15. Let ε ∈ (0, 1/4), chosen such that it tends to zero as N →∞. We
define µ̂ in QL,(1−2ε)T as a rescaling by (1 − 2ε) in the vertical direction, µ̂(1−2ε)x3 = µx3 .
An easy computation shows that I(µ̂,−(1 − 2ε)T, (1 − 2ε)T ) ≤ 1

1−2ε
I(µ). In particular,

µ̂(1−2ε)T = ΦL−2dx′. For x3 ∈ ((1 − 2ε)T, T ) we define µ̂ as the result of Proposition 5.2.
Then we set µ̃ = µ̂ on (−(1 − ε)T, (1 − ε)T ) and extend it constant outside, in the sense
that µ̃x3 = µ̂(1−ε)T for x3 ∈ ((1− ε)T, T ), and the same on the other side. Since µ̂(1−ε)T is
the midplane configuration of the branching measure constructed in Proposition 5.2, µ̃x3
is a finite sum of Diracs for |x3| ≥ (1− ε)T . We obtain

I(µ̃) ≤ 1

1− 2ε
I(µ) + Cε1/3

(
Φ2/3T 1/3L−4/3 + ε2/3Φ1/2TL−2

)
.

By Lemma 5.16 applied to the inner domain (−(1−ε)T, (1−ε)T ) there is a finite polygonal
measure µ̌ which is close to µ̃ and has the same boundary data at x3 = ±T (1 − ε). The
measure given by µ̌ inside, and µ̃ outside, has the required properties.
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We now turn to the quantization of the measures.

Definition 5.17. We say that a regular measure µ ∈ Mreg(QL,T ) ⊆ A∗L,T is k-quantized,
for k > 0, if for all (x′, z) ∈ QL,T one has kµz({x′}) ∈ 2πN.

Lemma 5.18. Let µ ∈ MN
reg(QL,T ) and Φ = µT (QL). For any k > 0 such that kΦ ∈ 2πN

there is a k-quantized regular measure µk ∈Mreg such that µk(QL,T ) = µ(QL,T ) and(
1− C(µ)

k

)
µ ≤ µk ≤

(
1 +

C(µ)

k

)
µ .

This implies in particular µk � µ, µk → µ strongly, W 2
2 (µ, µk) . C(µ)k−1 and I(µk) →

I(µ) as k →∞.

Proof. The measure µ consists of finitely many segments, each with a flux. To prove the
assertion it suffices to round up or down the fluxes to integer multiples of 2π/k without
breaking the divergence condition, and without changing the total flux.

Since µ ∈MN
reg(QL,T ), we have µT = ΦN−2

∑
i δXi . We select ϕki as 2πbkΦ/(2πN2)c/k

or 2πbkΦ/(2πN2) + 1c/k , depending on i. Precisely, we choose the first value for i = 0
and then, at each i, we choose the lower one if

∑
j<i(ϕ

k
j − ΦN−2) > 0, and the upper one

otherwise. This concludes the definition of µkT .
The fluxes in the interior of the sample are defined by propagating the rounding. At each

point where a bifurcation occurs, if there is more then one outgoing branch we distribute
the rounding as discussed for µkT . This increases the maximal error by at most 2π/k, at each
branching point. Since µ is finite polygonal, there is a finite number of branching points,
hence the total error is bounded by a constant times 1/k. Precisely |ϕki − ϕi| ≤ C(µ)/k
for any segment i. Since ϕi only takes finitely many values, |ϕki − ϕi| ≤ ϕiC(µ)/k for any
segment i, which concludes the proof.

5.4 Relation with irrigation problems

The functional I(µ) bears similarities with the so-called irrigation problems which have
attracted a lot of interest (see for instance [Xia04, BCM09]). Besides their applications to
the modeling of communication networks and other branched patterns (see again [BCM09]
and the references therein), they have also been recently used in the study of Sobolev
spaces between manifolds [Bet14]. Let us recall their definition and for this, follow the
notation of [BCM09]. For E(G) a set of oriented straight edges and ϕ : E(G)→ (0,+∞)
we define the irrigation graph G as the vector measure

G :=
∑

e∈E(G)

ϕ(e)eH1 e

where e is the unit tangent vector to e. For α ∈ [0, 1], we then define the Gilbert energy
of G by

Mα(G) :=
∑

e∈E(G)

ϕ(e)αH1(e).
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Given two atomic probability measures µ+ =
∑k

i=1 aiδXi and µ− =
∑l

j=1 bjδYj , we say
that G irrigates (µ+, µ−) if divG = µ+ − µ− in the sense of distributions (this implies
in particular that G satisfies Kirchoff’s law). If we are now given any two probability
measures (µ+, µ−) and a vector measure G, with divG = µ+ − µ− (sometimes called an
irrigation path between µ+ and µ−), we define

Mα(G) := inf{lim inf
i→+∞

Mα(Gi)},

where the infimum is taken among all the sequences of irrigation graphs Gi with Gi ⇀ G in
the sense of measures and such that divG = µ+

i −µ−i for some atomic measures µ±i tending
to µ±. If no such sequence exists then we set Mα(G) = +∞. The irrigation problem then
consists in minimizing Mα(G) among all the transport paths G between µ+ and µ−. For
α = 0 this is a generalization of the famous Steiner problem while for α = 1 it is just the
Monge-Kantorovich problem.

Using some powerful rectifiability criterion of B. White, the following theorem was
proven by Q. Xia [Xia04].

Theorem 5.19. Given 0 < α < 1, any transport path G with Mα(G) + M1(G) < +∞ is
rectifiable in the sense that

G = ϕτ H1 Γ

for some density function ϕ and some 1−rectifiable set Γ having τ as tangent vector.

For minimal irrigation paths, much more is known about their interior and boundary
regularity [BCM09]. For instance, as for our functional I(µ) (see Proposition 5.10), it can
also be proven that minimal irrigation paths contain no loops and that for α > 1 − 1

n

(where n is the dimension of the ambient space i.e. n = 3 for us), any two probability
measures µ± can be irrigated at a finite cost (compare with Proposition 5.5).

Using Theorem 5.19 and Lemma 5.16, we can obtain the following rectifiability result.

Corollary 5.20. Every measure µ for which I(µ) < +∞ is rectifiable.

Proof. Using the construction of Lemma 5.16, we can find a sequence µn such that µn ⇀ µ,
lim supn→+∞ I(µn) ≤ I(µ) and µn =

∑N
i=1

ϕi√
1+|Ẋi|2

H1 Γi for some straight edges Γi =

{(x3, Xi(x3)) : x3 ∈ (ai, bi)}. Letting µ̃n :=
∑N

i=1
ϕi√

1+|Ẋi|2

(
Ẋi

1

)
H1 Γi, we have for

α ≥ 3
4
,

Mα(µ̃n) =
∑
i

∫ bi

ai

ϕαi

√
1 + |Ẋi|2dx3

.
∑
i

∫ bi

ai

ϕi(1 + |Ẋi|2) + ϕ2α−1
i dx3

.
∑
i

∫ bi

ai

ϕi(1 + |Ẋi|2) +
√
ϕidx3 . I(µn) + 1

so that lim infn→+∞M
α(µ̃n) . I(µ)+1 < +∞ and by Theorem 5.19, the claim follows.
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In [OS11], an approximation of the functional Mα in the spirit of the Modica-Mortola
[Mod87] approximation of the perimeter was proposed. Even though their proofs and
constructions are completely different from ours, this approach bears some similarities
with our derivation of the functional I(µ) from the Ginzburg-Landau functional ET (u,A).

6 Lower bound

In the rest of the paper we consider sequences with

Tn → +∞, αn → +∞, βn → 0,
Tn
αn
→ +∞, αnβ

7/2
n → +∞ . (6.1)

No constant appearing in the sequel will depend on the specific choice of the sequence. We
observe that (6.1) immediately implies αnβ

2
n → +∞ and α2

nβn → +∞. Let us recall that

in this proof we set L̃ = 1 and that (see (1.5))

ẼT (u,A) =

∫
Q1,1

α−2/3β−1/3
∣∣∣∇′α1/3β−1/3TAu

∣∣∣2 + α−4/3β−2/3
∣∣(∇α1/3β−1/3TAu)3

∣∣2
+ α2/3β−2/3

(
B3 − (1− |u|2)

)2
+ β−1|B′|2dx+ α1/3β7/6‖β−1B3 − 1‖2

H−1/2(x3=±1).

In this section, we prove the following compactness and lower bound result.

Proposition 6.1. Fix sequences of positive numbers αn, βn, Tn such that (6.1) holds, and

let (un, An) be such that supn ẼT (un, An) < +∞. Then up to a subsequence, the following
holds :

(i). β−1
n (1 − ρn) ⇀ µ for some measure µ, β−1

n B′n ⇀ m for some vector-valued measure
m� µ satisfying the continuity equation (5.1).

(ii). For almost every x3 ∈ (−1, 1), there exists some probability measure µx3 on Q1 with
µ = µx3 ⊗ dx3 and such that µx3 ⇀ dx′ as x3 → ±1.

(iii). For almost every x3 ∈ (−1, 1), µx3 =
∑

i∈I ϕiδXi with I at most countable and ϕi > 0.

(iv). One has (µ,m) ∈ A1,1 with

lim inf
n→+∞

ẼT (un, An) ≥ I(µ,m).

Let us first show that the energy gives a quantitative control on the failure of the
Meissner condition ρB = 0 in a weak sense.

Lemma 6.2. For every Q1-periodic test function ψ ∈ H1
per(Q1,1), if ‖ρ‖∞ ≤ 1 then∣∣∣∣∣

∫
Q1,1

ρB3ψdx

∣∣∣∣∣ . α1/3β2/3

T
ẼT (u,A)‖ψ‖L∞ +

β1/2

T
ẼT (u,A)

1
2‖∇′ψ‖L2 , (6.2)
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and, if additionally ψ(x′,±1) = 0, for k = 1, 2 and α2β ≥ 1,∣∣∣∣∣
∫
Q1,1

ρBkψdx

∣∣∣∣∣ . α2/3β5/6

T
ẼT (u,A)‖ψ‖L∞ +

α1/3β2/3

T
ẼT (u,A)

1
2‖∇ψ‖L2 . (6.3)

Moreover, if ξ ∈ H1
0 (−1, 1) and ψ is a periodic Lipschitz continuous function on Q1 then∣∣∣∣∣

∫
Q1,1

ρB′ · ∇′ψ ξdx

∣∣∣∣∣ . α2/3β5/6

T
ẼT (u,A)‖ξ∇′ψ‖L∞ +

β1/2

T
ẼT (u,A)

1
2‖∂3ξ∇′ψ‖L2 . (6.4)

Proof. Let λ := α1/3β−1/3T . For (6.2) we use formula (3.3) with A substituted by λA, that
is |∇′λAu|2 = |D3

λAu|2 + ρλB3 +∇′ × j′λA. We integrate against a test function ψ,∣∣∣∣∣
∫
Q1,1

ρB3ψdx

∣∣∣∣∣ =
α1/3β2/3

T

∣∣∣∣∣
∫
Q1,1

α−2/3β−1/3
(
|∇′λAu|2 − |D3

λAu|2 −∇′ × j′λA
)
ψdx

∣∣∣∣∣
.

α1/3β2/3

T

(
ẼT (u,A)‖ψ‖L∞ + α−1/3β−1/6

∫
Q1,1

α−1/3β−1/6|j′λA||∇′ψ|dx

)

.
α1/3β2/3

T

(
ẼT (u,A)‖ψ‖L∞ + α−1/3β−1/6ẼT (u,A)

1
2‖∇′ψ‖L2

)
,

where we have used that |j′λA| ≤ |∇′λAu| in view of the definition (3.1) and the upper bound
ρ ≤ 1. We obtain (6.3) similarly : One first checks from the definition of DλAu that∣∣|D1

λAu|2 − |(∇λAu)3|2 − |(∇λAu)2|2
∣∣ ≤ 2|(∇λAu)2| |(∇λAu)3|.

Testing (3.4) with ψ and integrating by parts the term with jλA as above gives

λ

∣∣∣∣∣
∫
Q1,1

ρBkψdx

∣∣∣∣∣ .
∫
Q1,1

2|ψ| |(∇λAu)2| |(∇λAu)3|+ |∇ψ| |∇λAu|dx .

Estimating 2|(∇λAu)2| |(∇λAu)3| ≤ α1/3β1/6|(∇λAu)2|2+α−1/3β−1/6|(∇λAu)3|2 and ‖∇λAu‖2
2 ≤

α4/3β2/3ẼT (u,A) concludes the proof of (6.3).
The proof of (6.4) is very similar to the proof of (6.3). Arguing as above with ξ∂kψ playing
the role of ψ, we get

λ

∣∣∣∣∣
∫
Q1,1

ρB′ · ∇′ψξdx

∣∣∣∣∣ .
∫
Q1,1

2|ξ∇′ψ| |(∇λAu)2| |(∇λAu)3|dx+

∣∣∣∣∣
∫
Q1,1

(∇× jλA) · ∇ψξdx

∣∣∣∣∣ .
The first term is estimated exactly as before, while the second one gives after integration
by parts of ∇× and using ∇×∇ = 0,∣∣∣∣∣
∫
Q1,1

(∇× jλA) · ∇ψξdx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Q1,1

∇ξ · (jλA ×∇ψ)dx

∣∣∣∣∣ ≤ ‖∂3ξ∇′ψ‖L2

(∫
Q1,1

|j′λA|2
)1/2

,

from which we conclude the proof.
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We now prove that for admissible pairs (u,A) of bounded energy, the corresponding
curves x3 7→ β−1B3(·, x3) satisfy a sort of uniform Hölder continuity. This is the analog of
(5.5) for the limiting energy.

Lemma 6.3. For every admissible pair (u,A) with ‖ρ‖∞ ≤ 1, and every x3, x̃3 ∈ (−1, 1),

letting E := ẼT (u,A) it holds (recall (2.6))

‖β−1B3(·, x3) − β−1B3(·, x̃3)‖BL . E1/2|x3 − x̃3|1/2 + σ(α, β, T )(E1/2 + E), (6.5)

where σ(α, β, T ) :=
(
α
T

)1/2 (
α2β5/2

)−1/6
+ (α1/2β)−1/3 +

(
α1/3

Tβ5/6

)1/2

, which goes to zero in

the regime (6.1). In particular, in that regime, if E . 1, for every x3, x̃3 ∈ (−1, 1) with
|x3 − x̃3| ≥ σ1/2(α, β, T ), there holds

‖β−1B3(·, x3)− β−1B3(·, x̃3)‖BL . |x3 − x̃3|1/2. (6.6)

Proof. The proof resembles that of [COS16, Lem. 3.13]. First, we show that for every
Q1−periodic and Lipschitz continuous function ψ with ‖ψ‖Lip ≤ 1,∣∣∣∣∫

Q1×{x3}
β−1B3ψdx

′ −
∫
Q1×{x̃3}

β−1B3ψdx
′
∣∣∣∣ ≤ |x3 − x̃3|1/2β−1/2E1/2. (6.7)

This follows from divB = 0 and integration by parts, which yields∣∣∣∣∫
Q1×{x3}

β−1B3ψdx
′ −
∫
Q1×{x̃3}

β−1B3ψdx
′
∣∣∣∣ =

∣∣∣∣∫
Q1×(x3,x̃3)

β−1∂3B3ψdx

∣∣∣∣
=

∣∣∣∣∫
Q1×(x3,x̃3)

β−1B′ · ∇′ψdx
∣∣∣∣

≤ |x3 − x̃3|1/2β−1/2

(∫
Q1×(x3,x̃3)

β−1|B′|2dx
)1/2

≤ |x3 − x̃3|1/2β−1/2E1/2.

For |x3 − x̃3| ≤ T−1α1/3β1/6, this implies that

‖β−1B3(·, x3)− β−1B3(·, x̃3)‖BL ≤
(
α1/3T−1β−5/6

)1/2
E1/2 ≤ σ(α, β, T )E1/2,

and (6.5) is proven. Letting σ̂(α, β, T ) :=
(
α
T

)1/2 (
α2β5/2

)−1/6
+ (α1/2β)−1/3, we are left to

prove that for Q1−periodic and Lipschitz continuous ψ with ‖ψ‖Lip ≤ 1 and |x3 − x̃3| ≥
T−1α1/3β1/6,∣∣∣∣∫

Q1×{x3}
β−1B3ψdx

′ −
∫
Q1×{x̃3}

β−1B3ψdx
′
∣∣∣∣ . |x3 − x̃3|1/2E1/2 + σ̂(α, β, T )(E1/2 + E).

(6.8)
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Up to translation we may assume x̃3 = 0 and x3 > 0. Let δ ≤ x3/2 and define ξ : R→ R
by

ξ(z) :=


z
δ

if 0 < z < δ

1 if δ ≤ z ≤ x3 − δ
x3−z
δ

if x3 − δ ≤ z ≤ x3

0 otherwise.

We then have using again divB = 0 and integration by parts∫
Q1,1

β−1B3ψ∂3ξdx = −
∫
Q1,1

β−1ρB′ · ∇′ψ ξdx−
∫
Q1,1

β−1(1− ρ)B′ · ∇′ψ ξdx. (6.9)

The first term on the right-hand side of (6.9) is estimated by (6.4). For the second term,
we now estimate∫

Q1,1

β−1(1− ρ)|B′|ξdx ≤
(∫

Q1×(0,x3)

β−1(1− ρ)dx

)1/2
(∫

Q1,1

β−1(1− ρ)|B′|2dx

)1/2

.

(6.10)
We rewrite the first factor as∫

Q1×(0,x3)

β−1(1− ρ)dx =

∫
Q1×(0,x3)

β−1B3dx+

∫
Q1×(0,x3)

β−1(B3 − (1− ρ))dx,

from which we obtain∫
Q1×(0,x3)

β−1(1− ρ)dx ≤
∣∣∣∣∫
Q1×(0,x3)

β−1B3dx

∣∣∣∣+ |x3|1/2
(∫

Q1,1

β−2(B3 − (1− ρ))2dx

)1/2

.

This allows to make use of∫
Q1,1

β−2(B3 − (1− ρ))2dx ≤ α−2/3β−4/3E,

and
∫
Q1×{z} β

−1B3dx
′ = 1, yielding∫

Q1×(0,x3)

β−1(1− ρ)dx ≤ |x3|+ |x3|1/2α−1/3β−2/3E1/2. (6.11)

The second factor in (6.10) is directly estimated by∫
Q1,1

β−1(1− ρ)|B′|2dx ≤ E,

so that inserting this and (6.11) into (6.10) gives∣∣∣∣∣
∫
Q1,1

β−1(1− ρ)B′ · ∇′ψξdx

∣∣∣∣∣ . |x3|1/2E1/2 + |x3|1/4α−1/6β−1/3E3/4. (6.12)
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Letting f(z) :=
∫
Q1×{z} β

−1B3ψdx
′, we thus obtain from (6.9), (6.12) and (6.4),∣∣∣∣∫ x3

0

f∂3ξdz

∣∣∣∣ . α2/3β−1/6

T
E +

α1/3β−1/3

T
E1/2‖∂3ξ‖L2 + |x3|1/2E1/2 + |x3|1/4E3/4α−1/6β−1/3.

(6.13)

Since by definition of ξ,
∫ x3

0
f∂3ξdz = 1

δ

∫ δ
0
fdz − 1

δ

∫ x3
x3−δ fdz, we have

f(x3)− f(0) =

∫ x3

0

f∂3ξdz +
1

δ

∫ δ

0

(f − f(0))dz +
1

δ

∫ x3

x3−δ
(f(x3)− f)dz,

so that

|f(x3)− f(0)| ≤
∣∣∣∣∫ x3

0

f∂3ξdz

∣∣∣∣+ sup
(0,δ)

|f − f(0)|+ sup
(x3−δ,x3)

|f − f(x3)|.

In view of this elementary inequality, the estimates (6.7) and (6.13) combine to

|f(x3)− f(0)| . |x3|1/2E1/2 +
α1/3β−1/3

T
E1/2δ−1/2 + δ1/2β−1/2E1/2 +

α2/3β−1/6

T
E

+ |x3|1/4E3/4α−1/6β−1/3.

We now optimize in δ by choosing δ = T−1α1/3β1/6, which combined with α2/3β−1/6

T
�

α−1/6β−1/3, yields (6.8) in the form of

|f(x3)− f(0)| . |x3|1/2E1/2 + (E1/2 + E)

((α
T

)1/2 (
α2β5/2

)−1/6
+ α−1/6β−1/3

)
.

Remark 6.4. We notice that thanks to the Kantorovich-Rubinstein Theorem [Vil03, Th.
1.14], if B3 is non-negative then we can substitute the Bounded-Lipschitz norm in (6.5) by
a 1−Wasserstein distance. In particular, it would imply that if (αn, βn, Tn) satisfy (6.1)

and if (un, An) are admissible with ‖ρn‖∞ ≤ 1, ẼT (un, An) . 1, and Bn
3 ≥ 0, then the

corresponding curves x3 7→ β−1
n Bn

3 (·, x3) would be in some sense equi-continuous in the
space of probability measures endowed with the Wasserstein metric.

For ε > 0 fixed, we define the following regularization of the singular double well
potential χρ>0(1− ρ)2 :

Wε(ρ) := ηε(ρ)(1− ρ)2 with ηε(ρ) := min{ρ/ε, 1} , (6.14)

see (1.7) and Figure 2. We next show that the energy controls Wε(ρ). Similar ideas have
been used in the context of Bose-Einstein condensates [GM15].
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Figure 2: The cutoff function ηε and the two-well potential Wε used in Lemma 6.5.

Lemma 6.5. For every ε > 0 there exists Cε > 0 such that for every (u,A) with ‖ρ‖∞ ≤ 1
it holds,∫

Q1,1

α2/3β−2/3Wε(ρ)dx ≤
∫
Q1,1

α2/3β−2/3 (B3 − (1− ρ))2 dx+ CεẼT (u,A)
α

T
. (6.15)

Proof. As above, to lighten notation, we let E := ẼT (u,A). Writing (1− ρ) = B3 − (B3 −
(1− ρ)), we obtain by Young’s inequality

(1− ρ)2 = B3(1− ρ)− (B3 − (1− ρ))(1− ρ)

≤ B3(1− ρ) +
1

2
(1− ρ)2 +

1

2
(B3 − (1− ρ))2.

Multiplying by 2ηε(ρ) and using that 0 ≤ ηε ≤ 1 we obtain for Wε(ρ) the estimate

Wε(ρ) = ηε(ρ)(1− ρ)2 ≤ (B3 − (1− ρ))2 + 2ηε(ρ)(1− ρ)B3. (6.16)

Let ψε(s) := 2ηε(s)
s

(1− s) = 2 min{1
ε
, 1
s
}(1− s) then ψε is bounded by 1/ε and is Lipschitz

continuous in s1/2 with constant of order ε−3/2 i.e. supt |(ψε(t2))′| . ε−3/2. Since 2ηε(ρ)(1−
ρ)B3 = ρB3ψε(ρ), using (6.2) with ψ = ψε(ρ), we get∣∣∣∣∣

∫
Q1,1

2ηε(ρ)(1− ρ)B3dx

∣∣∣∣∣ . α1/3β2/3

T

(
ε−1E + α−1/3β−1/6E1/2‖∇′(ψε(ρ))‖L2

)
.
α1/3β2/3

T

(
ε−1E + ε−3/2α−1/3β−1/6E1/2‖∇′ρ1/2‖L2

)
. Cε

α1/3β2/3

T

(
E +

∫
Q1,1

α−2/3β−1/3|∇′ρ1/2|2dx

)

. Cε
α1/3β2/3

T
E,

where we used that |∇′ρ1/2| ≤ |∇′
α1/3β1/3TA

u| and thus
∫
Q1,1

α−2/3β−1/3|∇′ρ1/2|2dx ≤ E.

Estimate (6.15) follows from inserting this estimate into (6.16).
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To prove the lower bound, we will need the following two dimensional result.

Lemma 6.6. Let χn ∈ BV (Q1, {0, β−1
n }) be such that limn→+∞

∫
Q1
χndx

′ = 1 and

sup
n

∫
Q1

β1/2
n |D′χn| < +∞.

Then, up to a subsequence, χn ⇀
∑

i ϕiδXi for some at most countable family of ϕi > 0
and Xi ∈ Q1, and

lim inf
n→+∞

∫
Q1

β1/2
n |D′χn| ≥ 2

√
π
∑
i

√
ϕi. (6.17)

Proof. Step 1 (Compactness): For each n we split the cube Q1 into small cubes of side

length 3β
1/2
n . Let Qn

i be an enumeration of theses cubes such that

ϕni :=

∫
Qni

χndx
′

is nonincreasing in i. Since |{χn = β−1
n }| = βn

∫
Q1
χndx

′ = βn+o(βn), we have |Qn
i ∩{χn =

β−1
n }| ≤ βn + o(βn) ≤ 1

2
|Qn

i | and thus by the relative isoperimetric inequality [AFP00, Th.
3.46], we have on each Qn

i

ϕni =

∫
Qni

χndx
′ .

(∫
Qni

β1/2
n |D′χn|

)2

.

It follows that ∑
i

√
ϕni .

∫
Q1

β1/2
n |D′χn| ≤ C,

by the energy bound. Arguing as in the proof of Proposition 5.5, we deduce from Lemma
5.6 that up to extracting a subsequence, χn ⇀

∑
i∈I ϕiδXi for some ϕi > 0 and Xi ∈ Q1,

pairwise distinct.

Step 2 (Lower bound): Assume now that the ϕi are labeled in a decreasing order and
fix N ∈ N. Choose r ∈ (0, 1/4) sufficiently small so that

B′(Xi, r) ∩ B′(Xj, r) = ∅ ∀i, j ≤ N with i 6= j, (6.18)

and let ψ ∈ C∞c (B′(Xi, r); [0, 1]) be a smooth function such that ψ = 1 in B′(Xi, r/2) and
|∇ψ| ≤ C/r. Let Ciso = (2

√
π)−1 be the isoperimetric constant in dimension 2, then we

may write(∫
B′(Xi,r/2)

β−1
n χndx

′
) 1

2

≤
(∫

Q1

(ψχn)2dx′
)1/2

≤ Ciso

∫
Q1

|D′(ψχn)|

≤ Ciso

(∫
B′(Xi,r)

|D′χn|+
C

r

∫
B′(Xi,r)\B′(Xi,r/2)

χndx
′
)

≤ Ciso

∫
B′(Xi,r)

|D′χn|+
C

r
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since
∫
Q1
χndx

′ → 1. Multiplying by β
1/2
n and summing over N , we get

N∑
i=1

(∫
B′(Xi,r/2)

χndx
′
)1/2

≤ Ciso

∫
Q1

β1/2
n |D′χn|+ β1/2

n

CN

r
. (6.19)

Next observe that since χn ⇀
∑

i ϕiδXi , we have for every i = 1, . . . , N ,

lim inf
n→+∞

(∫
B′(Xi,r/2)

χndx
′
)1/2

= ϕ
1/2
i .

Therefore, passing to the limit in (6.19), we obtain

N∑
i=1

ϕ
1/2
i ≤ Ciso lim inf

n→+∞

∫
Q1

β1/2
n |D′χn|.

Since N was arbitrary this implies (6.17).

With this lemma at hand, we can prove the compactness and lower bound result.

Proof of Proposition 6.1. We fix for the proof a sequence (un, An) with ẼT (un, An) . 1.
We then let Bn := (B′n, B

n
3 ) := ∇× An and ρn := |un|2.

Step 1 (Compactness): Notice first that∫
Q1,1

(
Bn

3 − (1− ρn)

βn

)2

dx ≤ α−2/3
n β−4/3

n ẼT (un, An)→ 0 . (6.20)

By [COS16, Lem. 3.7] there is ûn with ρ̂n := |ûn|2 = min{ρn, 1} such that ẼT (ûn, An) ≤
(1 + 2αn/Tn)ẼT (un, An) (the error comes from the last two terms in (3.5)). In particular,
also (Bn

3 −(1− ρ̂n))/βn → 0 in L2(Q1,1). Using this and |Bn
3 | ≤ |Bn

3 −(1− ρ̂n)| on {Bn
3 ≤ 0}

we obtain∣∣∣∣∣
∫
{Bn3<0}

β−1
n Bn

3 dx

∣∣∣∣∣ .
(
β−2
n

∫
Q1,1

(Bn
3 − (1− ρ̂n))2dx

) 1
2

≤ 1

(αnβ2
n)2/3

ẼT (un, An)→ 0,

(6.21)
and since

∫
Q1,1

β−1
n Bn

3 dx = 2 the sequence β−1
n Bn

3 is bounded in L1 and, after extracting a

subsequence, β−1
n Bn

3 ⇀ µ for some measure µ. From (6.20) we also get β−1
n (1 − ρn) ⇀ µ,

and the same for ρ̂n. It also follows from (6.21) that∫
Q1,1

β−1
n (1− ρ̂n)dx = 2 +

∣∣∣∣∣β−1
n

∫
Q1,1

(Bn
3 − (1− ρ̂n)) dx

∣∣∣∣∣→ 2.
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Moreover, since
∫
Q1,1

β−1
n (1− ρ̂n)|B′n|2dx ≤

∫
Q1,1

β−1
n |B′n|2dx ≤ ẼT (un, An) it holds

∫
Q1,1

β−1
n (1− ρ̂n)|B′n|dx ≤

(∫
Q1,1

β−1
n (1− ρ̂n)|B′n|2dx

) 1
2
(∫

Q1,1

β−1
n (1− ρ̂n)dx

) 1
2

. 1,

thus (up to a subsequence) β−1
n (1 − ρ̂n)B′n ⇀ m for some vector-valued measure m. By

[AFP00, Th. 2.34],

lim inf
n→+∞

∫
Q1,1

β−1
n |B′n|2dx ≥ lim inf

n→+∞

∫
Q1,1

β−1
n (1− ρ̂n)|B′n|2dx ≥

∫
Q1,1

(
dm

dµ

)2

dµ, (6.22)

and m � µ. Moreover, from Lemma 6.2 we have that β−1
n ρ̂nB

′
n ⇀ 0 in a distributional

sense and therefore β−1
n B′n itself converges to m. Letting n→ +∞ in

β−1
n divBn = ∂3

[
β−1
n Bn

3

]
+ div′

[
β−1
n B′n

]
= 0,

we obtain ∂3µ+ div′m = 0. This proves (i).

We now prove that µ = µx3 ⊗ dx3, that β−1
n Bn

3 (·, x3) ⇀ µx3 for a.e. x3 ∈ (−1, 1) and
that µx3 ⇀ dx′ as x3 → ±1. By (6.21) we have that, up to a subsequence in n, for a.e.
x3 ∈ (−1, 1),

lim
n→+∞

∫
Q1∩{Bn3<0}

β−1
n Bn

3 dx = 0.

Let G ⊆ (−1, 1) be the set of x3 for which this hold. For every x3 ∈ G, the L1 norm of
β−1
n Bn

3 (·, x3) is bounded thus if we fix a countable dense set Gd ⊆ G, we can assume up to
extraction that for every x3 ∈ Gd, β−1

n Bn
3 (·, x3) ⇀ νx3 for some probability measure νx3 .

For x3, x̃3 ∈ Gd, thanks to the weak lower semi-continuity of ‖ · ‖BL and (6.5),

‖νx3 − νx̃3‖BL ≤ lim sup
n→+∞

‖β−1
n Bn

3 (·, x3)− β−1
n Bn

3 (·, x̃3)‖BL

. lim
n→+∞

(
|x3 − x̃3|1/2 + σ(αn, βn, Tn)

)
= |x3 − x̃3|1/2.

Therefore, there exists a unique Hölder-continuous extension of νx3 to (−1, 1) 3 x3 7→ νx3 ∈
P(Q1). We claim that µ = νx3 ⊗ dx3. For K → +∞, let {zKj }K+1

j=1 ∈ Gd be an increasing
sequence such that |zKj − zKj+1| . K−1, |zK1 + 1| . K−1 and |zKK+1 − 1| . K−1. Notice

that for n large enough, we have for every j that |zKj − zKj+1| ≥ σ1/2(αn, βn, Tn) (where
σ is defined in Lemma 6.3) so that (6.6) applies. Let ψ be a Q1−periodic and Lipschitz
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continuous function on Q1,1 with ‖ψ‖Lip ≤ 1. By the continuity of x3 7→ νx3 , we have∫
Q1,1

ψ(dµ− dνx3 ⊗ dx3) = lim
K→+∞

∫
Q1,1

ψdµ−
K∑
j=1

(zKj+1 − zKj )

∫
Q1

ψ(·, zKj )dνzKj

= lim
K→+∞

lim
n→+∞

K∑
j=1

∫ zKj+1

zKj

∫
Q1

ψ(x′, x3)β−1
n Bn

3 (x′, x3)

− ψ(x′, zKj )β−1
n Bn

3 (x′, zKj )dx′dx3.

Using the finite difference version of Leibniz’ rule,

ψ(x′, x3)Bn
3 (x′, x3)− ψ(x′, zKj )Bn

3 (x′, zKj )

= Bn
3 (x′, x3)(ψ(x′, x3)− ψ(x′, zKj )) + ψ(x′, zKj )(Bn

3 (x′, x3)−Bn
3 (x′, zKj ))

and using that ‖ψ‖Lip ≤ 1, we can estimate for fixed K, j and n large enough,∣∣∣∣∣
∫ zKj+1

zKj

∫
Q1

ψ(x′, x3)β−1
n Bn

3 (x′, x3)− ψ(x′, zKj )β−1
n Bn

3 (x′, zKj )dx′dx3

∣∣∣∣
≤
∫ zKj+1

zKj

∫
Q1

β−1
n |Bn

3 ||x3 − zKj |dx+

∫ zKj+1

zKj

‖β−1
n (Bn

3 (x′, x3)−Bn
3 (x′, zKj ))‖BL

. K−1

∫ zKj+1

zKj

∫
Q1

β−1
n |Bn

3 |dx+K−1K−1/2,

where in the last line we have used that |x3−zKj | . K−1 and (6.6). Summing this estimate
over j, we obtain∣∣∣∣∣

∫
Q1,1

ψ(dµ− dνx3 ⊗ dx3)

∣∣∣∣∣ . lim
K→+∞

K−1

[
lim

n→+∞

∫
Q1,1

β−1
n |Bn

3 |dx+K−1/2

]
= 0.

This establishes that µ = νx3 ⊗ dx3. Moreover, this proves that for every x3 ∈ Gd, the
whole sequence β−1

n Bn
3 (·, x3) weakly converges to µx3 . Since the set Gd was arbitrary, this

proves the above convergence for all x3 ∈ G.

We finally show that the boundary conditions hold. For this we focus on x3 = 1. For
x3 ∈ G, it holds by the weak lower semi-continuity of ‖ · ‖BL,

‖1− µx3‖BL ≤ lim inf
n→+∞

‖1− β−1
n Bn

3 (·, x3)‖BL

≤ lim inf
n→+∞

‖1− β−1
n Bn

3 (·, 1)‖BL + lim sup
n→+∞

‖β−1
n Bn

3 (·, 1)− β−1
n Bn

3 (·, x3)‖BL.

By (6.5), the second right-hand side term is controlled by |1−x3|1/2. For the first right-hand
side term we note that because of ‖ψ‖H1/2 . ‖ψ‖Lip, we have

‖β−1
n Bn

3 (·, 1)− 1‖2
BL . ‖β−1

n Bn
3 (·, 1)− 1‖2

H1/2 ≤ α−1/3
n β−7/6

n ẼT (ûn, An).
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Hence, it is the last assumption in (6.1) that ensures that this term vanishes in the limit
n→ +∞. We thus obtain the desired estimate

‖1− µx3‖BL . |1− x3|1/2.

Step 2 (Lower bound and structure of µ): The starting point is an application of the
usual Modica-Mortola trick. In this step we only deal with ûn and ρ̂n, and drop the hats for
brevity. By (6.15) and |∇′ρ1/2| ≤ |∇′λAu| we obtain from the Cauchy-Schwarz inequality :(

1 + Cε
αn
Tn

)
ẼT (un, An) ≥

∫
Q1,1

β−1/2
n 2

√
Wε(ρn)|∇′ρ1/2

n |+ β−1
n |B′n|2dx, (6.23)

for any ε > 0. We momentarily fix a small δ > 0 and estimate by the co-area formula
(4.2), ∫

Q1,1

2
√
Wε(ρn)|∇′ρ1/2

n |dx ≥
∫ 1−δ

δ

∫ 1

−1

2
√
Wε(s2)H1(∂{ρn(·, x3) > s2})dx3ds.

In particular there exists sn ∈ [δ, 1− δ] depending on n such that∫ 1−δ

δ

2
√
Wε(s2)

∫ 1

−1

H1(∂{ρn(·, x3) > s2})dx3ds

≥
(∫ 1−δ

δ

2
√
Wε(s2)ds

)∫ 1

−1

H1(∂{ρn(·, x3) > s2
n})dx3.

Letting χn(x′, x3) := β−1
n (1− χ{ρn(·,x3)>s2n}(x

′)) this reads∫
Q1,1

β−1/2
n 2

√
Wε(ρn)|∇′ρ1/2

n |dx ≥ Cδ,ε

∫
Q1,1

β1/2
n |D′χn|dx3, (6.24)

where Cδ,ε :=
∫ 1−δ
δ

2
√
Wε(s2)ds.

Let γn → 0 to be chosen later. For n large enough, if ρn ≤ γn, then χn = β−1
n while if

ρn ≥ 1− γn, χn = 0 so that∫
Q1,1

|χn − β−1
n (1− ρn)|dx ≤ β−1

n

∫
{ρn≤γn}

ρndx+ β−1
n

∫
{ρn≥1−γn}

(1− ρn)dx

+ β−1
n |{γn < ρn < 1− γn}|

≤ 2β−1
n γn + β−1

n |{γn < ρn < 1− γn}|.

By definition of Wε (recall (6.14), min[γn,1−γn] Wε = min(γn
ε
, γ2

n) = γ2
n so that using that∫

Q1,1
α

2/3
n β

−2/3
n Wε(ρn)dx . 1,

β−1
n |{γn < ρn < 1− γn}| ≤ β−1

n γ−2
n

∫
Q1,1

Wε(ρn)dx . β−1/3
n γ−2

n α−2/3
n .
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Therefore, if we choose γn such that βn � γn � α
−1/3
n β

−1/6
n , which is possible since by

hypothesis αnβ
7/2
n → +∞, we obtain that

lim
n→+∞

∫
Q1,1

|χn − β−1
n (1− ρn)|dx = 0.

Combining this with (6.20), we obtain that

lim
n→+∞

∫
Q1,1

|χn − β−1
n Bn

3 |dx = 0.

By Fubini, this implies that, after passing to a subsequence in n, for a.e. x3 ∈ (−1, 1), if
β−1
n Bn

3 (·, x3) ⇀ µx3 then also χn(·, x3) ⇀ µx3 . Moreover, from
∫
Q1
β−1
n Bn

3 (x′, x3)dx′ = 1 for

a.e. x3 ∈ (−1, 1), we obtain that limn→+∞
∫
Q1
χn(x′, x3)dx′ = 1 for a.e. x3 ∈ (−1, 1). We

thus can use Lemma 6.6 to prove that µx3 =
∑

i ϕiδXi for some ϕi > 0 and

lim inf
n→+∞

∫
Q1,1

β1/2
n |D′χn|dx3 ≥ 2

√
π

∫ 1

−1

∑
i

√
ϕidx3 , (6.25)

where we used Fatou lemma. This shows (iii). Putting (6.23), (6.24), (6.25) and (6.22)
together we find

lim inf
n→+∞

ẼT (un, An) ≥
∫ 1

−1

2
√
πCδ,ε

∑
i

√
ϕidx3 +

∫
Q1,1

(
dm

dµ

)2

dµ,

for any ε and δ. Since

lim
ε→0

lim
δ→0

Cδ,ε = 2

∫ 1

0

(1− t2)dt =
4

3
,

and K∗ = 8
√
π

3
, this concludes the proof of (iv).

7 Upper bound

In this section we construct a recovery sequence for any sequences Tn, αn, βn which obey
(6.1) and additionally the condition of quantization of the total flux

L2
nTnαnβn ∈ 2πN , (7.1)

where Ln := L̃α
−1/3
n β

−1/6
n . Recalling the form of the gradient term in the functional ẼT

defined in (1.5), to discuss quantization of the flux of individual domains it is convenient
to introduce

kn := α1/3
n β2/3

n Tn . (7.2)

The global flux quantization (7.1) then reads knL̃
2 ∈ 2πN and, in the L̃ = 1 case we

are considering here, simplifies to kn ∈ 2πN. Condition (6.1) implies kn → +∞ and in
particular kn/βn → +∞, so that the quantization condition becomes less and less stringent
with increasing n. Aim of this section is to prove the following:
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Proposition 7.1. Assume L̃ = 1, (6.1) and (7.1). Then, for every µ with I(µ) < +∞
and µ1 = µ−1 = dx′ there exist sequences un : Q1,1 → C and An : Q1,1 → R3 such that

lim sup
n→+∞

ẼT (un, An) ≤ I(µ).

The fields ρn := |un|2 and Bn := ∇× An are Q1-periodic and it holds

β−1
n (1− ρn) ⇀ µ and β−1

n B′n ⇀ m,

where m is the measure such that I(µ) = I(µ,m).

The idea of the construction is to use the density result Theorem 5.15 to separate the
construction in two regions. In the bulk, the measure will be approximated by a finite
polygonal measure for which the construction is made in Section 7.1. In the boundary
layer, we plug in the construction of [COS16], see Section 7.2, which is optimal up to a
factor. Since the energy in the boundary layer is small, its suboptimal effect disappears in
the limit.

We shall first construct the density ρ and the magnetic field B. The appropriate energy
is F̃α,β := F̃

(−T,T )
α,β + F̃ ext

α,β , where

F̃
(a,b)
α,β (ρ,B) :=

∫
Q1×(a,b)

(
α−2/3β−1/3

∣∣∇′ρ1/2
∣∣2 + α−4/3β−2/3

∣∣∂3ρ
1/2
∣∣2

+ α2/3β−2/3 (B3 − (1− ρ))2 + β−1|B′|2
)
dx , (7.3)

and
F̃ ext
α,β(B) := α1/3β7/6‖β−1B3 − 1‖2

H−1/2(Q1×{±1}) . (7.4)

Their sum corresponds to the energy ẼT , up to a reconstruction of u and A that will be
discussed in Section 7.3. A pair (ρ,B) is admissible for F̃

(a,b)
α,β if ρ and B are Q1-periodic,

divB = 0 and
∫
Q1
B3(x′, x3)dx′ = β for all x3.

We say that a pair (ρ,B) is k-quantized if there is a closed set ω ⊆ Q1,1 such that
B = 0 outside ω, ρ = 0 in ω, and the flux of β−1B3 over every connected component of
ω ∩ {x3 = z} is an integer multiple of 2π/k, for all z ∈ (−1, 1).

7.1 Construction in the bulk

This section is concerned with the local construction of flux tubes. For notational simplicity
we present this construction in R2 × (a, b), without the periodicity assumption; since ρ =
1 and B = 0 outside a small region, its periodic extension is immediate (see proof of
Proposition 7.9 below). We start from the optimal profile at the boundary of the individual
tubes, with the lengths measured in units of the coherence length (recall (3.9)). For the
purpose of the upcoming constructions, we cut the profile at a lengthscale R� 1 towards
the normal region.
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Lemma 7.2. Consider the functional G(v) := 2
√
π

∫ +∞

0

|v̇|2 + (1− v2)2dt. Then,

inf

{
G(v) : v(0) = 0, lim

t→+∞
v(t) = 1

}
= K∗ =

8

3

√
π .

Furthermore, for all R ≥ 3 there is vR ∈ C∞(R; [0, 1]) with vR(t) = 0 for t ≤ 0, vR(t) = 1
for t ≥ R, |v̇R| ≤ 2, and, setting KR := G(vR), one has

lim
R→∞

KR =
8

3

√
π,

and
∫ +∞

0
t (|v̇R|2 + (1− v2

R)2) dt . 1.

Proof. The lower bound follows from the usual Modica-Mortola type computation∫ +∞

0

|v̇|2 + (1− v2)2dt ≥ 2

∫ +∞

0

(1− v2)v̇dt = 2

∫ 1

0

(1− s2)ds =
4

3
.

To prove the upper bound, we recall that v(t) := tanh t is the minimizer of G under the
constraint v(0) = 0. A direct computation shows that G(v) = K∗. We then define for
R > 0,

v̂R(t) :=


0 if t < 1/R,
tanh(t− 1/R)

tanh(R− 2/R)
if t ∈ [1/R,R− 1/R],

1 if t > R− 1/R,

and vR := ψ1/R ∗ v̂R, with ψ1/R ∈ C∞c (−1/R, 1/R) a mollifier. By construction, this has
the desired properties and verifies G(vR)→ G(v) as R→∞.

We start with the simple case in which the limiting measure comes from a Lipschitz
curve; in practice this will be used only for affine or piecewise affine curves.

Lemma 7.3. Let X : (a, b)→ R2 be a Lipschitz curve, ϕ > 0, R > 0. We define

ρ(x) := v2
R

(
|x′ −X(x3)| −

√
βϕ/π

η

)
,

where η := α−2/3β1/6 � 1 is the coherence length (see (3.9)) and vR was introduced in
Lemma 7.2, and define B through

B3(x) := χB′(X(x3),
√
βϕ/π)

(x′) , B′(x) := B3(x)Ẋ(x3) .

Then, ρB = 0 almost everywhere, divB = 0, and

F̃
(a,b)
α,β (ρ,B) ≤

(
1 +

C

(ϕα4/3β2/3)1/2
+

C

ϕα4/3β2/3

)∫ b

a

(
KR
√
ϕ+ ϕ|Ẋ|2

)
dx3.

The constant C is universal. Moreover, if µ := ϕδX(x3) ⊗ dx3,

W 2
2 (β−1B3, µ) ≤ |b− a|βϕ

2

2π
. (7.5)
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Proof. The condition ρB = 0 follows from vR(t) = 0 for t ≤ 0. To check the divergence
condition, pick ψ ∈ C1

c (R2 × (a, b)) and compute∫
R2×(a,b)

(B3∂3ψ +B′ · ∇′ψ)dx =

∫ b

a

∫
B′(X(x3),

√
βϕ/π)

(∂3ψ +∇′ψ · Ẋ(x3))dx′dx3

=

∫ b

a

∫
B′(0,
√
βϕ/π)

d

dx3

ψ(X(x3) + y′, x3)dy′dx3 = 0 .

We now estimate the energy. We start from the interfacial energy at fixed x3 (see (7.3)),

E1(x3) :=

∫
R2

α−2/3β−1/3|∇′ρ1/2|2 + α2/3β−2/3(B3 − (1− ρ))2dx′ .

If |x′ −X(x3)| <
√
βϕ/π then ρ = 0 and B3 = 1, whereas if |x′ −X(x3)| > ηR +

√
βϕ/π

then ρ = 1, B3 = 0. In the intermediate region, we use |∇′ρ1/2| = |v̇R|/η. Passing to polar
coordinates and using r = |x′ −X(x3)| as an integration variable,

E1(x3) =

∫ √βϕ/π+ηR

√
βϕ/π

[α−2/3β−1/3

η2
|v̇R|2 + α2/3β−2/3(1− v2

R)2
](r −√βϕ/π

η

)
2πrdr .

We change variables according to r =
√
βϕ/π + sη, insert the definition of η, and by

Lemma 7.2 obtain

E1(x3) =

∫ R

0

β−1/2
[
|v̇R|2 + (1− v2

R)2
]

2π(
√
βϕ/π + sη)ds

≤ KR
√
ϕ+ Cα−2/3β−1/3 ≤ √ϕ

(
KR +

C

ϕ1/2α2/3β1/3

)
.

The other contributions to the energy are the cost of transport and the vertical part of
the gradient,

E2(x3) :=

∫
R2

α−4/3β−2/3|∂3ρ
1/2|2 + β−1|B′|2dx′ .

By definition of B′, we have for the second term,∫
R2

β−1|B′|2dx′ = |Ẋ(x3)|2ϕ .

For the first one we use |∂3ρ
1/2| ≤ |v̇R||Ẋ|/η and change variables as above to obtain∫

R2

α−4/3β−2/3|∂3ρ
1/2|2dx′ . α−4/3β−2/3

η
|Ẋ(x3)|2

∫ R

0

(
√
βϕ/π + sη)|v′R|2ds

. α−4/3β−2/3|Ẋ(x3)|2(1 +
√
βϕ/η)

= |Ẋ(x3)|2ϕ
(

1

ϕα4/3β2/3
+

1

ϕ1/2α2/3β1/3

)
.
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Figure 3: Construction around a branching point

To prove (7.5) we consider the transport map T (x′, x3) = (X(x3), x3) which gives

W 2
2 (β−1B3, µ) ≤

∫ b

a

β−1

∫
B′(X(x3),

√
βϕ/π)

|x′ −X(x3)|2dx′dx3 = |b− a|βϕ
2

2π
.

We now turn to the construction around branching points. Since the total length around
branching points is small, the construction here does not need to achieve the optimal
constant but only the optimal scaling. The idea of the construction is the following.
We first transform disks into squares, then split the square into two rectangles and then
retransform each rectangle into a disk. The construction is sketched in Figure 3. We start
with the transformation from a rectangle to a disk.

Lemma 7.4. Let a ≤ b ∈ R, γ > 0, X ∈ R2, ϕ > 0, and R ≥ 3. Let then Q ⊆ R2 be a
rectangle with side lengths w and h centered in X, such that wh = βϕ, w/h + h/w ≤ γ
and α−4/3β−2/3 ≤ ϕ. Let as before η := α−2/3β1/6 be the coherence length.

Then there are ρ ∈ L∞(R2×[a, b]; [0, 1]) and B ∈ L2(R2×[a, b];R3) such that divB = 0,
ρB = 0, with B = 0 and ρ = 1 on (R2 \ B′(X, r))× [a, b] for some r ∼ ηR +

√
βϕ, and

F̃
(a,b)
α,β (ρ,B) .

√
ϕ|a− b|R2 +

r2

|a− b|
ϕR2,

where the implicit constants only depend on γ. Further, ρ and B satisfy the boundary
conditions

ρ(x′, a) = v2
R

(
|x′ −X| −

√
βϕ/π

η

)
, ρ(x′, b) = min

{
1,

dist2(x′, Q)

η2

}
,
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Figure 4: The construction in Lemma 7.5 transforms a rectangle into a circle, keeping
det∇′u = 1. Each curve corresponds to a different value of x3, and plots the solution of
r̂(r, θ) = t, which corresponds to r(θ) = t/[λ(x3) cos(θx3)] for θ ∈ (−π/4, π/4).

and
B3(x′, a) = χB′(X,

√
βϕ/π)

(x′) , B3(x′, b) = χQ(x′) .

We note that our assumptions on the parameters w, h, ϕ, just mean w ∼ h ∼
√
βϕ ≥ η.

That is, the thread diameter is large compared to the coherence length. Note that r ∼
ηR+

√
βϕ behaves like the maximum between the thread diameter w ∼ h and the cut-off

scale ηR. The proof of Lemma 7.4 is based on an explicit construction for a bilipschitz
bijection with unit determinant that transforms a rectangle into a circle, which we first
present.

Lemma 7.5. Assume that z−, z+, h, w > 0, X ∈ R2 are given, z− < z+. Then there is
u : R2 × [z−, z+]→ R2 such that

u(x′, z−) = x′ , u(X+(−1

2
w,

1

2
w)×(−1

2
h,

1

2
h), z+) = B′(X,

√
hw/π) , det∇′u = 1 a.e. .

The function x 7→ (u(x), x3) is bilipschitz, its inverse is of the form y 7→ (U(y), y3), and
u(X, x3) = X for all x3. If additionally h/w+w/h ≤ γ, then the bounds |∇′u|+ |∇′U | . 1,
|∂3u|+ |∂3U | . h/|z+ − z−| hold, with constants which only depend on γ.

Proof. By scaling and translation we may assume that hw = π, z+ = 1, z− = 0, X = 0. We
can further assume h = w =

√
π, as the general case is obtained by taking the composition

at each x3 with the linear map diag(g(x3), 1/g(x3)), where g(x3) :=
√
h/w(1 − x3) + x3.

We work in polar coordinates, and construct functions r̂, θ̂ of r, θ and x3 such that

u(r cos θ, r sin θ, x3) = (r̂ cos θ̂, r̂ sin θ̂),

with r ≥ 0 and 0 ≤ θ ≤ π/4, and then extend by symmetry. We set

θ̂ = f(θ, x3) , r̂ = rλ(x3) cos(x3θ),
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where λ and f are two functions still to be determined (see Figure 4). The extension of
the 1

8
−sectors by reflection is feasible provided that f(0, x3) = 0 and f(π/4, x3) = π/4 for

all x3, the boundary data are attained provided that f(θ, 0) = θ, λ(0) = 1, λ(1) = 2/
√
π.

The latter ensures that indeed the straight segment r cos θ = w
2

=
√
π

2
is mapped into the

unit circle r̂ = 1. The determinant condition is equivalent to

1 =
r̂

r
∂rr̂∂θf = λ2(x3) cos2(x3θ)∂θf(θ, x3),

which can be solved (using f(0, x3) = 0) to give

f(θ, x3) :=
1

x3λ2(x3)
tan(θx3) ,

smoothly extended to f(θ, 0) = θ/λ2(0). The condition f(π/4, x3) = π/4 determines λ,

λ(x3) :=

(
tan(πx3/4)

πx3/4

)1/2

,

which obeys λ(1) = 2/
√
π and smoothly extends to λ(0) = 1. Clearly λ ∼ 1 so that

∂θf ∼ 1. This implies that the change of variables defines a smooth deformation of the
1
8
−sector which smoothly depends on x3 ∈ [0, 1].

Proof of Lemma 7.4. After a rotation and a translation, we may assume that X = 0, a = 0
and b > 0; so that Q = (−w/2, w/2)× (−h/2, h/2). We treat two regions separately.

In the lower region R2 × [0, b/2], we interpolate between B′0 := B′(0,
√
βϕ/π) and Q.

To do this, let u and U be the functions from Lemma 7.5, using it for the rectangle Q and
z− = 0, z+ = b/2. The magnetic field is defined by

B3(x) := χB′0(u(x)) , B′(x) := χB′0(u(x))∂3U(u(x), x3) for x3 ∈ [0, b/2] .

The density is defined by

ρ(x) := v2
R

(
|u(x)| −

√
βϕ/π

η

)
for x3 ∈ [0, b/2] .

The condition ρB = 0 follows immediately, as well as the boundary data at x3 = 0. Since
B = 0 and ρ = 1 whenever |u(x)| ≥ ηR +

√
βϕ/π and since |u(x)| ≥ |x′|/‖∇′U‖∞, we

have B = 0 and ρ = 1 whenever |x′| ≥ ‖∇′U‖∞(ηR +
√
βϕ).

In order to check divB = 0, we fix ψ ∈ C1
c (B′r × (0, b/2)). Performing then a change of

variables at each x3 gives, since det∇′U = 1,∫
R2×(0,b/2)

[∂3ψB3 +∇′ψ ·B′] dx =

∫
R2×(0,b/2)

(∂3ψB3 +∇′ψ ·B′)(U(y), y3)dy

=

∫
R2×(0,b/2)

χB′0 [∂3ψ(U(y), y3) + ∂3U(y) · ∇′ψ(U(y), y3))] dy

=

∫
B′0

∫
(0,b/2)

d

dx3

(ψ(U(y), y3))dy3dy
′ = 0 .
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By the properties of u we obtain B3(x′, b/2) = χQ(x′).
In the upper region R2× [b/2, b], we keep B(x′, x3) := e3χQ(x′) concentrated on Q and

linearly interpolate the profile between ρ1/2(x′, b/2) and the profile ρ1/2(x′, b) given in the
statement:

ρ1/2(x) :=
2

b

[
ρ1/2(x′, b/2)(b− x3) + ρ1/2(x′, b)(x3 − b/2)

]
for x3 ∈ (b/2, b) .

It is immediate to check that B3 and ρ match continuously at all interfaces, ρB = 0 and
divB = 0. This concludes the construction.

We estimate the energy similarly to the proof of Lemma 7.3. Lemma 7.5 gives |∇′u| . 1,
|∂3u| . h/b, |∂3U | . h/b, with constants depending only on γ. This yields |B′| . h/b.
Furthermore, by Lemma 7.2 |vR| ≤ 1 and |v̇R| ≤ 2, so that ρ ≤ 1, |∇′ρ1/2| . 1/η and
|∂3ρ

1/2| . h/(ηb).
We start with the region x3 ∈ [0, b/2]. All integrals in x′ can be restricted to the set

Ωx3 := {x′ :
√
βϕ/π ≤ |u(x′, x3)| ≤ ηR +

√
βϕ/π}.

Since det∇u′ = 1, we have

|Ωx3| = |B′(0, ηR +
√
βϕ/π) \ B′0| = πη2R2 + 2

√
βϕπηR . η

√
βϕR2,

(in the last step we used the assumption on ϕ and R ≥ 3). Therefore

F̃
(0,b/2)
α,β (ρ,B) .

∫ b/2

0

∫
Ωx3

(
α−2/3β−1/3

η2
+
h2α−4/3β−2/3

η2b2
+ α2/3β−2/3 +

h2

βb2

)
dx′dx3

.
∫ b/2

0

|Ωx3|dx3

(
α2/3β−2/3 +

h2

βb2

)
.

(
b+

h2

b
α−2/3β−1/3

)
R2√ϕ

.
√
ϕbR2 +

r2

b
ϕR2,

where in the last line we have used that h2 . r2 and α−2/3β−1/3 .
√
ϕ. The region (b/2, b)

is simpler, as the |B′|2 term does not appear, the others are the same with the exception
of |∂3ρ

1/2| . 1/b, which is smaller by the factor η/h . 1.

Using this building block we can finally produce the construction that will be used at
branching points.

Lemma 7.6. Let a < b ∈ R, γ > 0, ` > 0, R ≥ 3, Xi ∈ R2 and ϕi > 0 for i = 0, 1, 2 with
ϕ0 = ϕ1 + ϕ2, ϕ0/ϕ1 + ϕ0/ϕ2 ≤ γ and

√
βϕ0 ≥ η, where as above η := α−2/3β1/6.

Then, if |X0 −X1|, |X0 −X2| ≤ `/4,
√
βϕ0 � |X1 −X2| and ηR � `, then there are

ρ ∈ L∞(R2 × [a, b]; [0, 1]) and B ∈ L2(R2 × [a, b];R3) such that divB = 0, ρB = 0, B = 0
and ρ = 1 on (R2 \ B′(X0, 3`/4))× [a, b],

F̃
(a,b)
α,β (ρ,B) .

√
ϕ0|a− b|R2 +

`2

|a− b|
ϕ0R

2,
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Figure 5: The construction in (b/3, 2b/3)

where the implicit constants only depend on γ, and which satisfy the boundary conditions

ρ(x′, a) = v2
R

(
|x′ −X0| −

√
βϕ0/π

η

)
ρ(x′, b) = min

i=1,2
v2
R

(
|x′ −Xi| −

√
βϕi/π

η

)
,

and
B3(x′, a) = χB′(X0,

√
βϕ0/π)

(x′) , B3(x′, b) =
∑
i=1,2

χB′(Xi,
√
βϕi/π)

(x′) .

Note that our assumptions on the parameters ϕ0, ϕ1, ϕ2 and h just mean that η .√
βϕi � |X1 −X2| . ` and ηR � `. That is, the thread diameter is at least as large as

the coherence length η but small compared to the distance between the threads. Likewise,
` is large compared to the cut-off scale ηR.

Proof. After a translation and a rotation we may assume that a = 0, b > 0, X0 = 0,
X2 −X1 = ζe1, with ζ > 0. Let

w0 := h := (βϕ0)1/2, w1 :=
ϕ1

ϕ0

w0 and w2 :=
ϕ2

ϕ0

w0.

Let then Qi := Xi+[−wi/2, wi/2]×[−h/2, h/2], for i = 0, 1, 2. Notice that since |Xi| ≤ `/4
and wi ≤ w0 = h� `, Qi ⊆ B′(3`/8).
We divide the interval (0, b) in three parts (see again Figure 3). In (0, b/3), we apply Lemma
7.4 to transform B′(

√
βϕ0/π) into Q0 (in particular we have ρ = 1 on

(
R2\B′(3`

4
)
)
×

(0, b/3)). In (b/3, 2b/3), we connect Q0 to Q1 and Q2 by an explicit construction (see
below). Finally, in (2b/3, b) we apply again Lemma 7.4 to transform Q1 and Q2 back into
B′(X1,

√
βϕ1/π) and B′(X2,

√
βϕ2/π). Notice that in (2b/3, b), if ρ(x′, x3) 6= 1 then by

Lemma 7.4 and our hypothesis on the parameters, necessarily

|x′| ≤ max
i
|Xi|+O(ηR +

√
βϕ0) ≤ `

4
+ o(`).

Thus, ρ = 1 on
(
R2\B′(3`

4
)
)
× (2b/3, b).

It only remains to discuss the construction in the central region. Let y1 := X1 + w2e1/2,

y2 := X2−w1e1/2 and, for i = 1, 2, Q̃i := Qi−yi, so that up to a null set, Q0 is the disjoint
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union of Q̃1 and Q̃2 (see Figure 5). Since y2 − y1 = X2 −X1 −w0e1/2, and by assumption
w0 = (βϕ0)1/2 � |X1 −X2|, we have (y2 − y1) · e1 > 0.

For i = 1, 2 and x3 ∈ (b/3, 2b/3) we set Q̃i(x3) := Q̃i + x3−b/3
b/3

yi. Since (y2 − y1) · e1 > 0,

we have Q̃1(x3) ∩ Q̃2(x3) = ∅ for all x3. Furthermore, since Qi ⊆ B′(3`/8), also Q̃i(x3) ⊆
B′(3`/8) for x3 ∈ (b/3, 2b/3). We finally let

ρ1/2(x) := min
{

1, η−1dist(x′, Q̃1(x3) ∪ Q̃2(x3))
}

for x3 ∈ [b/3, 2b/3],

and correspondingly

(B′, B3)(x) :=
∑
i=1,2

(
yi
b/3

, 1

)
χQ̃i(x3)(x

′) .

All admissibility conditions are easily checked. In particular, ρ = 1 if dist(x′, Q̃1∪Q̃2(x3)) ≥
η which holds if |x′| ≥ 3`/4. The energy estimate is immediate.

7.2 Boundary layer

Proposition 7.7. Let N ∈ N, α, β, T, t > 0 be given. Let k := α1/3β2/3T and let
ϕ1, . . . , ϕN2 be positive numbers such that

kϕi ∈ 2πN and
N2∑
i=1

ϕi = 1.

Assume that in the regime β ≤ α, α
√

2/T ≤ 1, we have t � α−1, 1/N & α−2/3β−1/3 and

ϕi ∼ 1/N2 for every i. Then there are ρ and B, admissible for F̃
(0,t)
α,β and k-quantized, such

that

F̃
(0,t)
α,β (ρ,B) . tN +

1

N2t
, (7.6)

α1/3β7/6‖β−1B3 − 1‖2
H−1/2(x3=0) .

β1/3

α1/3
+
β1/2

N2t
+ α1/3β7/6, (7.7)

and, denoting by Qi the squares centered in the N2 points of the square grid of spacing
N−1 with |Qi| = βϕi,

B3(x′, t) =
∑
i

χQi(x
′) and ρ1/2(x′, t) = min{1, η−1dist(x′,∪iQi)} . (7.8)

Note that the assumptions on the parameters N and ϕi mean that the sidelength
√
βϕi

of the squares is larger than the coherence length α−2/3β1/6 (see (3.9)) and that both
of them are small compared to the distance (equal to 1/N) between the squares. The
assumption on the parameter t means that the thickness t of the boundary layer is large
with respect to the coherence length, where we recall that vertical and horizontal lengths
have different units.
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Proof. The key construction is described in [COS16, Lem. 4.7]. However, the notation
and the scalings are different in that paper. Indeed, since there was no need to rescale x3

by the thickness and x′ by the distance between the threads Tα−1/3β−1/6, in that paper
length was measured in terms of the penetration length. We first let ri be a square of side
1/N centered on the square grid of spacing N−1, Qi ⊆ ri be a square with the same center
and area given by |Qi| = βϕi, and bi := βϕiN

2. Denoting with a star the quantities from
[COS16], we set T∗ := Tt/2, κ∗ := α

√
2/T , L∗ := Tα−1/3β−1/6, r∗i := L∗ri, r̂

∗
i := L∗Q

i,
d∗0 := L∗/N , ρ∗0 := β1/2L∗/N , N∗ = N , and b∗i := (|r̂∗i |/|r∗i |)κ∗/

√
2 = biκ∗/

√
2.

[COS16, Lem. 4.7] gives QL∗-periodic fields χ∗ ∈ BVloc(R2 × (0, T∗); {0, 1}) and B∗ =
(B′∗, B

∗
3) ∈ L2

loc(R3;R3) such that divB∗ = 0, B∗(1− χ∗) = 0, and,

χ∗(x
′, T∗) =

∑
i

χr̂∗i (x
′) and B∗3(x′, T∗) =

κ∗√
2

∑
i

χr̂∗i (x
′) for x′ ∈ QL∗ ,

with energy

1

L2
∗

∫
QL∗×(0,T∗)

κ∗|Dχ∗|+|B′∗|2+χ∗

(
B∗3 −

κ∗√
2

)2

dx . Eint
∗ :=

(
κ∗ρ

∗
0T∗√
2

+
κ2
∗(ρ
∗
0d
∗
0)2

2T∗

)(
N

L∗

)2

(7.9)
and

1

L2
∗
‖B∗3 −

∑
i

b∗iχq∗j ‖
2
H−1/2(QL∗ ) . Eext

∗ :=

(
κ∗(ρ

∗
0)2 +

κ2
∗(ρ
∗
0)3d0

T∗

)(
N

L∗

)2

.

We extend χ∗ and B∗ to QL∗ × (T∗, 2T∗) by

χ∗(x) := χ∗(x
′, T∗) and B∗ = (0, B∗3(x′, T∗)) for x′ ∈ QL∗ × (T∗, 2T∗),

so that (7.9) holds in QL∗ × (0, 2T∗). We set

ρ∗(x) := min{1, κ2
∗d(x, ω∗)

2},

where ω∗ = {x : χ∗(x) = 1} (here d(·, ω∗) is the 3D distance, periodic in the tangential
directions). Since ω∗ is invariant in the x3−direction inside (T∗, 2T∗) and since t � α−1,
giving T∗ � κ−1

∗ , for x3 = 2T∗,

min{1, κ2
∗d(x, ω∗)

2} = min{1, κ2
∗dist(x′, ω∗ ∩ {x3 = 2T∗})2} for x = (x′, 2T∗).

Hence,
ρ∗(x

′, 2T∗) = min
i

{
min(1, κ2

∗dist(x′, r̂i∗)
}
.

The same computation as in the proof of [COS16, Th. 4.9] leads to

1

L2
∗

∫
QL∗×(0,2T∗)

|∇ρ1/2
∗ |2 + |B′∗|2 + (B∗3 −

κ∗√
2

(1− ρ∗))2dx . Eint
∗ .
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We scale back in the tangential direction to obtain

ρ(x′, x3) := ρ∗(L∗x
′, x3) and (B′, B3)(x′, x3) :=

√
2

κ∗

(
B′∗
L∗
, B∗3

)
(L∗x

′, x3) .

We have divB = 0 and (7.8) holds. Changing variables gives∇′ρ1/2(x) = L∗∇′ρ1/2
∗ (L∗x

′, x3)

and ∂3ρ
1/2(x) = ∂3ρ

1/2
∗ (L∗x

′, x3), so that

F̃
(0,t)
α,β (ρ,B) ≤ α−4/3β−2/3 1

L2
∗

∫
QL∗×(0,2T∗)

|∇ρ1/2
∗ |2 + |B′∗|2 +

(
B∗3 −

κ∗√
2

(1− ρ∗)
)2

dx

. α−4/3β−2/3Eint
∗ .

Since Eint
∗ = α4/3β2/3(Nt/2 + 2/(N2t)), this concludes the estimate for F̃

(0,t)
α,β .

We now estimate the boundary term. By the embedding of L∞ into H−1/2 (recall that
since

∑
i ϕi = 1,

∫
Q1

∑
i(bi − β)χridx

′ = 0) we have

‖
∑
i

(bi − β)χri‖2
H−1/2(Q1) . ‖bi − β‖

2
∞ .

Rescaling the boundary estimate for B∗3 leads to

‖B3 −
∑
i

biχri‖2
H−1/2(Q1) .

1

L3
∗

2

κ2
∗
‖B∗3 −

∑
i

b∗iχr∗j ‖
2
H−1/2(QL∗ ) .

β7/6

α2/3
+

β4/3

α1/3N2t

Adding terms and using that
∑

i χri ≡ 1, we conclude that

α1/3β7/6‖β−1B3 − 1‖2
H−1/2(Q1) .

β1/3

α1/3
+
β1/2

N2t
+
α1/3

β5/6
‖bi − β‖2

∞ .

7.3 Back to the full GL functional

In this section, we relate the functional F̃α,β, as defined in (7.3–7.4), with the functional

ẼT , as defined in (1.5).

Proposition 7.8. Let k = α1/3β2/3T and let ρ,B be k-quantized admissible functions for
F̃α,β with ρB = 0. Let ω := {ρ = 0} and then for z ∈ (−1, 1), ωz := ω∩{x3 = z}. Assume
that ω is closed, that ωc is connected and that for every x3 ∈ (−1, 1), ωcx3 is also connected.

Then, there is a pair (u,A), admissible for ẼT , such that ρ = |u|2, B = ∇× A, and

ẼT (u,A) = F̃α,β(ρ,B). (7.10)
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Proof. We shall construct a function A on R2×(−1, 1) so that B = ∇×A everywhere, and
then a multivalued function θ on the set Ωc := Z2×{0}+ωc such that ∇θ = β−1kA. Here
B and ρ are Q1-periodic, but A and θ not necessarily. Setting u := ρ1/2eiθ we then have
∇β−1kAu = eiθ∇ρ1/2, which directly implies (7.10). Notice that thanks to the hypothesis
on ω, the set Ωc is a connected open set.

We start from the construction of A. By [COS16, Lem. 4.8] applied to B − βe3 there
is a Q1-periodic potential Aper such that ∇ × Aper = B − βe3 and divA = 0. We define
A(x) := Aper(x)+βx1e2 so that ∇×A = B. We remark that on any open set where B = 0
the vector field A is curl-free and divergence-free, therefore harmonic, and in particular
smooth. In particular, since Ωc is open and since by the Meissner condition, B = 0 in Ωc,
A is smooth in Ωc.

We now turn to the existence of θ. For a fixed level x3, let h+ωix3 , h ∈ Z2, i = 1, ..., I(x3)
be the connected components of (R2 × {x3}) ∩ (Z2 + ωx3). Denote the flux going through
ωix3 by

Φi(x3) :=

∫
ωix3

B3 dx
′.

By assumption we have

β−1kΦi(x3) ∈ 2πZ for every i. (7.11)

Fix a smooth curve Γ0 := {(γ0(x3), x3) : x3 ∈ (−1, 1)} ⊆ Ωc. For x3, y3 ∈ (−1, 1), let
Γx3,y30 := {(γ0(t), t) : t ∈ (x3, y3)} ⊆ Γ0. For x = (γ0(x3), x3), let θ(x) := β−1k

∫
Γ
0,x3
0

A ·
τdH1. Now, for a generic x = (x′, x3) ∈ Ωc, let

θ(x) := θ(γ0(x3), x3) + β−1k

∫
Γx
A · τdH1,

where Γx is any (horizontal) curve in Ωc∩(R2×{x3}) connecting x to (γ0(x3), x3). This gives
a well defined θ : Ωc → R/2πZ since for every closed (horizontal) curve Γ in Ωc∩(R2×{x3}),

β−1k

∫
Γ

A · τdH1 ∈ 2πZ. (7.12)

Indeed, this follows by Stokes’ Theorem and (7.11). Let us show that ∇θ = β−1kA in Ωc.
Let x = (x′, x3) be fixed and let Γx be a fixed simple smooth curve joining x to (γ0(x3), x3)
inside Ωc ∩ (R2 × {x3}). Since Ωc is open, there is a simply connected neighborhood V of
Γx such that V ⊆ Ωc. Let then y = (y′, y3) ∈ V . Upon shrinking V , we may assume that
(γ0(y3), y3) ∈ V . Let Γy ⊆ V be a smooth curve joining y to (γ0(y3), y3) and let Γx,y ⊆ V
be a smooth curve joining x to y. By definition, we have

θ(x) = θ(γ0(x3), x3) + β−1k

∫
Γx
A · τdH1, θ(y) = θ(γ0(y3), y3) + β−1k

∫
Γy
A · τdH1

and

θ(γ0(y3), y3) = θ(γ0(x3), x3) + β−1k

∫
Γ
x3,y3
0

A · τdH1,
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so that

θ(y)− θ(x) = β−1k

∫
Γy
A · τdH1 + β−1k

∫
Γ
x3,y3
0

A · τdH1 − β−1k

∫
Γx
A · τdH1.

However, by Stokes Theorem (and B = 0 in V ),∫
Γy
A · τdH1 +

∫
Γ
x3,y3
0

A · τdH1 −
∫

Γx
A · τdH1 =

∫
Γx,y

A · τdH1,

so that

θ(y)− θ(x) = β−1k

∫
Γx,y

A · τdH1,

proving that indeed, ∇θ = β−1kA in Ωc.

7.4 Proof of the upper bound

We start from a construction for an N -regular measure and finite R.

Proposition 7.9. Let µ ∈ MN
reg(Q1,1) for some N ∈ N, R ≥ 3, and assume (6.1) and

(7.1) hold. Then, there exist sequences un : Q1,1 → C and An : Q1,1 → R3 such that

lim sup
n→+∞

ẼT (un, An) ≤ KR

K∗
I(µ) +

C

N1/2
(1 + I(µ)), (7.13)

with |un| and ∇×An Q1−periodic. Here KR and K∗ are as in Lemma 7.2, C is universal.
Moreover,

lim sup
n→+∞

W 2
2 (β−1

n Bn
3 , µ) . N−3/2. (7.14)

Proof. We first modify slightly µ in order to be able to use Proposition 7.7 for the boundary
layer. Set εN := N−3/2. For x3 ∈ [−1 + εN , 1 − εN ] let µ̂x3 := µx3/(1−εN ) and for x3 ∈
[−1,−1 + εN ] ∪ [1 − εN , 1], let µ̂x3 := µ1 = µ−1 = N−2

∑
l δXl , where the {Xl}N

2

l=1 form a
regular grid with spacing 1/N (recall Def. 5.14). We then have

I(µ̂) ≤ 1

1− εN
I(µ) + 2K∗εNN.

Moreover, since |µ̂|(Q1 × (1− εN , 1)) = εN , the same on the other side, and

W 2
2 ((1− εN)µ, µ̂ (Q1 × (−1 + εN , 1− εN)) . ε2

N ,

so that
W 2

2 (µ, µ̂) . εN + ε2
N . N−3/2,

it is enough to prove the estimates for µ̂ instead of µ.
We start by characterizing the geometry of the construction, which will not depend

on n. The measure µ̂ is supported on finitely many polygonal curves, parametrized by

54



x3

x2

x1

ωi

X1 X2

X0

Γ1 Γ2

Γ0

`

zj + `

zj − `

zj Yj

Figure 6: The construction in (b/3, 2b/3)

Xi : [ai, bi] → Q1, which are disjoint up to the endpoints and carry a flux ϕi > 0. The
endpoints are either on the boundary of Q1,1, or they are triple points. Those on the
boundary constitute a regular grid. We let ϕmin := mini ϕi, ϕmax := maxi ϕi, and γ :=
8ϕmax/ϕmin. Since there are finitely many curves, these quantities are finite and positive.

We define as before ηn := α
−2/3
n β

1/6
n to be the coherence length; by (6.1) we have ηn → 0.

Let yj := (Yj, zj) ∈ Q1,1 denote the internal endpoints of the curves. For ` > 0
sufficiently small one has that, for any j, the only curves which intersect B′`(Yj) × (zj −
`, zj + `) are those with an endpoint in yj. Since yj is a triple point, there are three such
curves Γ0, Γ1 and Γ2, intersecting only at yj. If we let M be the maximal slope of all
curves and t` := `/(8M), then no curve intersects ∂B′`/8(Yj)× (zj − t`, zj + t`) (this means,

they all “exit” from the top and bottom faces). Without loss of generality, we can assume
that (X0, zj − t`) = Γ0 ∩ (B′(Yj, `)× {zj − t`}), (X1, zj + t`) = Γ1 ∩ (B′(Yj, `)× {zj + t`})
and (X2, zj + t`) = Γ2 ∩ (B′(Yj, `)× {zj + t`}) (see Figure 6). By definition of t`, it holds
|X0 − Yj| ≤ `

8
and |Xi −X0| ≤ `

4
for i = 1, 2. We set ωj := B′`(Yj) × (zj − t`, zj + t`) and

let δ` be the minimum distance between any two curves outside ∪jωj.
To explain the strategy, we first carry out a construction which ignores quantization.

For sufficiently large n we have ηnR+
√
ϕmaxβn/π < δ`/2 and can thus use the construction

of Lemma 7.3 in a δ`/2-neighborhood of each curve (outside of ∪jωj), extending by ρn = 1
and Bn = 0 to the complement. In the cylinders ωj, since the geometry is fixed, for n
sufficiently large the conditions

√
βnϕmin ≥ ηn,

√
βnϕmax � |X1 − X2| and ηnR � ` are

satisfied and we can use Lemma 7.6. We then have that ρn = 1 outside B′(X0, 3`/4) ×
(zj − t`, zj + t`) ⊆ ωj.

In order to obtain a quantized field, we define kn as in (7.2), which obeys kn ∈ 2πN
and kn → +∞. Let µ̂n be the kn-quantized approximation of µ̂, as given by Lemma 5.18.
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For sufficiently large n we have 1
2
µ̂ ≤ µ̂n ≤ 2µ̂ and for |x3| ≥ 1− εN ,

µ̂nx3 =
∑
l

ϕnl δXl ,

where |ϕnl − 1/N2| ≤ C(µ̂)/kn, ϕnl ≤ 2/N2. The fluxes ϕni obey 1
2
ϕi ≤ ϕni ≤ 2ϕi.

We then construct Bn and ρn using Lemma 7.3 and Lemma 7.6 as discussed above.
The geometry is the one determined by µ̂. In particular, the points yj, and the constants
M , ϕmin, ϕmax, δ` and t` do not depend on n, and only δ` and t` depend on `. Adding
terms gives for sufficiently large n (as a geometry dependent function of ` and R)

F̃
(−1,1)
αn,βn

(ρn, Bn) ≤
∑
i

(
1 +

C

(ϕni α
4/3
n β

2/3
n )1/2

+
C

ϕni α
4/3
n β

2/3
n

)∫ bi

ai

(
KR

√
ϕni + ϕni |Ẋi|2

)
dx3

+ C(γ)
∑
j

√
ϕmaxt`R

2 +
`2

t`
ϕmaxR

2,

where the first sum runs over all curves and the second over the cylinders and where
C(γ) > 0 is a constant depending on γ. In the limit n → +∞ we have ϕni → ϕi,
α2
nβn → +∞ and therefore, inserting the definition of t`,

lim sup
n→+∞

F̃
(−1,1)
αn,βn

(ρn, Bn) ≤
∑
i

∫ bi

ai

(
KR
√
ϕi + ϕi|Ẋi|2

)
dx3 + C(γ)R2`

∑
j

(√
ϕmax

M
+Mϕmax

)
.

The sum over j depends only on µ̂. Therefore if ` is chosen sufficiently small we have

lim sup
n→+∞

F̃
(−1,1)
α,β (ρn, Bn) ≤ KR

K∗
I(µ) +

1

N1/2
.

Moreover, thanks to (7.5) and Lemma 5.18, we have

W 2
2 (β−1

n Bn
3 , µ̂) . W 2

2 (β−1
n Bn

3 , µ̂
n) +W 2

2 (µ̂, µ̂n)

. C(µ̂)βn + t` ]{Yj}+ C(µ̂)k−1
n

. C(µ̂)βn +
`

M
]{Yj}+ C(µ̂)k−1

n .

Again, since ]{Yj}/M only depends on µ̂, if we choose ` sufficiently small then

lim sup
n→+∞

W 2
2 (β−1

n Bn
3 , µ̂) ≤ N−3/2. (7.15)

We finally address the boundary layer, focusing for definiteness on the side x3 > 0. We
first apply once more Lemma 7.4 to each curve for x3 ∈ (1 − εN , 1 − εN/2), so that the
resulting fields Bn and ρn obey for all x3 ∈ (1− εN/2, 1),

Bn(x) =
∑
l

e3χQl(x
′) and ρn(x) = min{1, η−1

n dist(x′,∪lQl)},
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where Ql are squares centered in the N2 points Xl with |Ql| = βϕnl , and |ϕnl − 1/N2| ≤
C(µ̂)/kn. Then we modify ρn and Bn in the set x3 ∈ (1 − εN/2, 1) using Proposition 7.7.
This results in new fields ρ̂n, B̂n which obey

F̃
(1−εN/2,1)
αn,βn

(ρ̂n, B̂n)+α1/3
n β7/6

n ‖β−1
n (B̂n)3−1‖2

H−1/2(x3=1) .
1

N1/2
+
β

1/3
n

α
1/3
n

+
β

1/2
n

N1/2
+
α

1/3
n

β
5/6
n

C(µ̂)N4

k2
n

.

By (6.1) and (7.2) all terms up to the first one tend to zero as n→ +∞. Therefore

lim sup
n→+∞

F̃αn,βn(ρ̂n, B̂n) ≤ KR

K∗
I(µ̂) +

C

N1/2
.

Finally, we pass from (ρ̂n, B̂n) to (un, An) via Proposition 7.8 and conclude the proof of
(7.13). We also obtain (7.14) since

W 2
2 (β−1

n (B̂n)3, µ̂) . W 2
2 (β−1

n Bn
3 , µ̂) +N−3/2.

It only remains to combine the different steps.

Proof of Proposition 7.1. By density (Theorem 5.15) there is a sequence µN ∈MN
reg(Q1,1)

of N -regular measures converging weakly to µ, with lim supN→+∞ I(µN) ≤ I(µ). Fix R ≥ 3
and let (uNn , A

N
n ) be as in Proposition 7.9. Taking a diagonal subsequence (first with N ,

then with R) we obtain

lim sup
n→+∞

ẼT (uN(n)
n , AN(n)

n ) ≤ I(µ),

and β−1
n (B

N(n)
n )3 ⇀ µ. From the compactness statement of Proposition 6.1 and uniqueness

of m one obtains β−1
n (B

N(n)
n )′ ⇀ m and β−1

n (1− |uN(n)
n |2) ⇀ µ.

Acknowledgment

M. G. thanks E. Esselborn, F. Barret and P. Bella for stimulating discussions about optimal
transportation, and the FMJH PGMO fundation for partial support through the project
COCA. The work of S.C. was partially supported by the Deutsche Forschungsgemeinschaft
through the Sonderforschungsbereich 1060 “The mathematics of emergent effects”.

References

[ACO09] G. Alberti, R. Choksi, and F. Otto. Uniform energy distribution for an isoperi-
metric problem with long-range interactions. J. Amer. Math. Soc., 22:569–605,
2009.

57



[AFP00] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. Oxford University
Press, New York, 2000.

[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and
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