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QUANTUM ERGODICITY ON GRAPHS : FROM SPECTRAL TO

SPATIAL DELOCALIZATION

NALINI ANANTHARAMAN AND MOSTAFA SABRI

Abstract. We prove a quantum-ergodicity theorem on large graphs, for eigenfunctions
of Schrödinger operators in a very general setting. We consider a sequence of finite
graphs endowed with discrete Schrödinger operators, assumed to have a local weak limit.
We assume that our graphs have few short loops, in other words that the limit model
is a random rooted tree endowed with a random discrete Schrödinger operator. We
show that absolutely continuous spectrum for the infinite model, reinforced by a good
control of the moments of the Green function, imply “quantum ergodicity”, a form of
spatial delocalization for eigenfunctions of the finite graphs approximating the tree. This
roughly says that the eigenfunctions become equidistributed in phase space. Our result
applies in particular to graphs converging to the Anderson model on a regular tree, in
the régime of extended states studied by Klein and Aizenman–Warzel.

1. Introduction

1.1. The problem. Consider a very large, but finite, graph G = (V,E). Are the eigen-
functions of its adjacency matrix localized, or delocalized ? These words are used in a
variety of contexts, with several different meanings.

For discrete Schrödinger operators on infinite graphs (e.g. for the celebrated Ander-
son model describing the metal-insulator transition), localization can be understood in a
spectral, spatial or dynamical sense. Given an interval I ⊂ R, one can consider

• spectral localization : pure point spectrum in I,
• exponential localization : the corresponding eigenfunctions decay exponentially,
• dynamical localization : an initial state with energy in I which is localized in a
bounded domain essentially stays in this domain as time goes on.

On the opposite, delocalization may be understood at different levels :

• spectral delocalization : purely absolutely continuous spectrum in I,
• ballistic transport : wave packets with energies in I spread on the lattice at a
specific (ideally, linear) rate as time goes on.

In this paper we want to discuss a notion of spatial delocalization. Since the wavefunctions
corresponding to absolutely continuous spectrum are not square summable, a natural
interpretation of spatial delocalization is to consider a sequence of growing “boxes” or finite
graphs (GN ) approximating the infinite system in some sense, and ask if the eigenfunctions
on (GN ) become delocalized as N → ∞. Can they concentrate on small regions, or, on
the opposite, are they uniformly distributed over (GN ) ? Large, finite graphs are also a
subject of interest on their own. Actually, an infinite system is often an idealized version
of a large finite one.

Localization/delocalization of eigenfunctions is believed to bear some relation with spec-
tral statistics : localization is supposedly associated with Poissonian spectral statistics,
whereas delocalization should be associated with Random Matrix statistics (GOE/GUE).
In the field of quantum chaos, the former notion is often associated with integrable dy-
namics and the latter with chaotic dynamics [18, 19, 20]. However, specific examples show
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that the relation is not so straightforward [40, 41, 35] Understanding how far one can push
these ideas is one amongst many reasons for studying models of large graphs [32, 42, 43].

Recently, the question of delocalization of eigenfunctions of large matrices or large
graphs has been a subject of intense activity. Let us mention several ways of testing
delocalization that have been used. Let MN be a large symmetric matrix of size N ×N ,
and let (ψj)

N
j=1 be an orthonormal basis of eigenfunctions. The eigenfunction ψj defines

a probability measure
∑N

x=1 |ψj(x)|2δx. The goal is to compare this probability measure
with the uniform measure, which puts mass 1/N on each point.

• ℓ∞ norms : Can we have a pointwise upper bound on |ψj(x)|, in other words, is

‖ψj‖∞ small, and how small compared with 1/
√
N ?

• ℓp norms: Can we compare ‖ψj‖p with N1/p−1/2 ? In [2], a state ψj is called

non-ergodic (and multi-fractal) if ‖ψj‖p behaves like Nf(p) with f(p) 6= 1/p− 1/2.
Related criteria appear in [5].

• Scarring : Can we have full concentration (
∑

x∈Λ |ψj(x)|2 ≥ 1 − ǫ) or partial
concentration (

∑
x∈Λ |ψj(x)|2 ≥ ǫ) with Λ a set of “small” cardinality ? We borrow

the term “scarring” from the term used in the theory of quantum chaos [40].
• Quantum ergodicity : Given a function a : {1, . . . , N} −→ C, can we compare∑

x a(x)|ψj(x)|2 with 1
N

∑
x a(x) ? This criterion, borrowed again from quantum

chaos, was applied to discrete regular graphs in [9, 7]. Quantum ergodicity means
that the two averages are close for most j. If they are close for all j, one speaks
of quantum unique ergodicity.

As was demonstrated in a recent series of papers by Yau and co-authors, adding some
randomness may allow to settle the problem completely, proving for instance almost sure
optimal ℓ∞-bounds and quantum unique ergodicity for various models of random matrices
and random graphs, such as Wigner matrices, sparse Erdös-Rényi graphs, random regular
graphs of slowly increasing or bounded degrees [29, 30, 22, 28, 13, 14, 15]. The invariance of
the probability distribution under certain elementary transformations plays an important
role. The completely different point of view adopted in [23, 9] is to consider deterministic
graphs and to prove delocalization as resulting directly from the geometry of the graphs.
Up to now, in this deterministic setting, only eigenfunctions of the adjacency matrix of
regular graphs have been treated, taking advantage of the completely explicit Fourier
analysis on regular trees. The papers [9, 24, 7] give various proofs of quantum ergodicity;
the paper [23] proves the absence of scarring on sets of cardinality N1−ǫ and also contains
(although not stated) a logarithmic upper bound on the ℓ∞ norms.

The aim of this paper is to prove a quantum ergodicity theorem for eigenfunctions of
discrete Schrödinger operators on quite general large graphs. As we will see, a particularly
interesting point of our result is that it gives a direct relation between spectral delocalization
of infinite systems and spatial delocalization of large finite system. Our result may be
summarized as follows (with proper additional assumptions to be described later) :

“If a large finite system is close (in the Benjamini-Schramm topology) to an infinite sys-
tem having purely absolutely continuous spectrum in an interval I, then the eigenfunctions
(with eigenvalues lying in I) of the finite system satisfy quantum ergodicity.”

1.2. The results. Consider a sequence of connected graphs without self-loops and mul-
tiple edges (GN )N∈N. We assume each vertex has at least 3 neighbours. It will be conve-

nient to write GN as a quotient of a tree fiGN by a group of automorphisms ΓN , that is,

GN = ΓN\fiGN , where ΓN acts freely on the vertices offiGN , i.e. given v ∈fiGN , γ1v = γ2v

implies γ1 = γ2. In other words,fiGN is the “universal cover” of GN . We will work under

the assumption that the degree offiGN is everywhere smaller than some fixed D.



FROM SPECTRAL TO SPATIAL DELOCALIZATION 3

We denote by ṼN and ẼN the set of vertices and edges offiGN , respectively. We denote
by VN and EN the vertices and edges of GN , respectively. We assume |VN | = N and work
in the limit N −→ ∞.

Define the adjacency operator ‹AN : C›GN → C
›GN by

( ‹ANf)(v) =
∑

w∼v

f(w) ,

where v ∼ w means v and w are nearest neighbours. The operator ‹AN is bounded on

ℓ2(fiGN ). It also preserves the space of ΓN -invariant functions on ṼN , in other words it
defines an operator on ℓ2(VN ), that we denote by AN (we will drop the index N and

write ‹A,A when no confusion may arise). Consider a bounded function fiWN : ṼN −→ R

such that fiWN (γ · v) = fiWN (v) for all γ ∈ ΓN . The operator of multiplication by fiWN is

bounded on ℓ2(fiGN ); it also preserves the space of ΓN -invariant functions on ṼN , thus it
defines an operator on ℓ2(VN ), that we denote by WN . We define the discrete Schrödinger

operators ‹HN = ‹AN +fiWN and HN = AN +WN . The central object of our study are
the eigenfunctions of HN , and their behaviour (localized/delocalized) as N −→ +∞. The
fact that ΓN acts freely implies that HN is symmetric (self-adjoint) on ℓ2(VN ).

For comfort, we will always work under the assumption that WN takes values in some
fixed interval [−A,A]. This implies that the spectrum of all operators we will encounter
is contained in some fixed interval I0 = [−A−D,A+D].

We define the Laplacian PN : CVN → C
VN by

(1.1) (PNf)(x) =
1

dN (x)

∑

y∼x

f(y) ,

where dN (x) stands for the number of neighbours of x. If we introduce the positive measure
on VN assigning to x the weight dN (x), then PN is self-adjoint on ℓ2(VN , dN ).

We shall assume the following conditions on our sequence of graphs:

(EXP) The sequence (GN ) forms an expander family. By this we mean that the
Laplacian PN has a uniform spectral gap in ℓ2(VN , dN ). More precisely, the eigenvalue 1
of PN is simple, and the spectrum of PN is contained in [−1+β, 1−β]∪{1}, where β > 0
is independent of N .

Note that 1 is always an eigenvalue, corresponding to constant functions. Our assump-
tion implies in particular that each GN is connected and non-bipartite. It is well-known
that a uniform spectral gap for PN is equivalent to a Cheeger constant bounded away from
0 (see for instance [26], §3).

Our second assumption is that (GN ) has few short loops:

(BST) For all r > 0,

lim
N→∞

|{x ∈ VN : ρGN
(x) < r}|

N
= 0 ,

where ρGN
(x) is the injectivity radius at x, i.e. the largest ρ such that the ball BGN

(x, ρ)
is a tree.

The general theory of Benjamini-Schramm convergence (or local weak convergence),
briefly recalled in Appendix A, allows us to assign a limit object to the sequence (GN ,WN ),
which is a probability distribution carried on trees. More precisely, up to passing to a
subsequence, assumption (BST) above is equivalent to the following assumption.

(BSCT) The sequence (GN ,WN ) has a local weak limit P which is concentrated on

the set of (isomorphism classes of) coloured rooted trees, denoted T
D,A
∗ .
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Assumption (BSCT) says that (GN ,WN ) converges in a distributional sense to a ran-
dom system of rooted trees {[T , o]}, endowed with a map W : T −→ R. More precisely,
the empirical measure of (GN ,WN ), defined by choosing a root x ∈ VN uniformly at
random, converges weakly to a probability measure P concentrated on trees.

If [T , o,W] ∈ T
D,A
∗ and A is the adjacency matrix of T , we denote by H = A+W the

limiting random Schrödinger operator, which is self-adjoint on ℓ2(T ).

Call (λ
(N)
j )Nj=1 the eigenvalues of HN on ℓ2(VN ). Assumption (BSCT) implies the

convergence of the empirical law of eigenvalues : for any continuous χ : R −→ R, we have

(1.2)
1

N

N∑

j=1

χ(λ
(N)
j ) −→

N−→+∞
E (〈δo, χ(H)δo〉) =: ρ(χ) ,

see Remark A.3. Here E is the expectation with respect to P, that is,

E(f) =

∫

T
D,A
∗

f([T , o,W]) dP([T , o,W]) .

The measure ρ is called the integrated density of states in the theory of random Schrödinger
operators.

We need some notation for our last assumption. Let [T , o,W] ∈ T
D,A
∗ . Given x, y ∈ T ,

and γ ∈ C \R, we introduce the Green function

Gγ(x, y) = 〈δx, (H− γ)−1δy〉ℓ2(T ) .

Given v,w ∈ T with v ∼ w, we denote by T (v|w) the tree obtained by removing from the
tree T the branch emanating from v that passes through w. We define the restriction
H(v|w)(u, u′) = H(u, u′) if u, u′ ∈ T (v|w) and zero otherwise. The corresponding Green

function is denoted by G(v|w)(·, ·; γ). We then put ζ̂γw(v) := −G(v|w)(v, v; γ).

(Green) There is a non-empty open set I1, such that for all s > 0 we have

sup
λ∈I1,η0∈(0,1)

E

( ∑

y:y∼o

| Im ζ̂λ+iη0
o (y)|−s

)
<∞ .

To understand (Green), define the (rooted) spectral measure of [T , o,W] ∈ T
D,A
∗ by

(1.3) µo(J) = 〈δo, χJ(H)δo〉 for Borel J ⊆ R .

Assumption (Green) implies that supλ∈I1,η0>0 E(|Gγ(o, o)|2) < ∞; see Remark A.4. As

shown in [33], this implies that for P-a.e. [T , o,W] ∈ T
D,A
∗ , the spectral measure µo is

absolutely continuous in I1, with density 1
π ImGλ+i0(o, o). Hence, (Green) implies that

P-a.e. operator H has purely absolutely continuous spectrum in I1. This is a natural
assumption since our aim is to prove delocalization properties of eigenfunctions.

Now let (ψ
(N)
j )Nj=1 be an orthonormal basis of ℓ2(VN ) consisting of eigenfunctions of

HN . Pick j ∈ {1, . . . , N}. The problem of quantum ergodicity is to understand if the

probability measure
∑

x∈VN
|ψ(N)

j (x)|2δx on VN is “localized” (essentially carried by o(N)

vertices) or “delocalized” (ideally, close to the uniform measure on VN , or maybe, to
some other natural measure on VN , comparable to the uniform measure). More generally,

we want to know if the correlations ψ
(N)
j (x)ψ

(N)
j (y), for x and y ∈ VN at some fixed

distance, approach some limiting object. From a mathematical point of view, the question
was addressed in [9, 24] for eigenfunctions of the adjacency matrix of large deterministic
regular graphs, and for the adjacency matrix of random regular graphs or Erdös-Rényi
graphs in the recent works [28, 13, 14, 15]. The main motivation of our paper is to extend
the results of [9] to disordered systems, that is, to non-regular graphs, possibly with a
potential on the vertices or weights on the edges. This necessarily requires a different
method from that of [9], that was specific to regular graphs. New methods to prove
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quantum ergodicity were already explored in [7]. We insist on the fact that, contrary to
[28, 13, 14, 15, 31], our sequence of graphs and potentials are deterministic. The results
may in particular be applied to random graphs and/or random potentials, provided one
knows that Assumptions (EXP), (BSCT) and (Green) hold true for some realizations.
We discuss the relation with existing work more extensively in Section 1.5.

Let us state the main abstract result; its concrete meaning will be explored afterwards.

For x, y ∈ ‹VN , and γ ∈ C \R, we introduce the lifted Green function

(1.4) g̃γN (x, y) = 〈δx, (‹HN − γ)−1δy〉ℓ2(ṼN )
.

Recall that we write GN as a quotient ΓN\‹GN where ‹GN is a tree. We denote by DN

a fundamental domain of the action of ΓN on the vertices of ‹GN . Thus DN contains N
vertices of ‹GN , each of them projecting to a distinct vertex of GN .

Let I1 be the open set of Assumption (Green), and let us fix an interval I (or finite
union of intervals) such that Ī ⊂ I1.

Theorem 1.1. Assume that (GN ,WN ) satisfies (BSCT), (EXP) and (Green).

Call (λ
(N)
j )Nj=1 the eigenvalues of HN on ℓ2(VN ), and let (ψ

(N)
j )Nj=1 be a corresponding

orthonormal eigenbasis.
For each N , let a = aN be a function on VN with supN supx∈VN

|aN (x)| ≤ 1. For

γ ∈ C \R, define 〈a〉γ =
∑

x∈VN
a(x)ΦN

γ (x̃, x̃), where ΦN
γ (x̃, x̃) =

Im g̃γN (x̃,x̃)∑
x̃∈DN

Im g̃γN (x̃,x̃)
. Then

lim
η0↓0

lim
N→+∞

1

N

∑

λ
(N)
j ∈I

∣∣∣∣∣∣
∑

x∈VN

a(x)|ψ(N)
j (x)|2 − 〈a〉

λ
(N)
j +iη0

∣∣∣∣∣∣
= 0 .

Here, x̃ ∈ ‹VN is a lift of x ∈ VN .

Corollary 1.2. Under the same assumptions, for any ǫ > 0, we have

1

N
#



λ

(N)
j ∈ I :

∣∣∣∣∣∣
∑

x∈VN

a(x)|ψ(N)
j (x)|2 − 〈a〉

λ
(N)
j +iη0

∣∣∣∣∣∣
> ǫ



 −→

N→+∞, η0↓0
0 .

More generally, we have the following result on eigenfunction correlators, which says
that ψj(x)ψj(y) “approaches” the real-valued function ΦN

λj+i0(x̃, ỹ). For technical reasons

we have to assume the (ψj) are real-valued. More precisely, we need ψj(x)ψj(y) to be real
for any j = 1, . . . , N and x, y ∈ VN with x ∼ y. This assumption can be discarded if one
has a uniform control over E[

∑
y∼o |1 − |ζ̂γo (y)ζ̂γy (o)|2|−s]; this is possible in particular for

the models treated in [7].

Theorem 1.3. Assume that (GN ,WN ) satisfies (BSCT), (EXP) and (Green).

Call (λ
(N)
j )Nj=1 the eigenvalues of HN on ℓ2(VN ), and let (ψ

(N)
j )Nj=1 be a corresponding

orthonormal eigenbasis. Assume the (ψj)
N
j=1 are real-valued.

Fix R ∈ N. For each N , let K = KN be an operator on ℓ2(VN ) whose kernel K =
KN : VN × VN −→ C is such that K(x, y) = 0 for d(x, y) > R (so that K is supported at
distance ≤ R from the diagonal). Assume that supN supx,y∈VN

|KN (x, y)| ≤ 1.
For γ ∈ C \ R, define

(1.5) 〈K〉γ =
∑

x̃∈DN ,ỹ∈ṼN

K(x̃, ỹ)ΦN
γ (x̃, ỹ) where ΦN

γ (x̃, ỹ) =
Im g̃γN (x̃, ỹ)∑

x̃∈DN
Im g̃γN (x̃, x̃)

.

Then

lim
η0↓0

lim
N→+∞

1

N

∑

λ
(N)
j ∈I

∣∣∣∣〈ψ
(N)
j ,Kψ

(N)
j 〉ℓ2(VN ) − 〈K〉

λ
(N)
j +iη0

∣∣∣∣ = 0 .
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The “kernel” above is the matrix of K in the basis (δx), i.e. K(x, y) = 〈δx,Kδy〉ℓ2(VN ).

To define (1.5) properly, we “lift” K to ‹VN × ‹VN by letting

(1.6) K(x̃, ỹ) = K(x, y)1ldist
G̃N

(x̃,ỹ)≤R

if x, y ∈ VN = ΓN\‹VN are the projections of x̃, ỹ ∈ ‹VN .
If we know in addition that ρ(∂I1) = 0, where ρ is the integrated density of states

measure (1.2), then our main theorems hold with I replaced by I1; see the end of Section 10.
This is true in particular if (Green) holds on I1.

Although we tend to skip it from the notation, the “observables” K and a necessarily
depend on N . On the other hand, they do not depend on j, the index of the eigenfunction

(they are actually allowed to depend on λ
(N)
j in the proof, but this dependence cannot be

wild, it has to be at least continuous). We interpret Corollary 1.2 as follows : for a given

observable a, the average
∑

x∈VN
a(x)|ψ(N)

j (x)|2 is close to 〈a〉
λ
(N)
j +iη0

for most indices

j. It follows similarly from Theorem 1.3 that
∑

x,y∈VN
K(x, y)ψ

(N)
j (x)ψ

(N)
j (y) is close to

〈K〉
λ
(N)
j +iη0

for most j. One of the subtleties of the result is that the indices j for which

this holds may a priori depend on the observables a, K. If we wanted to have a common
set of indices j that do the job for all observables (whose number is exponential in N),
we would need to have an exponential rate of convergence in Theorems 1.1, 1.3. As is
seen in the case of regular graphs and W = 0 [7], our proof gives a rate that is at best a
negative power of the girth, which is itself typically of order logN . So, the result is far

from showing that |ψ(N)
j (x)|2 is close to the uniform measure in total variation.

Note the presence of the extra parameter η0, in comparison with the case of regular
graphs [9, 7]. This is due to the fact that, generally speaking, the quantities 〈a〉

λ
(N)
j +iη0

and 〈K〉
λ
(N)
j +iη0

are not necessarily bounded as η0 ↓ 0 for fixed N . They will however stay

bounded in the limits N → +∞ followed by η0 ↓ 0 (as a result of (A.13) and (Green)).

1.3. Understanding the weighted averages. In order to clarify the relevance of Theo-
rems 1.1 and 1.3, we now investigate the meaning of the quantities 〈a〉λ+iη0 and 〈K〉λj+iη0 .
Let us start with Theorem 1.1. A good illustration is to choose aN = 1lΛN

, the character-
istic function of a set ΛN ⊂ VN of size ≈ αN for some α ∈ (0, 1), say α = 1

2 .
In the special case where (GN ) is regular and HN = AN , and also for the anisotropic

model treated in [7], the Green function g̃γN (x̃, ỹ) does not depend on N , as it coincides
with the limiting Green function Gγ(x̃, ỹ). Moreover, Gγ(x̃, x̃) = Gγ(o, o) for all x̃ ∈ DN .

It follows that 〈1lΛN
〉λj+iη0 =

∑
x∈ΛN

Gλj+iη0(o,o)

NGλj+iη0 (o,o)
= α. So Corollary 1.2 implies that

‖1lΛN
ψ
(N)
j ‖2 ≈ α for most ψ

(N)
j . This shows that most ψ

(N)
j are uniformly distributed, in

the sense that if we consider any ΛN ⊂ VN containing half the vertices, we find half the

mass of ‖ψ(N)
j ‖2. As we show in the next subsection, such interpretation is also valid for

the Anderson model.
For general models, we cannot assert that 〈1lΛN

〉λ+iη0 = α. Still, we prove in Section A.3
that there exists cα > 0 such that for any ΛN ⊂ VN with |ΛN | ≥ αN , we have

(1.7) inf
η0∈(0,1)

lim inf
N−→∞

inf
λ∈I1

〈1lΛN
〉λ+iη0 ≥ 2cα .

Combined with Corollary 1.2, this implies

Corollary 1.4. For any α ∈ (0, 1), there exists cα > 0 such that for any ΛN ⊂ VN with
|ΛN | ≥ αN , we have

1

N
#

ß
λ
(N)
j ∈ I :

∥∥∥1lΛN
ψ
(N)
j

∥∥∥
2
< cα

™
−→

N−→+∞
0 .
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Hence, while in the simple case had ‖1lΛN
ψ
(N)
j ‖2 ≈ α for most ψ

(N)
j , in the general

case, we can still assert that ‖1lΛN
ψ
(N)
j ‖2 ≥ cα > 0 for most ψ

(N)
j . This indicates that

our theorem can truly be interpreted as a delocalization theorem. The bad indices j (for

which ‖1lΛN
ψ
(N)
j ‖2 < cα) will a priori depend on ΛN .

We now turn to the general averages 〈K〉γj . Recall that ΦN
γ (x̃, ỹ) =

Im g̃γ
N
(x̃,ỹ)∑

x̃∈DN
Im g̃γN (x̃,x̃)

.

We will show in Section A.3 that under assumption (BSCT), we have

(1.8)
1

N

∑

x∈VN

Im g̃λ+iη0
N (x, x) −→

N−→+∞
E

Ä
ImGλ+iη0(o, o)

ä

uniformly in λ ∈ I0. This already shows that ΦN
γ (x̃, ỹ) is of order 1/N , since the denomi-

nator in its expression is of order N . We strengthen this observation by proving that for
any continuous F : R → R, we have uniformly in λ ∈ I0,
(1.9)

1

N

∑

x∈VN

∑

y,d(y,x)=k

F
Ä
NΦN

λ+iη0(x̃, ỹ)
ä

−→
N−→+∞

E

Ñ
∑

v,d(v,o)=k

F

Ç
ImGλ+iη0(o, v)

E (ImGλ+iη0(o, o))

åé
.

This says that the empirical distribution of
Ä
NΦN

γ (x̃, ỹ)
ä
(when x is chosen uniformly

at random in VN and y is then chosen uniformly among the points at distance k from

x) converges to the law of
(

ImGγ(o,v)
E(ImGγ(o,o))

)
(v being chosen uniformly among the points at

distance k from the root o). This is a second way of saying that ΦN
γ (x̃, ỹ) is of order 1/N :

when multiplied by N , it has a non-trivial limiting distribution.

1.4. Case of the Anderson model. It is important to check that the models covered
by the assumptions of our main theorems are not reduced to the case of the laplacian
on regular graphs, already treated in [9, 24, 7]. Here we consider the important case of
the Anderson model on regular graphs, i.e. the laplacian with a random potential. We
will show that, if the strength of the disorder is small enough, then the assumptions of
Theorem 1.1 and 1.3 are satisfied for almost every realization of the potential.

Let Tq be the (q + 1)-regular tree. Let ν be a probability measure on R, supported
on [−A,A], and for every ǫ > 0 let νǫ be the image of ν under the homothety x 7→ ǫx
(νǫ is now supported on [−ǫA, ǫA]). Let Ω = R

Tq , and define Pǫ on Ω by Pǫ = ⊗v∈Tq νǫ.
Given ω = (ωv) ∈ Ω, define W ω(v) = ωv for v ∈ Tq. Then the {ωv}v∈Tq are i.i.d. random
variables with common distribution νǫ. Here ǫ ∈ R is fixed and parametrizes the strength
of the disorder.

Let GN = (VN , EN ) be a (deterministic) sequence of (q+1)-regular graphs with |VN | =
N . This means that ‹GN = Tq for all N . Let ΩN = R

VN and Pǫ
N = ⊗x∈VN

νǫ on ΩN .

We denote ‹Ω =
∏

N∈N ΩN and let Pǫ be any probability measure on ‹Ω having Pǫ
N as a

marginal on the factor ΩN . Given (ωN )N∈N ∈ ‹Ω, so that ωN = (ωx)x∈VN
∈ ΩN , we define

W ωN (x) = ωx for x ∈ VN .
The results of this section are proved in a companion paper [11].

Proposition 1.5. Suppose (GN ) satisfies (BST). Then (BSCT) holds for Pǫ-almost

every realization of the potential. More precisely, for Pǫ-a.e. (ωN ) ∈ ‹Ω, the sequence
(GN ,W

ωN ) has a local weak limit Pǫ which is concentrated on {[Tq, o,W ω] : ω ∈ Ω},
where o ∈ Tq is fixed and arbitrary. The measure Pǫ acts by taking the expectation w.r.t.
Pǫ, that is, if D = q + 1, then
∫

G
D,ǫA
∗

f([G, v,W ]) dPǫ([G, v,W ]) =

∫

Ω
f([Tq, o,W ω]) dPǫ(ω) = Eǫ[f([Tq, o,W ω])] .
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From now on we make the following assumption on the random variables:

(POT) The measure ν is Hölder continuous, i.e. there exist Cν > 0 and b ∈ (0, 1] such
that ν(I) ≤ Cν |I|b for all bounded I ⊂ R.

The following proposition is by no means trivial, it comes from the results of [33, 4].

Proposition 1.6. Fix 0 < λ0 < 2
√
q. There exists ǫ(λ0) such that if |ǫ| < ǫ(λ0), then

assumption (Green) holds for the measure Pǫ of Proposition 1.5 on I1 = (−λ0, λ0).
Corollary 1.7. If the graphs GN form an expander family and satisfy (BST) and if the
disorder ǫ is small enough, the conclusions of Theorems 1.1 and 1.3 hold true for Pǫ-a.e.

realization (ωN ) ∈ ‹Ω, with I1 = (−λ0, λ0).
This gives a rich enough family of examples where the assumptions of Theorems 1.1

and 1.3 hold true. Thus the conclusions of the theorems hold for any observables aN ,KN .
If in addition KN is independent on the disorder, some extra averaging takes place, and
we may replace 〈K〉λ+iη0 by a simpler average as follows.

Theorem 1.8. Assume that (POT), (EXP) and (BST) hold. Given (ωN ) ∈ ‹Ω, let
(ψωN

i )Ni=1 be an orthonormal basis of eigenfunctions of Hω
N = AN +W ωN in ℓ2(VN ), with

corresponding eigenvalues (λωN
i )Ni=1.

Let KN : VN × VN → C, supN supx,y∈VN
|KN (x, y)| ≤ 1, KN (x, y) = 0 if d(x, y) > R,

and assume KN is independent of (ωN ). Fix 0 < λ0 < 2
√
q. If |ǫ| < ǫ(λ0), we have for

Pǫ-a.e. (ωN ),

lim
η0↓0

lim
N→∞

1

N

∑

λ
ωN
i ∈(−λ0,λ0)

∣∣∣〈ψωN
i ,KNψ

ωN
i 〉 − 〈KN 〉η0

λ
ωN
i

∣∣∣ = 0 ,

where for γ ∈ C \R

(1.10) 〈K〉η0λ =
∑

x,y∈VN

K(x̃, ỹ)‹Φγ(x̃, ỹ) and ‹Φγ(x̃, ỹ) =
1

N
· Eǫ[ImGγ(x̃, ỹ)]

Eǫ[ImGγ(o, o)]
.

As in the previous theorems, if R = 0, the ψj are arbitrary, while if R > 0, we assume
the ψj are real-valued.

For the Anderson model, Eǫ (ImGγ(v,w)) depends only on d(v,w) : Eǫ (ImGγ(v,w)) =
Eǫ (ImGγ(o, u)) where u is any vertex of Tq such that d(o, u) = d(v,w).

In the special case R = 0, we have 〈aN 〉η0λ = 1
N

∑
x∈VN

a(x). So choosing aN = 1lΛN
,

Theorem 1.8 implies the strong form of delocalization given by the uniform distribution

of ψ
(N)
j on VN , as explained in Section 1.3.

1.5. Relation with previous work . Our main Theorem 1.3 holds for deterministic
sequences of graphs and potentials. For any sequence (GN ,WN ) satisfying the assumptions
of the theorem, the conclusion holds for any observable K; in particular, K may depend
on the graphs. As already noted, the result only says something about the delocalization
of “most” eigenfunctions, where the “good” eigenfunctions exhibiting delocalization may
depend on the choice of the observable K.

In the past years, there has been tremendous interest in spectral statistics and delo-
calization of eigenfunctions of random sequences of graphs and potentials. Many papers
consider random regular graphs, with degree going slowly to infinity [46, 27, 13, 14] or fixed
[31, 15], sometimes adding a random i.i.d potential [31]. In particular, the very impressive
papers [13, 14, 15] show “quantum unique ergodicity” for the adjacency matrix of random
regular graphs : given an observable aN : {1, . . . , N} −→ R, for most (q + 1)-regular

graphs on the vertices {1, . . . , N} we have that
∑N

x=1 aN (x)|ψ(N)
j (x)|2 is close to 〈aN 〉 for

all indices j. This is a considerable strengthening of Corollary 1.2 (or of the similar result
in [9]), that only says something for most indices j. This possibility to prove QUE is, of
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course, due to the fact that aN has to be independent of the choice of the graph. It might
well be that a positive proportion of graphs contradicts QUE, if we were allowed to choose
observables aN depending on the graph (this is a completely open question).

When “ergodicity” of eigenfunctions is tested numerically as in [2, 3], it is natural to first
pick a realization of the graph and of the potential, and then test the eigenfunctions one by
one to determine if they can be localized in small parts of the graph. It is then natural to
allow the test-observables to depend on the graph and the potential (which our Theorem
1.3 does, but not the results of [13, 15]), but also on the index j of the eigenfunction,
which neither of the rigourous mathematical results achieves. The numerical results of [3]
seem to indicate that, as soon as a random disorder is turned on, the eigenfunctions will
be localized in small parts of the graph. This is not in contradiction with our results :

the region of localization of ψ
(N)
j might depend on j, but our result does not allow to test

this. Note also that the results of [2, 3] were recently questioned in [45], where the authors
argue that N has not been taken large enough to see the delocalization take place.

The paper [12] proves a very important result, saying that if ψj is an “almost eigen-
vector” of the adjacency matrix on a random regular graph G, then for almost all G and
all j, the value distribution of ψj(x) as x runs over {1, . . . , N} is close to a Gaussian
N (0, σ2j ) with σj ≤ 1. Proving that σj = 1 is a challenge; it would amount to proving that
eigenfunctions cannot be localized in small parts of the graph. Our result does not say
this, again because we can only test one observable a at a time. The indices j for which
Corollary 1.2 proves delocalization depend on a. If we wanted to have a common set of
indices j that do the job for all observables (whose number is exponential in N), we would
need to have an exponential rate of convergence in Theorems 1.1, 1.3. Our proof gives a
rate that is at best a negative power of the girth (itself typically of order logN).

Finally we would also like to mention the paper [21], where existence of absolutely
continuous spectrum for percolation graphs on the (q + 1)-regular tree is proven, if the
percolation parameter is close enough to 1. Since the absolutely continuous spectrum is
mixed with purely discrete spectrum, one cannot expect a quantum ergodicity result that
claims delocalization of most eigenfunctions, but only a “partial delocalization” result for
a positive proportion of eigenfunctions. These are the contents of [21, Theorem 9]. It
would be nice to investigate what the methods of our paper would give for that model.

1.6. Outline of the proof. We borrowed the name “Quantum Ergodicity” from a result
about laplacian eigenfunctions on Riemannian manifolds [44, 47, 25, 48]. The proof in the
setting of laplacian eigenfunctions on manifolds is made of 4 steps, of unequal difficulty .
These 4 steps are also present in our proof :

Step 0. Define the quantum variance. The goal is to show that this goes to 0 asN → ∞.
A novelty of our proof is that we replace the usual quantum variance (10.1) by a “non-
backtracking” one (3.3), where we replace the eigenfunctions ψj by eigenfunctions fj, f

∗
j of

a non-backtracking random walk (Section 3). These new fj, f
∗
j are thus eigenfunctions of a

non-selfadjoint problem. This causes new difficulties, that however will be compensated by
the fact that the non-backtracking random walk has simpler trajectories than the “simple”
random walk generated by the adjacency matrix A.

Step 1. Show that the quantum variance is controlled by the Hilbert-Schmidt norm of
K. Although this is obvious for the original quantum variance, this will be much harder
for the “non-backtracking quantum variance” (Section 4).

Step 2. Due to the fact that fj, f
∗
j satisfy an eigenfunction problem, the quantum

variance is invariant under certain transformations (Section 5).
Step 3. One should see behind these transformations the emergence of a “classical

dynamical system”. In the setting of laplacian eigenfunctions on manifolds, this is the
geodesic flow. Here, what we get is a family of stationary Markov chains on the set
of infinite non-backtracking paths (Section 6, Remark 6.1). This step has been called
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“classicalization” by U. Smilansky in a private conversation; this is supposed to mean the
opposite of “quantization”.

Step 4. Iterate the classical dynamical system, use its ergodicity to show that the
quantum variance is small (Section 9). Here, the ergodicity of our Markov chains (more
precisely, the fact that the mixing rate is independent on N) comes from the (EXP)
condition.

There is an additional step that does not exist in the traditional setting :
Step 5. Translate the result for the “non-backtracking quantum variance” (involving

fj, f
∗
j ) into a result for the original one, involving the ψj (Section 10). Assumptions

(EXP), (BSCT) and (Green) are used to show that the transformation sending ψj to
fj, f

∗
j is well-behaved in the limit N −→ +∞.

2. Basic identities

2.1. “Quantization procedure” on trees and their quotients. Let G = GN , G =
(V,E). Most of the time we will drop the subscript N in the notation. As in Section 1.2,

we regard G as a quotient: G = Γ\‹G, and let π : ‹V → V denote the projection. Fix a

fundamental domain D ⊂ ‹V for the action of Γ on ‹V . Then |D| = |V |.
Each edge {x0, x1} ∈ ‹E, gives rise to two oriented edges e = (x0, x1) and ê = (x1, x0)

in the reverse direction. We let oe and te be the origin and terminus of e, respectively.

We then let ‹B1, or simply ‹B, be the set of all such oriented edges of ‹G. More generally,

let ‹Bk be the set of non-backtracking paths of length k in ‹G. By convention, ‹B0 := ‹V . If

ω = (x0, . . . , xk) and ω′ = (x′0, . . . , x
′
k) ∈ ‹Bk, we write ω  ω′ if x′0 = x1, . . . , x

′
k−1 = xk

and (x0, . . . , xk, x
′
k) ∈ ‹Bk+1.

These notions descend to the quotient. We denote by Bk := Γ\‹Bk the set of non-
backtracking paths of length k in G. By convention, B0 := V . For k = 1 we let B = B1.

The set Bk is in bijection with the subset D(k) ⊂ ‹Bk of elements having their origin in D.
Let Hk = C

Bk (the complex-valued functions on Bk), H = ⊕∞
k=0 Hk and H≤k :=

⊕k
ℓ=0 Hℓ.

It will be convenient to identify C
Bk with the Γ-invariant elements of C

B̃k or with

C
D(k)

. For K ∈ Hk and (x0, . . . , xk) ∈ ‹Bk, we will sometimes use the short-hand notation

K(x0;xk) for K(x0, . . . , xk). This is justified by the fact than on ‹G, the endpoints (x0;xk)
determine the path (x0, . . . , xk) uniquely. We will also use this short-hand notation on
Bk, although in that case one should keep in mind that K(x0;xk) actually depends on the
full path (x0, . . . , xk).

Any K ∈ Hk (regarded as a Γ-invariant element of CB̃k) may be used to define an

operator K̂ on the space of finitely supported functions on ‹V , with kernel 〈δv, K̂δw〉ℓ2(Ṽ )
=

K(v;w). It also defines an operator K̂G on C
V , with kernel

KG(x, y) =
∑

γ∈Γ

K(x̃; γ · ỹ) ,

where x̃, ỹ ∈ ‹V are representatives of x, y ∈ V . The map K ∈ Hk 7→ KG is a priori not
one-to-one. However, if ρG(x) ≥ k, then KG(x, ·) determines K(x̃, ·) uniquely. To see that
K ∈ Hk 7→ KG is surjective, consider k : V × V −→ R supported at distance k from the
diagonal, and let K(x̃, ỹ) = k(π(x̃), π(ỹ))1ldist(x̃,ỹ)≤k(♯{γ ∈ Γ, dist(x̃, γ · ỹ) ≤ k})−1. Then
KG = k and this coincides with the lift (1.6) except at the few points where ρG(x) ≤ k.

Define the non-backtracking adjacency operator B : CB̃ → CB̃ by

(2.1) (Bf)(x0, x1) =
∑

x2∈Nx1\{x0}

f(x1, x2)
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where Nx means the set of neighbours of x. Then an element K ∈ Hk may also be used

to define an operator K̂
B̃

on ℓ2(‹B), with kernel

〈δb1 , K̂B̃
δb2〉ℓ2(B̃)

=

{
K(ob1 ; tb2) if Bk−1(b1, b2) 6= 0,

0 otherwise.

Thus 〈δb1 , K̂B̃
δb2〉ℓ2(B̃)

6= 0 only if there is a non-backtracking path of length k in ‹G,

starting with the oriented edge b1 and ending with b2.

Finally, K ∈ Hk also defines an operator K̂B on C
B, with matrix KB : B × B → C

given by

KB(b1, b2) =
∑

γ∈Γ

K(b̃1; γ · b̃2) ,

where b̃1, b̃2 ∈ ‹B are lifts of b1, b2 ∈ B. By linearity, this extends to K ∈ H≤k.

Note that if K ∈ Hk, then 〈ψ1,KGψ2〉ℓ2(V ) =
∑

(x0,...,xk)∈Bk
ψ1(x0)K(x0;xk)ψ2(xk) for

any ψj ∈ ℓ2(V ). Similarly, if fj ∈ ℓ2(B), we have

(2.2) 〈f1,KBf2〉ℓ2(B) =
∑

(x0,...,xk)∈Bk

f1(x0, x1)K(x0;xk)f2(xk−1, xk) ,

(2.3) ‖KBf‖2ℓ2(B) =
∑

(x0,x1)∈B

∣∣∣∣
∑

x0,1 (x2;xk)

K(x0;xk)f(xk−1, xk)

∣∣∣∣
2

,

where
∑

x0,1 (x2;xk) sums over all (x2;xk) ∈ Bk−2 such that x2 ∈ Nx1 \ {x0}. Alternatively,
we may simply sum over (x2;xk) ∈ Bk−2 but decide that K(x0;xk) = 0 if the path
(x0, . . . , xk) back-tracks.

Remark 2.1. The maps K 7→ K̂, K 7→ K̂G, K 7→ K̂
B̃
and K 7→ K̂B associate an operator

to a function on the set of paths. It is tempting to view this as a form of “quantization
procedure” as those used for quantum ergodicity on manifolds.

2.2. Green functions on trees. Assumption (BST) says that our graphs have few
short loops, in other words, that most balls of a given radius look like trees. One of
the ingredients of our proof is that the Green function on trees satisfies certain algebraic
relations, that follow from the fact that removing a vertex (or cutting an edge) from a tree
suffices to disconnect it.

Here we recall some standard facts that hold for an arbitrary tree T = (V (T ), E(T )),
endowed with a discrete Schrödinger of the form H = A +W acting on ℓ2(V (T )), where
A is the adjacency matrix and W : V (T ) −→ R is a bounded function. Given γ ∈ C \ R
and v,w ∈ T , the Green function is denoted in this section by

G(v,w; γ) = 〈δv , (H − γ)−1δw〉ℓ2(V (T )) .

If v ∼ w, we denote by T (v|w) the tree obtained by removing from T the branch ema-
nating from v that passes through w. We define the restriction H(v|w)(u, u′) = H(u, u′)

if u, u′ ∈ T (v|w) and zero otherwise. The corresponding Green function is denoted by
g̃(v|w)(·, ·; γ). We finally denote

G(v, v; γ) =
−1

2mγ
v

and ζγw(v) = −g̃(v|w)(v, v; γ) .

Later on, we will apply these results for (T,W ) = (‹GN , W̃N ). In this case the (full)
Green function will be denoted by g̃γN (x, y), and the restricted one by ζγx (y). In the case
(T,W ) = (T ,W) (the random coloured rooted trees of assumption (BSCT)), the Green

function will be denoted by Gγ(v,w), and the restricted one by ζ̂γw(v). As a general rule,
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the objects defined on the limit (T ,W) will wear a hat ·̂ to distinguish them from similar

objects defined on (‹GN , W̃N ) (see also Remark A.3).
The Green functions on trees satisfy some classical recursive relations; the following

lemma is proved for instance in [10]. Given v ∈ V (T ), we denote by Nv its set of nearest
neighbours.

Lemma 2.2. For any v ∈ T and γ = E + iη ∈ C \ R, we have

(2.4) γ =W (v) +
∑

u∼v

ζγv (u) + 2mγ
v and γ =W (v) +

∑

u∈Nv\{w}

ζγv (u) +
1

ζγw(v)
.

For any non-backtracking path (v0; vk) in T ,

(2.5) G(v0, vk; γ) =
−∏k−1

j=0 ζ
γ
vj+1

(vj)

2mγ
vk

,

(2.6) G(v0, vk; γ) = ζγv1(v0)G(v1, vk; γ) = ζγvk−1
(vk)G(v0, vk−1; γ) .

Also, for any w ∼ v, we have

(2.7) ζγw(v) =
mγ

w

mγ
v
ζγv (w) and

1

ζγw(v)
− ζγv (w) = 2mγ

v .

For any v,w ∈ T , we have

(2.8) G(v,w; γ) = G(w, v; γ) .

Next,

(2.9)
∑

u∈Nv\{w}

| Im ζγv (u)| =
| Im ζγw(v)|
|ζγw(v)|2

− η .

Finally, if Ψγ,v(w) = ImG(v,w; γ), then for any path (v0, . . . , vk) in T , k ≥ 1,

(2.10) Ψγ,v0(vk)− ζγvk−1
(vk)Ψγ,v0(vk−1) = Im ζγvk−1

(vk) ·G(v0, vk−1; γ) .

Corollary 2.3. Given γ ∈ C \ R, for any v0, v1 ∈ T , v0 ∼ v1, we have

(2.11) Ψγ,v1(v1)−ζγv0(v1)Ψγ,v1(v0)−ζγv0(v1)Ψγ,v0(v1)+ |ζγv0(v1)|2Ψγ,v0(v0) = | Im ζγv0(v1)| .
Also, for any non-backtracking path (v0; vk) in T , k ≥ 1, we have
(2.12)

Ψγ,v0(vk)− ζγv1(v0)Ψγ,v1(vk)− ζγvk−1
(vk)Ψγ,v0(vk−1) + ζγv1(v0)ζ

γ
vk−1

(vk)Ψγ,v1(vk−1) = 0 .

Proof. By (2.10), Ψγ,v0(v1) − ζγv0(v1)Ψγ,v0(v0) = Im ζγv0(v1)G(v0, v0; γ). As Ψγ,v1(v0) =
Ψγ,v0(v1), we thus get using (2.6),

(2.13) ζγv0(v1)Ψγ,v1(v0)− |ζγv0(v1)|2Ψγ,v0(v0) = Im ζγv0(v1) ·G(v0, v1; γ) .

Next, since G(v1, v1; γ) =
G(v0,v1;γ)
ζγv1 (v0)

and 1
ζγv1 (v0)

= ζγv0(v1) + 2mγ
v0 , we have

(2.14) G(v1, v1; γ) = ζγv0(v1)G(v0, v1; γ)+2mγ
v0G(v0, v1; γ) = ζγv0(v1)G(v0, v1; γ)−ζγv0(v1) ,

so

Ψγ,v1(v1) = Im ζγv0(v1)[ReG(v0, v1; γ)− 1] + Re ζγv0(v1)Ψγ,v0(v1) ,

and thus

Ψγ,v1(v1)− ζγv0(v1)Ψγ,v0(v1) = Im ζγv0(v1)[ReG(v0, v1; γ)− 1]− i Im ζγv0(v1)Ψγ,v0(v1)

= Im ζγv0(v1)G(v0, v1; γ)− Im ζγv0(v1) .(2.15)
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This completes the proof of the first claim, by (2.13). Next, we use again that Ψγ,v0(v1)−
ζγv0(v1)Ψγ,v0(v0) = Im ζγv0(v1)G(v0, v0; γ). In addition, by (2.15),

ζγv1(v0)[Ψγ,v1(v1)− ζγv0(v1)Ψv1(v0)] = Im ζγv0(v1)[ζ
γ
v1(v0)G(v0, v1; γ)− ζγv1(v0)]

= Im ζγv0(v1)G(v0, v0; γ) ,

where the last equality is proved as in (2.14). This proves the second claim for k = 1.
Now let k ≥ 2. If we apply (2.10) with v1 instead of v0 and use (2.6), we get

ζγv1(v0)Ψγ,v1(vk)− ζγv1(v0)ζ
γ
vk−1

(vk)Ψγ,v1(vk−1) = Im ζγvk−1
(vk) ·G(v0, vk−1; γ) .

The second claim for k ≥ 2 now follows by (2.10). �

We conclude by recalling the fact that for Lebesgue a.e. λ ∈ R, the Green function has
a finite limit on the real axis almost surely.

Proposition 2.4. There exists a Lebesgue-null set A ⊂ R such that, to each λ ∈ S :=

R \ A, there is Ωλ ⊆ T
D,A
∗ with P(Ωλ) = 1, such that if [T , o,W] ∈ Ωλ, then the limit

G(v,w;λ + i0) := limη↓0G(v,w;λ + iη) exists for any v,w ∈ T .

Proof. Fix [T , o,W]. By [10, Lemma 3.3], there is a Lebesgue-null set A[T ,o,W ] ⊂ R such
that for any λ ∈ S[T ,o,W ] := R \ A[T ,o,W ], G(v,w;λ + i0) exists for all v,w ∈ T . Let
D = {([T , o,W], λ) : the limit does not exist}. Then

(P⊗Leb)(D) =

∫

T
D,A
∗

Leb(D[T ,o,W ]) dP([T , o,W]) ,

where D[T ,o,W ] = {λ ∈ R : ([T , o,W], λ) ∈ D}. Since D[T ,o,W ] ⊆ A[T ,o,W ], we have
Leb(D[T ,o,W ]) = 0 for all [T , o,W]. Hence,

0 = (P⊗Leb)(D) =

∫

R

P(Dλ) dλ ,

where Dλ = {[T , o,W] ∈ T
D,A
∗ : ([T , o,W], λ) ∈ D}. It follows that P(Dλ) = 0 on a

Lebesgue-full set A. Taking Ωλ = D
c
λ completes the proof. �

3. The non-backtracking quantum variance

Our strategy follows the one discovered in [7]. We find a transformation turning the

eigenfunctions of A+W on G = Γ\‹G into eigenfunctions of a “non-backtracking” random
walk. The new operator is not self-adjoint, but this difficulty is superseded by the fact
that the trajectories of non-backtracking random walks (on a tree) are much simpler than
those of usual random walks.

The notation is the same as in the introduction except that we drop the subscript N .
Suppose (ψj) is an orthonormal basis of eigenfunctions for H = A+W , say Hψj = λjψj .

Fix η0 ∈ (0, 1), let γj = λj + iη0 and let

fj(x0, x1) = ζ
γj
x0(x1)

−1ψj(x1)− ψj(x0) ,

where ζγx(y) = −g̃(y|x)N (y, y; γ). If B is the non-backtracking operator (2.1), we have

(Bζγjfj)(x0, x1) =
∑

x2∈Nx1\{x0}

[ψj(x2)− ζ
γj
x1(x2)ψj(x1)]

= [λjψj(x1)−W (x1)ψj(x1)− ψj(x0)]− ψj(x1)

ñ
γj −W (x1)−

1

ζ
γj
x0(x1)

ô

= fj(x0, x1)− iη0 ψj(x1) ,

where we used (2.4). Hence we get

(3.1) B(ζγjfj) = fj − iη0 τ+ψj
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where τ± : ℓ2(V ) → ℓ2(B) are defined by

(τ−ψ)(x0, x1) = ψ(x0) and (τ+ψ)(x0, x1) = ψ(x1) .

In [7] it was possible to set η0 = 0, and (3.1) said exactly that fj was an eigenfunction of the
weighted non-backtracking operator Bζγj for the eigenvalue 1. At our level of generality,

we do not know if ζλj+i0 is well-defined on ‹GN . We have to work with η0 > 0 and let η0
tend to 0 only at the end of the proof, after N has gone to ∞. Hence, fj is not exactly
an eigenfunction, and our formulas will contain error terms of size η0 that we will need to
estimate precisely, to show that they disappear as N → +∞, followed by η0 ↓ 0.

Similarly, if we put

f∗j (x0, x1) = ζ
γj
x1(x0)

−1ψj(x0)− ψj(x1) ,

we note that f∗j = ιfj where ι is the edge reversal involution, and we get

(3.2) B∗(ιζγjf∗j ) = f∗j − iη0 τ−ψj .

Let I be an open interval such that I ⊂ I1. We define for K ∈ Hk,

(3.3) VarInb,η0(K) =
1

N

∑

λj∈I

∣∣∣
¨
f∗j ,KBfj

∂∣∣∣ .

The dependence of this quantity on η0 is hidden in the definition of fj, f
∗
j . The scalar

product 〈·, ·〉 is on ℓ2(B) endowed with the uniform measure; cf. (2.2).

Remark 3.1. We call (3.3) “quantum variance”, in analogy to the quantity bearing this
name in quantum chaos. However, there are some significant differences :

• we use the functions fj and f∗j instead of the original ψj . They are (quasi)-
eigenfunctions, respectively of the non-selfadjoint operators Bζγj and B∗ιζγj .

• if K is the identity operator Id, we do not have the normalization VarInb,η0(Id) = 1.

In fact, in the models treated in [7], we have VarInb,η0=0(Id) = 0, which means that
fj and f∗j are orthogonal.

• we did not take the square of
∣∣∣
¨
f∗j ,KBfj

∂∣∣∣ in the definition. This is purely tech-

nical, the square will appear later when we apply the Cauchy-Schwarz inequality.

We will need to extend (3.3) to operators K that depend on the eigenvalue λj in a
holomorphic fashion, as spelled out in the following definition. Note that K also depends
on N , also this tends to be implicit in our notation. We let C+ = {γ ∈ C, Im γ > 0}.
Definition 3.2. Assumptions (Hol).

We assume that γ 7→ Kγ = Kγ
N is a map from γ ∈ C

+ to Hk such that :

• For η0 > 0, for each N and (x0;xk), the function λ 7→ Kλ+iη0(x0;xk) from R → C

has an analytic extension Kη0 to the strip {z : | Im z| < η0/2}.
• Given η0 > 0, we have supN supRe z∈I1,| Im z|<η0/2 sup(x0;xk)

|Kz
N,η0

(x0;xk)| < +∞
and supN supRe z∈I1,| Im z|<η0/2 sup(x0;xk)

|∂zKz
N,η0

(x0;xk)| < +∞. We write ‖K‖η0
for the maximum of these two quantities.

• For all s > 0,

(3.4) sup
η1∈(0,1)

lim sup
N→+∞

sup
λ∈I1

1

N

∑

(x0;xk)∈Bk

|Kλ+iη1
N (x0;xk)|s < +∞ .

If γ 7→ Kγ is holomorphic on C
+, then it obviously satisfies the first point of the

definition with Kη0(z) = Kz+iη0 . For instance, if Kγ(x0;xk) has the form
∑

n≥0 a
(n)
(x0;xk)

γn,

then we see that λ 7→ Kλ+iη0(x0;xk) extends to Kη0(z) =
∑

n≥0 a
(n)
(x0;xk)

(z + iη0)
n. Note

that, although γ 7→ Kγ is not holomorphic, its restriction to an horizontal line is still a
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real-analytic map R ∋ λ 7→ Kλ+iη0(x0;xk), as it possesses an analytic extension given by

z 7→∑
n≥0 a

(n)
(x0;xk)

(z − iη0)
n. So Kγ will satisfy (Hol) if Kγ does.

Conditions (Hol) are stable under the sum and composition of operators.
We extend (3.3) to this setting, by letting

(3.5) VarInb,η0(K
γ) =

1

N

∑

λj∈I

∣∣∣
〈
f∗j ,K

λj+iη0
B fj

〉∣∣∣ .

Most of the paper is devoted to showing :

Theorem 3.3. Under assumptions (EXP), (BSCT), (Green), if Kγ ∈ Hk has the
form Kγ = FγK for the operators Fγ in Corollary 10.4, then

lim
η0↓0

lim
N→+∞

VarInb,η0(K
γ) = 0 .

These γ 7→ FγK satisfy (Hol). The fact that this implies Theorem 1.3 is proven in
Section 10, that may be read independently of the proof of Theorem 3.3.

4. Step 1 : Bound on the non-backtracking quantum variance

Given γ ∈ C
+, we introduce a norm on each Hk, k ≥ 1, defined by

(4.1) ‖K‖2γ =
1

N

∑

(x0;xk)∈Bk

| Im ζγx1
(x0)|

|ζγx1(x0)|2
· |K(x0;xk)|2 ·

| Im ζγxk−1
(xk)|

|ζγxk−1(xk)|2
.

We denote by 〈·, ·〉γ the associated scalar product. The reason for introducing the weight
| Im ζγx (y)|
|ζγx (y)|2

will be apparent in Section 6. The aim of this section is to prove Theorem 4.1.

Here, we assume that I = (a, b), with [a, b] ⊂ I1. This implies that there is ηa,b such that
(a− 2η, b + 2η) ⊂ I1 for all η ≤ ηa,b. We then assume that η ≤ min(η0/2, ηa,b).

Theorem 4.1. Under assumptions (BSCT), (Green), if Kγ ∈ Hk satisfies the set of
assumptions (Hol), then for any interval I = (a, b) as above,

lim
η0↓0

lim sup
N→+∞

VarInb,η0(K
γ)2 ≤ D |I| lim

η0↓0
lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖Kλ+i(η4+η0)‖2λ+i(η4+η0)

dλ .

In the scheme of §1.6, this corresponds to Step 1. This is more complicated than usual,
due to the fact that we have replaced the orthonormal family (ψj) by non-orthogonal
functions (fj), (f

∗
j ), and also because K “depends on λj” in (3.5).

Denote I0 = [−(A+D), A+D]. For λ ∈ R and η0 ∈ (0, 1), let

αλ+iη0(x0, x1) =
| Im ζλ+iη0

x1
(x0)|1/2

ζλ+iη0
x1 (x0)

.

Then denoting γj = λj + iη0, we have

VarInb,η0(K
γ) ≤ 1

N

∑

λj∈I

∥∥∥αγj
−1f∗j

∥∥∥
∥∥∥αγjK

γj
B fj

∥∥∥

≤ 1

N

( ∑

λj∈I

∥∥∥αγj
−1f∗j

∥∥∥
2 )1/2( ∑

λj∈I

∥∥∥αγjK
γj
B fj

∥∥∥
2 )1/2

(4.2)

We check at the end of the section that

(4.3) lim
η0↓0

lim sup
N→+∞

1

N

∑

λj∈I

∥∥∥αγj
−1f∗j

∥∥∥
2 ≤ D · |I| .

We now introduce an approximation χ of 1lI by an entire function, by the usual convo-
lution procedure.
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Fix 0 < η ≤ η0/2. Let φ(x) = 1
π1/2 e

−x2
and denote φǫ(x) = ǫ−1φ(x/ǫ). Let χ be the

convolution χ = φη3/2 ∗ 1lI on R. Then χ extends to an entire function on C given by

(4.4) χ(z) =
1

η3/2π1/2

∫

I
e−(z−y)2/η3 dy.

Note that 0 ≤ χ(x) ≤ 1 for x ∈ R, and |χ(z)| ≤ eη
5
for | Im z| ≤ η4. We assume η is small

enough so that χ ≥ 1
31lI and |χ(z)| ≤ e−1/η on {z ∈ C : | Im z| ≤ η4, d(Re z, I) ≥ 2η}. We

finally note that | ∂χ∂t2 (t1 + it2)| ≤ Cη−3eη
5
for any z = t1 + it2 with t1 ∈ I0 and |t2| ≤ η4.

By (4.2) and (4.3) we have

(4.5) lim sup
N→∞

VarInb,η0(K
γ)2 ≤ lim sup

N→∞

3D |I|
N

N∑

j=1

χ(λj) ‖αγjK
γj
B fj‖2 .

Now by (2.3), we have

‖αγjK
γj
B fj‖2 =

∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

|αγj (x0, x1)|2Kγj (x0;xk)Kγj (x0; yk)

· [ζγjxk−1(xk)
−1ψj(xk)− ψj(xk−1)][ζ

γj
yk−1(yk)

−1ψj(yk)− ψj(yk−1)] ,

where (x0;xk) = (x0, x1, x2, . . . , xk), (x0; yk) = (x0, x1, y2, . . . , yk) and with the conven-
tion that Kγj (x0;xk) = 0 if the path (x0, x1, x2, . . . , xk) backtracks. The function λ 7→
|αλ+iη0(x0, x1)|2 =

− Im ζ
λ+iη0
x1

(x0)

|ζ
λ+iη0
x1

(x0)|2
extends analytically to the rectangle R = {z ∈ C : Re z ∈

[−(A +D + η), (A +D + η)], Im z ∈ [−η4, η4]} through the formula
ζ
z−iη0
x1

(x0)−ζ
z+iη0
x1

(x0)

2i ζ
z+iη0
x1

(x0)ζ
z−iη0
x1

(x0)
.

We denote this by αz
η0(x0, x1) (which is not the same as |αz+iη0(x0, x1)|2). The same is

true for the other ζ terms. We denote the extension of λ 7→ Kλ+iη0(x0;xk)Kλ+iη0(x0; yk)
by Kz

η0(x0;xk, yk). Again, if (x0; yk) = (x0;xk), this is not the same as |Kz+iη0(x0;xk)|2.
However, see Lemma 4.4 to compare both.

Given x, y ∈ V and z ∈ C \ R, let

gz(x, y) = 〈δx, (H − z)−1δy〉ℓ2(V ) =
N∑

j=1

ψj(x)ψj(y)

λj − z

be the Green function of H on the finite graph G. Then by Cauchy’s integral formula,

1

N

N∑

j=1

χ(λj) ‖αγjK
γj
B fj‖2 =

−1

2iπN

∫

z∈∂R

∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

χ(z)αz
η0(x0, x1)

Kz
η0(x0;xk, yk) ·

[ gz(xk, yk)

ζz+iη0
xk−1 (xk)ζ

z−iη0
yk−1 (yk)

− gz(xk, yk−1)

ζz+iη0
xk−1 (xk)

(4.6)

− gz(xk−1, yk)

ζz−iη0
yk−1 (yk)

+ gz(xk−1, yk−1)
]
dz .

We now observe that the integral over the vertical segments of the contour do not
contribute as η, η0 ↓ 0. More precisely,

Lemma 4.2. The integral −1
2iπN

∫
z∈∂R

F (z) dz in (4.6) may be replaced by 1
2iπN (

∫ b+2η
a−2η F (λ+

iη4) dλ− ∫ b+2η
a−2η F (λ− iη4) dλ, up to an error term at most Ck,D,Aη

−5
0 η−2‖K‖2η0e−1/η.

Proof. The error is the integral of F (z) on the two vertical paths {Re z = −A−D−η, Im z ∈
[−η, η]}, {Re z = A+D + η, Im z ∈ [−η4, η4]}, and the four connected components of the
set {Im z = η4,Re z ∈ [−A−D−η,A+D+η]\(a−2η, b+2η)}. On these pieces, we know
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that |χ(z)| ≤ e−1/η . Moreover, |Kz
η0(x0;xk, yk)| ≤ ‖K‖2η0 and |αz

η0 | ≤ CD,Aη
−3
0 by (2.4).

The Green functions and ζ terms may be bounded by 4η−2
0 η−4. A factor Ck,D comes from

the number of paths, divided by N . �

Our next aim is to lift this expression to the universal cover ‹G.
Lemma 4.3. Denote z = λ+ iη4. Given R ∈ N

∗, there is dR,k,η > 0 such that the integral
1

2iπN

∫ b+2η
a−2η F (z) dλ in Lemma 4.2 may be replaced by

1

2iπN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,k,η

∑

x1∼x0

∑

(x2;xk),(y2;yk)

χ(z)αz
η0(x0, x1)

Kz
η0(x0;xk, yk) ·

[ g̃z(x̃k, ỹk)

ζz+iη0
ek ζz−iη0

e′
k

− g̃z(x̃k, ỹk−1)

ζz+iη0
ek

− g̃z(x̃k−1, ỹk)

ζz−iη0
e′
k

+ g̃z(x̃k−1, ỹk−1)
]
dλ ,

where ζγek = ζγxk−1
(xk) and ζγe′

k
= ζγyk−1

(yk), up to an error term (
#{ρG(x0)<dR,k,η}

N +

1
R)Ck,D,Aη

−5
0 ‖K‖2η0eη

5
.

Similarly, 1
2iπN

∫ b+2η
a−2η F (z̄) dλ in Lemma 4.2 may be replaced by

1

2iπN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,k,η

∑

x1∼x0

∑

(x2;xk),(y2;yk)

χ(z̄)αz̄
η0(x0, x1)K

z̄
η0(x0;xk, yk)

·
[ g̃z̄(x̃k, ỹk)

ζ z̄+iη0
ek ζ z̄−iη0

e′
k

− g̃z̄(x̃k, ỹk−1)

ζ z̄+iη0
ek

− g̃z̄(x̃k−1, ỹk)

ζ z̄−iη0
e′
k

+ g̃z̄(x̃k−1, ỹk−1)
]
dλ

up to an error term (
#{ρG(x0)<dR,k,η}

N + 1
R)Ck,D,Aη

−5
0 ‖K‖2η0eη

5
.

Proof. We approximate λ 7→ gλ+iη4(x, y) by a polynomial. Let hη(t) = −(t− iη4)−1 and

choose qη with ‖hη − qη‖∞ < 1
R . Then ‖hη(H − λ) − qη(H − λ)‖ < 1

R , so |gλ+iη(x, y) −
qη(H − λ)(x, y)| < 1

R for any x, y and λ. So replacing each gλ+iη4(x, y) by qη(H − λ)(x, y)

in the sums gives an error term
Ck,D,Aη−5

0 ‖K‖2η0e
η5

R as in Lemma 4.2.
Let dR,η be the degree of qη. Suppose ρG(x0) ≥ dR,η + k =: dR,k,η. Then it is easy to

see that qη(H − λ)(xk, yk) = qη(‹H − λ)(x̃k, ỹk), c.f. Lemma A.1. The same holds for the
other edges (xk, yk−1) and so on. The terms with ρG(x0) < dR,k,η bring an error term
#{ρG(x0)<dR,k,η}

N Cη0 . Finally, we replace the qη(‹H − λ)(x̃, ỹ) by g̃λ+iη4(x̃, ỹ) which yields

again an error of the form
Cη0
R .

This proves the first statement, and the second one is proven similarly. �

We continue to simplify the expression and record the following.

Lemma 4.4. If we replace αz
η0(x0, x1)K

z
η0(x0;xk, yk) and αz̄

η0(x0, x1)K
z̄
η0(x0;xk, yk) in

Lemma 4.3 by |αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk), then as N → ∞, the error

we get is at most Ck,D,Aη
−7
0 ‖K‖2η0eη

5
η4. We may also replace χ(λ± iη4) by χ(λ), modulo

the asymptotic error Ck,D,Aη
−5
0 ‖K‖2η0eη

5
η. Finally, we may replace each ζ z̄+iη0

ek
by ζz+iη0

ek

and ζz−iη0
e′
k

by ζ z̄−iη0
e′
k

, modulo an asymptotic error Ck,D,Aη
−7
0 ‖K‖2η0eη

5
η4.
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Proof. We start with αz
η0(x0, x1)K

z
η0(x0;xk, yk). Denote e = (x0, x1) and ζγe = ζγx1

(x0).
We note that

∣∣∣αz
η0(x0, x1)− |αz+iη0(x0, x1)|2

∣∣∣ =
∣∣∣∣∣
ζz−iη0
e − ζz+iη0

e

2iζz+iη0
e ζz−iη0

e

− ζ z̄−iη0
e − ζz+iη0

e

2iζz+iη0
e ζ z̄−iη0

e

∣∣∣∣∣

=
|ζz+iη0
e |
2

∣∣∣∣∣
1

ζ z̄−iη0
e

− 1

ζz−iη0
e

∣∣∣∣∣ ≤ CD,Aη
−3
0

∣∣∣ζz−iη0
e − ζ z̄−iη0

e

∣∣∣

≤ CD,Aη
−5
0 |z − z̄| = 2CD,Aη

−5
0 η4 ,

where we used (2.4) in the first inequality and the resolvent identity in the second one.

Similarly, Kz+iη0(x0;xk)Kz+iη0(x0; yk) is the same as Kz
η0(x0;xk, yk), but with each z−iη0

replaced by z̄ − iη0. It follows that |Kz
η0(x0;xk, yk) − Kz+iη0(x0;xk)Kz+iη0(x0; yk)| ≤

2 sup |∂zK(v0; vk)| sup |K(v0; vk)| · |z− z̄| ≤ 4‖K‖2η0η4. Hence, αz
η0(x0, x1)K

z
η0(x0;xk, yk) is

the same as |αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk), modulo CD,Aη
−5
0 ‖K‖2η0η4. This

error is further multiplied by the function χ. Bounding the ζ terms by η−2
0 and |χ(z)| by

eη
5
, we end up with an error term at most

∫ b+2η

a−2η

CD,Aη
−7
0 ‖K‖2η0eη

5
η4

N

∑

(x0,x1)

∑

(x2;xk),(y2;yk)

|g̃λ±iη4(x̃k, ỹk)|dλ

and a similar upper bound for each term involving g̃λ±iη4 . Since Iη = (a−2η, b+2η) ⊂ I1,
we may use Remark A.5 to deduce that the integrand is uniformly bounded over λ ∈ Iη
by Ck,D,Aη

−7
0 ‖K‖2η0eη

5
η4 as N → ∞. Note that |Iη| ≤ |I0| = 2(D +A).

This proves the first claim. The second claim is similar, for example |αz̄
η0(x0, x1) −

|αz+iη0(x0, x1)|2| ≤ CD,Aη
−3
0 |ζz+iη0

e − ζ z̄+iη0
e | ≤ 2CD,Aη

−5
0 η4. Moreover, K z̄

η0(x0;xk, yk) is

the same as Kz+iη0(x0;xk)Kz+iη0(x0; yk) with each z+iη0 replaced by z̄+iη0, so the proof

carries on. For the the third claim, note that |χ(λ± iη4)− χ(λ)| ≤ supz∈R | ∂χ∂x2
(z)| · η4 ≤

Ceη
5
η. For the last claim, |(ζz±iη0

e )−1 − (ζ z̄±iη0
e )−1| ≤ 2CD,Aη

−4
0 η4 as we previously saw

when analyzing αz
η0 , so we get a similar error. �

By virtue of Lemma 4.3 and 4.4, denoting z = λ+ iη4, we know at this stage that the
expression (4.6) may be replaced by

1

πN

∫ b+2η

a−2η

∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

χ(λ)|αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk)

Ñ
Im g̃z(x̃k, ỹk)

ζz+iη0
ek ζ z̄−iη0

e′
k

− Im g̃z(x̃k, ỹk−1)

ζz+iη0
ek

− Im g̃z(x̃k−1, ỹk)

ζ z̄−iη0
e′
k

+ Im g̃z(x̃k−1, ỹk−1)

é
dλ .(4.7)

We now make the expression more homogeneous as follows:

Lemma 4.5. Assume we have made all the replacements in Lemma 4.4. If we finally
replace each of the four Im g̃z(x̃, ỹ) by Im g̃z+iη0(x̃, ỹ), then the error term vanishes as
N → ∞, followed by η ↓ 0, followed by η0 ↓ 0.

Proof. We only analyze the first error term, the other three are similar.
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Choose p, q, r such that 1
p +

1
q +

1
r = 1, and use the Hölder’s inequality,

∣∣∣∣
1

πN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,k,η

∑

x1∼x0

∑

(x2;xk),(y2;yk)

χ(λ)Kz+iη0(x0;xk)Kz+iη0(x0; yk)

|αz+iη0(x0, x1)|2
ζz+iη0
ek ζ z̄−iη0

e′
k

Ä
Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)

ä
dλ

∣∣∣∣

≤ eη
5

πN

Ñ∫ ∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

∣∣∣Kz+iη0(x0;xk)K
z+iη0(x0; yk)

∣∣∣
p
dλ

é1/p

×
Ñ∫ ∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

∣∣∣∣
|αz+iη0(x0, x1)|2
ζz+iη0
ek ζ z̄−iη0

e′
k

∣∣∣∣
q

dλ

é1/q

×
Ñ∫ ∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

∣∣∣Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)
∣∣∣
r
dλ

é1/r

.

Here
∫

=
∫ b+2η
a−2η . The first sum is bounded by Dk−1∑

(x0;xk)∈Bk
|Kz+iη0(x0;xk)|2p. As-

sumption (Hol) on K implies that

sup
η0,η

lim sup
N→∞

1

N

∫ ∑

(x0;xk)∈Bk

|Kλ+iη4+iη0(x0;xk))|2p dλ < +∞ .

Next, by Remark A.3,

lim
N→∞

1

N

∫ ∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

∣∣∣∣
|αz+iη0(x0, x1)|2
ζz+iη0
ek ζ z̄−iη0

e′
k

∣∣∣∣
q

dλ

=

∫
E

Ñ
∑

(x0;xk),(y0;yk),x0=y0=o

∣∣∣∣
|α̂z+iη0(x0, x1)|2
ζ̂z+iη0
ek ζ̂ z̄−iη0

e′
k

∣∣∣∣
q
é

dλ

and the RHS is uniformly bounded in η, η0 ∈ (0, 1) by Remark A.4. Finally, again by
Remark A.3 we have

lim
N→∞

1

N

∫ ∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

∣∣∣Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)
∣∣∣
r
dλ

=

∫
E

Ñ
∑

(v0;vk),(w0;wk),v0=w0=o

∣∣∣ImGz(vk, wk)− ImGz+iη0(vk, wk)
∣∣∣
r

é
dλ .

We check that the RHS vanishes as η, η0 ↓ 0. Let Xη0
η = ImGλ+i(η4+η0)(vk, wk) −

ImGλ+iη4(vk, wk), X
η0 = ImGλ+iη0(vk, wk) − ImGλ+i0(vk, wk) and Y η0

η = Xη0
η − Xη0 .

Denote
∑

vk,wk
=
∑

(v0;vk),(w0;wk),v0=w0=o. For any M > 0, we have
∫
E
∑

vk ,wk
|Y η0

η |r =∫
E
∑

vk,wk
|Y η0

η |r1|Y η0
η |≤M +

∫
E
∑

vk ,wk
|Y η0

η |r1|Y η0
η |>M .

By Proposition 2.4,
∑

vk,wk
|Y η0

η |r → 0 for Lebesgue-a.e. λ ∈ R and P-a.e. [T , o,W] ∈
T

D,A
∗ as η ↓ 0. So the first term tends to 0 by dominated convergence. For the second, for

any s > r,
∫
E
∑

vk ,wk
|Y η0

η |r1|Y η0
η |>M ≤ 1

Ms−r

∫
E
∑

vk,wk
|Y η0

η |s ≤ Cs
Ms−r by (Green). This

vanishes as M → ∞. Thus,
∫
E
∑

vk,wk
|Y η0

η |r → 0 as η ↓ 0. Similarly,
∫
E
∑

vk,wk
|Xη0 |r →

0 as η0 ↓ 0. Since |Xη0
η |r ≤ 2r−1(|Y η0

η |r + |Xη0 |r), it follows that ∫ E∑vk ,wk
|Xη0

η |r → 0 as
η ↓ 0 followed by η0 ↓ 0. �
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By virtue of Lemma 4.5, denoting Ψγ,v(w) = Im g̃γ(v,w), the term in parentheses (4.7)
may be replaced by

(4.8)

Ñ
Ψz+iη0,x̃k

(ỹk)

ζz+iη0
ek ζ z̄−iη0

e′
k

− Ψz+iη0,x̃k
(ỹk−1)

ζz+iη0
ek

− Ψz+iη0,x̃k−1
(ỹk)

ζ z̄−iη0
e′
k

+Ψz+iη0,x̃k−1
(ỹk−1)

é
.

Recall that ek = (xk−1, xk), e
′
k = (yk−1, yk) and that there are non-backtracking paths

(x0, x1, . . . , xk−1, xk) and (x0, x1, . . . , yk−1, yk). Moreover, ρG(x0) ≥ dR,η,k ≥ k.
Suppose e′k 6= ek. Then there is a path (v0, . . . , vs) with v0 = x̃k, v1 = x̃k−1, vs−1 = ỹk−1

and vs = ỹk. Taking the complex conjugate in (2.12), noting that Ψz+iη0,v(w) is real, we

see that (4.8) is zero. If ek = e′k, (2.11) tells us (4.8) equals
| Im ζ

z+iη0
xk−1

(xk)|

|ζ
z+iη0
xk−1

(xk)|2
.

Since ρG(x0) ≥ k in Lemma 4.3, the paths (x0, x1, x2, · · · , xk) and (x0, x1, y2, · · · , yk)
are determined by ek and e′k, respectively. So the terms in the sum are only nonzero
if (x0, x1, x2, · · · , xk) = (x0, x1, y2, · · · , yk). Hence, if we make all replacements in Lem-
mas 4.4 and 4.5, modulo the errors appearing in these lemmas, the expression (4.6) finally
takes the form

1

πN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,k,η

∑

x1∼x0

∑

(x2;xk)

χ(λ)|αz+iη0(x0, x1)|2|Kz+iη0(x0;xk)|2

·
| Im ζz+iη0

xk−1
(xk)|

|ζz+iη0
xk−1 (xk)|2

dλ ≤ 1

π

∫ b+2η

a−2η
‖Kz+iη0‖2z+iη0 dλ ,

where we used that χ(λ) ≤ 1 on R. Collecting all estimates on the error terms, taking
N → ∞, then η ↓ 0, then η0 ↓ 0, then R→ ∞, we finally get 1

N

∑N
j=1 χ(λj)‖αγjK

γj
B fj‖2 .

1
π

∫ b+η
a−2η ‖Kz+iη0‖2z+iη0 dλ. Recalling (4.5), if we prove (4.3), then this will complete the

proof of Theorem 4.1.
We have ‖αγj

−1f∗j ‖2 =
∑

(x0,x1)∈B
1

| Im ζ
γj
x1

(x0)|
|ψj(x0) − ζ

γj
x1(x0)ψj(x1)|2. Repeating the

same arguments, we see that modulo simpler error terms, we have

1

N

∑

λj∈I

‖αγj
−1f∗j ‖2 .

3

πN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,η

∑

x1∼x0

χ(λ)

| Im ζz+iη0
x1 (x0)|

·
î
Ψz+iη0,x̃0(x̃0)− ζz+iη0

x1
(x0)Ψz+iη0,x̃1(x̃0)− ζz+iη0

x1 (x0)Ψz+iη0,x̃0(x̃1)

+ |ζz+iη0
x1

(x0)|2Ψz+iη0,x̃1(x̃1)
ó
dλ .

The term in square brackets is just | Im ζz+iη0
x1

(x0)| by (2.11). Hence, using χ(λ) ≤ 1 we

get 1
N

∑
λj∈I ‖αγj

−1f∗j ‖2 . 3(|I|+4η)D
π for any small η > 0, and (4.3) follows.

5. Step 2 : Invariance property of the quantum variance

In the scheme of §1.6, we are now in Step 2 : using the functional equations (3.1)
and (3.2) satisfied by fj, f

∗
j , we show that there are certain transformations Rγ

n,r : Hk =

C
Bk → Hn+k = C

Bn+k that leave the quantum variance (3.3) unchanged.
Recall from Section 3 that B(ζγjfj) = fj − iη0 τ+ψj and B∗(ιζγjf∗j ) = f∗j − iη0 τ−ψj if

γj = λj + iη0. So

(Bζγj )2fj = Bζγjfj − iη0Bζγjτ+ψj = fj − iη0(I + Bζγj)τ+ψj .

Iterating r times,

(Bζγj)rfj = fj − iη0

r−1∑

t=0

(Bζγj)tτ+ψj .
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Similarly

(B∗ιζγj)n−rf∗j = f∗j − iη0

n−r−1∑

t′=0

(B∗ιζγj )t
′

τ−ψj .

If we define for r ≤ n and γ ∈ C \ R the operator Rγ
n,r : Hk → Hn+k by

(Rγ
n,rK)(x0;xn+k) = ζγx1(x0)ζ

γ
x2(x1) · · · ζγxn−r(xn−r−1)K(xn−r;xn−r+k)

· ζγxn−r+k
(xn−r+k+1)ζ

γ
xn−r+k+1

(xn−r+k+2) · · · ζγxn+k−1
(xn+k) ,

we thus get

〈f∗j , (R
γj
n,rK)Bfj〉 =

∑

(xn−r ;xn−r+k)

î
(B∗ιζγj )n−rf∗j

ó
(xn−r, xn−r+1)K(xn−r;xn−r+k)

· [(Bζγj )rfj] (xn−r+k−1, xn−r+k)

=
¨
(B∗ιζγj )n−rf∗j ,KB(Bζγj)rfj

∂
= 〈f∗j ,KBfj〉 −On,r,j(η0,K) ,

where On,r,j(η0,K) is an error term that should vanish as η0 ↓ 0 :

On,r,j(η0,K) = iη0

r−1∑

t=0

〈f∗j ,KB(Bζγj)tτ+ψj〉+ iη0

n−r−1∑

t′=0

〈(B∗ιζγj)t
′

τ−ψj ,KBfj〉

+ η20

r−1∑

t=0

n−r−1∑

t′=0

〈(B∗ιζγj)t
′

τ−ψj,KB(Bζγj)tτ+ψj〉 .

Since this holds for each 1 ≤ r ≤ n and K = Kγ , we get by the triangular inequality

(5.1) VarInb,η0(K
γ) ≤ VarInb,η0

( 1
n

n∑

r=1

Rγ
n,rK

γ
)
+

1

N

∑

λj∈I

∣∣∣∣
1

n

n∑

r=1

On,r,j(η0,K
γ)

∣∣∣∣ .

We first show that the latter term may be neglected.

Lemma 5.1. Suppose Kγ ∈ Hk satisfies assumptions (Hol) and let Ī ⊆ I1. Then for all
n ∈ N,

lim
η0↓0

lim sup
N→∞

Ç
1

N

∑

λj∈I

∣∣∣∣
1

n

n∑

r=1

On,r,j(η0,K
γ)

∣∣∣∣
å2

= 0 .

Proof. We have
Ä

1
N

∑
λj∈I | 1n

∑n
r=1On,r,j|

ä2 ≤ 1
n

∑n
r=1

Ä
1
N

∑
λj∈I |On,r,j|

ä2
. Now, letting

as above γj = λj + iη0,

Ç∑
λj∈I

|On,r,j|
å2

≤ η20cn,r

® r−1∑

t=0

( ∑

λj∈I

∣∣∣
¨
f∗j ,K

γj
B (Bζγj )tτ+ψj

∂∣∣∣
)2

+
n−r−1∑

t′=0

( ∑

λj∈I

∣∣∣
¨
(B∗ιζγj )t

′

τ−ψj,K
γj
B fj
∂∣∣∣
)2

+ η20
∑

t,t′

( ∑

λj∈I

∣∣∣
¨
(B∗ιζγj )t

′

τ−ψj ,K
γj
B (Bζγj)tτ+ψj

∂∣∣∣
)2´

,

where cn,r = n+r(n−r). So it suffices to show that lim supN
Ä

1
N

∑
λj∈I |〈·, ·〉|

ä2
is uniformly

bounded in η0 for each t, t′. For the first term, we have
( 1

N

∑

λj∈I

|〈f∗j ,K
γj
B (Bζγj)tτ+ψj〉|

)2
≤ 1

N

∑

λj∈I

‖αγj
−1f∗j ‖2 ·

1

N

∑

λj∈I

‖αγjK
γj
B (Bζγj )tτ+ψj‖2 .
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The first sum is uniformly bounded as η0 ↓ 0, by (4.3). Next, by (2.3), we have

‖αγjK
γj
B (Bζγj)tτ+ψj‖2 =

∑

(x0,x1)∈B

∑

(x2;xk),(y2;yk)

|αγj (x0, x1)|2Kγj (x0;xk)

·Kγj (x0; yk) · [(Bζγj)tτ+ψj ](xk−1, xk)[(Bζγj )tτ+ψj ](yk−1, yk) ,

Arguing as in Section 4, applying Lemmas 4.2 to 4.4, we get for z = λ+ iη4,

1

N

∑

λj∈I

‖αγjK
γj
B (Bζγj)tτ+ψj‖2 .

3

πN

∫ b+2η

a−2η

∑

ρG(x0)≥dR,k,t,η

∑

x1∼x0

∑

(x2;xk+t),(y2;yk+t)

χ(λ)|αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk)

ζz+iη0
xk

(xk+1) · · · ζz+iη0
xk+t−1

(xk+t)ζ
z+iη0
yk (yk+1) · · · ζz+iη0

yk+t−1(yk+t)Ψz,x̃k+t
(ỹk+t) dλ .

Using Hölder’s inequality as in Lemma 4.5, we see that as N → ∞, this quantity is
uniformly bounded in η, η0 by (Hol) and (Green). One bounds 1

N

∑
λj

‖Kγj
B fj‖2 similarly.

Finally,

1

N

∑

λj∈I

‖(B∗ιζγj )t
′

τ−ψj‖2 =
1

N

∑

λj∈I

∑

(x0;xt′+1)

|ψj(x0)|2|ζγjx1(x0) . . . ζ
γj
xt′−1

(xt′)|2

.
3

πN

∫ b+2η

a−2η

∑

(x0;xt′+1),ρG(x0)≥dR,η,t′

χ(λ)Ψz,x̃0(x̃0)|ζz+iη0
x1

(x0) . . . ζ
z+iη0
xt′−1

(xt′)|2 dλ ,

which is asymptotically bounded using Hölder’s inequality again as in Lemma 4.5. �

Using the invariance law (5.1), Theorem 4.1 with K̃γ = 1
n

∑n
r=1Rγ

n,rK
γ , and Lemma 5.1,

we deduce the following statement :

Proposition 5.2. Under the assumptions of Theorem 4.1,

lim
η0↓0

lim sup
N→+∞

VarInb,η0(K
γ)2

≤ D |I| lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η

∥∥∥∥
1

n

n∑

r=1

Rλ+i(η4+η0)
n,r Kλ+i(η4+η0)

∥∥∥∥
2

λ+i(η4+η0)
dλ .

6. Step 3 : A stationary Markov chain appears

Denoting γ = λ+ i(η4 + η0) in Proposition 5.2, we are now concerned with estimating

(6.1)

∥∥∥∥∥
1

n

n∑

r=1

Rγ
n,rK

γ

∥∥∥∥∥

2

γ

=
1

n2

n∑

r,r′=1

¨
Rγ

n,rK
γ ,Rγ

n,r′K
γ
∂
γ
.

Suppose r ≥ r′, so that n− r ≤ n− r′. Then

〈Rγ
n,rK,Rγ

n,r′K〉γ =
1

N

∑

(x0;xn+k)∈Bn+k

| Im ζγx1
(x0)|

|ζγx1(x0)|2
· |ζγx1

(x0) · · · ζγxn−r
(xn−r−1)|2

· |ζγxn−r′+k
(xn−r′+k+1) · · · ζγxn+k−1

(xn+k)|2

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′
(xn−r′−1)K(xn−r′ ;xn−r′+k) ·

| Im ζγxn+k−1
(xn+k)|

|ζγxn+k−1(xn+k)|2
.
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Letting η1 = Im γ, (2.9) tells us that
∑

x0∈Nx1\{x2} | Im ζγx1
(x0)| = | Im ζγx2 (x1)|

|ζγx2 (x1)|2
− η1. Simi-

larly, we have
∑

xn+k∈Nxn+k−1
\{xn+k−2} | Im ζγxn+k−1

(xn+k)| =
| Im ζγxn+k−2

(xn+k−1)|

|ζγxn+k−2
(xn+k−1)|2

− η1. By

iteration, this induces some simplifications :

(6.2) 〈Rγ
n,rK,Rγ

n,r′K〉γ =
1

N

∑

(xn−r ;xn−r′+k)∈Bk+r−r′

| Im ζγxn−r+1
(xn−r)|

|ζγxn−r+1(xn−r)|2
K(xn−r;xn−r+k)

·K(xn−r′ ;xn−r′+k) · ζγxn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1
(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′
(xn−r′−1) ·

| Im ζγxn−r′+k−1
(xn−r′+k)|

|ζγxn−r′+k−1
(xn−r′+k)|2

−On,r,r′(η1,K) ,

with the error term

On,r,r′(η1,K) =
η1
N

n−r∑

s=1

∑

(xs;xn+k)

|ζγxs+1
(xs) · · · ζγxn−r

(xn−r−1)|2

· |ζγxn−r′+k
(xn−r′+k+1) · · · ζγxn+k−2

(xn+k−1)|2 · | Im ζγxn+k−1
(xn+k)|

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′
(xn−r′−1)K(xn−r′ ;xn−r′+k)

+
η1
N

n+k−1∑

s′=n−r′+k

∑

(xn−r′ ;xs′)

| Im ζγxn−r+1
(xn−r)|

|ζγxn−r+1(xn−r)|2

· |ζγxn−r′+k
(xn−r′+k+1) · · · ζγxs′−1

(xs′)|2

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′
(xn−r′−1)K(xn−r′ ;xn−r′+k) .

The expression is slightly nicer if we replace K by ZγK defined by

(6.3) (ZγK)(x0;xk) = ζγx0
(x1) · · · ζγxk−1

(xk)K(x0;xk) .

If γ 7→ Kγ satisfies (Hol) then so does γ 7→ ZγK
γ . Using (2.7), we get in that case

(6.4) 〈Rγ
n,rZγK

γ ,Rγ
n,r′ZγK

γ〉γ =
1

N

∑

(xn−r ;xn−r′+k)∈Bk+r−r′

| Im ζγxn−r+1
(xn−r)|

|mγ
xn−r+1 |2|ζγxn−r(xn−r+1)|2

· |ζxn−r(xn−r+1) · · · ζxn−r′+k−1
(xn−r′+k)|2mγ

xn−rK
γ(xn−r;xn−r+k)

·mγ
xn−r′

Kγ(xn−r′ ;xn−r′+k) · uγxn−r+1
(xn−r) · · · uγxn−r′

(xn−r′−1)

·
| Im ζγxn−r′+k−1

(xn−r′+k)|
|ζγxn−r′+k−1

(xn−r′+k)|2
−On,r,r′(η1, ZγK

γ) ,

where uγx(y) is the complex number of modulus 1 given by

(6.5) uγx(y) = ζγx (y)ζ
γ
x (y)

−1 .

Let us define a positive measure µγk on Bk by

(6.6) µγk [(x0;xk)] =
| Im ζγx1

(x0)|
|mγ

x1ζ
γ
x0(x1)|2

· |ζx0(x1) · · · ζxk−1
(xk)|2 ·

| Im ζγxk−1
(xk)|

|ζγxk−1(xk)|2
.

Let us also introduce the operator

(6.7) (SuγK)(x0;xk) =
|ζγx1

(x0)|2
| Im ζγx1(x0)|

∑

x−1∈Nx0\{x1}

| Im ζγx0
(x−1)|uγx0(x−1)K(x−1;xk−1) .
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Then, using (2.7) again, we see that (6.4) takes the nicer form

(6.8) 〈Rγ
n,rZγK

γ ,Rγ
n,r′ZγK

γ〉γ =
1

N
〈Sr−r′

uγ mγKγ ,mγKγ〉ℓ2(µγ
k
) −On,r,r′(η1, ZγK

γ) ,

where we let (mγK)(x; y) = mγ
xK(x; y). Let us also define

(6.9) (SγK)(x0;xk) =
|ζγx1

(x0)|2
| Im ζγx1(x0)|

∑

x−1∈Nx0\{x1}

| Im ζγx0
(x−1)|K(x−1;xk−1) .

Such operators would be called “transfer operators” in ergodic theory, or “transition ma-
trices” in the theory of Markov chains. Note that Sγ has non-negative coefficients and

that Suγ just differs from Sγ by the “phases” uγx0(x−1). The effect of adding a phase to
a stochastic operator is a much studied subject in the theory of Markov chains, or more
generally in ergodic theory (see Wielandt’s theorem [36, Chapter 8], or in the context of
hyperbolic dynamical systems [37, Chapter 4]).

The matrix elements of Sγ are given by Sγ(ω, ω
′) =

|ζγx1(x0)|2

| Im ζγx1(x0)|
| Im ζγx0

(x−1)| if ω =

(x0;xk), ω
′ = (x−1;xk−1) and ω

′  ω, and Sγ(ω, ω
′) = 0 otherwise. Recall from §2.1 that

if ω = (x0;xk), we write ω′  ω if ω′ = (x−1, x0, . . . , xk−1) for some x−1 ∈ Nx0 \ {x1}.
Note that Sγ is substochastic :

∑
ω′∈Bk

Sγ(ω, ω
′) ≤ 1 for any ω ∈ Bk, by (2.9). More

precisely, if ω = (x0;xk) and η1 = Im γ > 0, then

(6.10)
∑

ω′∈Bk

Sγ(ω, ω
′) = 1− η1

|ζγx1
(x0)|2

| Im ζγx1(x0)|
.

Taking the adjoint in ℓ2(µγk), a direct calculation gives

(S∗
γK)(x0;xk) =

|ζγxk−1
(xk)|2

| Im ζγxk−1(xk)|
∑

xk+1∈Nxk
\{xk−1}

| Im ζγxk
(xk+1)|K(x1;xk+1) .

The adjoint S∗
γ is also substochastic, with

(6.11)
∑

ω′∈Bk

S∗
γ(ω, ω

′) = 1− η1
|ζγxk−1

(xk)|2
| Im ζγxk−1(xk)|

.

Remark 6.1. By (2.9), for any (x0;xk−1) ∈ Bk−1, we have

(6.12)
∑

xk∈Nxk−1
\{xk−2}

µγk [(x0;xk)] ≤ µγk−1 [(x0;xk−1)]

and for any (x1;xk) ∈ Bk−1,

(6.13)
∑

x0∈Nx1\{x2}

µγk [(x0;xk)] ≤ µγk−1 [(x1;xk)]

In (6.1) we take γ = λ+ i(η4 + η0) (c.f. Proposition 5.2), and thus η1 = Im γ = η4 + η0.
In the limiting case η1 = 0, (6.12) and (6.13) turn into equalities. Equation (6.12) is then
the Kolmogorov compatibility condition : it tells us that the family of measures (µγk) may
be extended to a positive measure (actually, a Markov measure) on the set B∞ of infinite
non-backtracking paths. Equality in condition (6.13) means that this Markov chain is
stationary. This stationarity is the property that makes the measures µγk nice, and this is

the reason for introducing (somewhat artificially) the weight Im ζγx (y)
|ζγx (y)|2

in (4.1).

This family of stationary Markov chains (indexed by γ) is in some sense the “classical
dynamical system” that we were seeking for in §1.6.

Since η1 = η4 + η0 is non-zero (but small), we do not actually have exact equality in
(6.12) and (6.13). This causes some error terms that we need to control as η, η0 −→ 0.
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7. Spectral gap and mixing

In this section, we convert the expanding assumption (EXP) into an estimate on the
rate of mixing of the “Markov chains” (µγk) defined in (6.6). Every transitive Markov
chain is mixing, but here we need estimates that are uniform both as N −→ +∞ and as
γ approaches the real axis.

A technical difficulty is that the measures (µγk) are not a priori bounded from above,
and the transition probabilities are not bounded from below as γ approaches the real axis.
Peaks of (µγk), as well as small transition probabilities, tend to “disconnect” the graph
and are bad for mixing. So we will need to show that there are few peaks and few small
transitions (Proposition 7.6).

Let νγk = 1
µγ
k
(Bk)

µγk be the normalized measure. We denote by ℓ2(νγk ) the set ℓ2(Bk)

endowed with the scalar product 〈f, g〉νγ
k
=
∑

ω∈Bk
νγk (ω)f(ω)g(ω).

We anticipate the calculations of Section 10, where we will need to consider the non-
backtracking quantum variance of operators Kγ of the form Kγ = FγK where K is
independent of γ, and Fγ : Hm → Hk is a γ-dependent operator for some 1 ≤ k ≤
m + 1, having the form Fγ = Lγd−1ST,γ , ‹T γ , ‹Oγ

1 , Uγ
j , Oγ

j , Pγ
j , j ≥ 2, or a polynomial

combination thereof. See (10.3, 10.4, 10.14, 10.8, 10.9, 10.10) for the definitions. In the
case Fγ = Lγd−1ST,γ , the operator depends on an additional parameter T ∈ N

∗, that has
to be taken arbitrarily large in Corollary 10.4.

Comparing with (6.8), this means that we will need to deal with 〈Sr−r′

uγ Kγ ,Kγ〉µγ
k
where

now Kγ = BγK, K is γ-independent, and Bγ = mγZ−1
γ Fγ : Hm → Hk.

For simplicity, the calculations below are written for k = 1. This suffices for our
purposes, as we shall see in Section 9. Like in the statement of Theorem 1.3, we will always
assume that the γ-independent operator K satisfies ‖K‖∞ := supx,y∈V |K(x, y)| ≤ 1.

The main results of this section are the two following propositions, that estimate the
norm of Sγ on proper subspaces. We call F the space of functions f on B such that f(e)
“depends only on the terminus”, that is, f(e) = f(e′) if te = te′ . The first proposition
estimates the norm of Sγ on the orthogonal of F , and the second one estimates the norm
of S2

γ on the orthogonal of constant functions.

We denote by ℓ2(B1, U) the set ℓ2(B1) endowed with the scalar product 〈f, g〉U =
1
N

∑
e∈B1

f(e)g(e). Let PF,U be the orthogonal projector on F in ℓ2(B1, U) :

(7.1) PF,UK(e) =
1

d(te)

∑

e′: te′=te

K(e′) .

We use as a “reference operator” the transfer operator S defined by

S : ℓ2(B,U) −→ ℓ2(B,U)

Sf(e) =
1

q(oe)

∑

e′ e

f(e′)

where q(x) = d(x) − 1. Both S and S∗ are stochastic, if the adjoint of S is taken in
ℓ2(B1, U). The influence of the spectral gap assumption (EXP) on the spectrum of S is
studied in [8] and we will use these results below.

We denote Q = S∗S and Q2 = S2 ∗S2. Note that Q(e, e′) = 0 unless there exists e′′

such that e e′′ and e′  e′′. In this case, we say that [e, e′] is a pair ; [e, e′] form a pair
iff they share the same terminus. The set of pairs is denoted by P (B1).

Proposition 7.1. Let BγK ∈ H1. Let w = PF⊥,νBγK be the orthogonal projection of

BγK on F⊥ in ℓ2(νγ1 ). Then for any M > 0 we have

‖Sγw‖2νγ1 ≤ (1− 3/4M−2) · ‖w‖2νγ1 +CN,M (Bγ) · ‖K‖2∞ ,
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where

(7.2) CN,M(Bγ) = sup
‖K‖∞=1

M−1

2N

∑

[e,e′]∈Badp(M)

Q(e, e′)|BγK(e)−BγK(e′)|2

+M−2
∑

e∈Bad(M)

νγ1 (e)|BγK(e)− PF,UBγK(e)|2.

The sets Bad(M) of bad edges and Badp(M) of bad pairs of edges will be defined in
the course of the proof. They correspond to the aforementioned peaks of µγ1 and problems
of small transition probabilities. If there were no bad edges and bad pairs, Proposition
7.1 would be a genuine spectral gap estimate.

Proposition 7.2. Let BγK ∈ H1. Let w = P
1⊥,νBγK be the orthogonal projection of

BγK on 1⊥ in ℓ2(νγ1 ). Then for any M > 0 we have

‖S2
γw‖2νγ1 ≤ (1−M−2c(D,β)) · ‖w‖2νγ1 + CN,M,2(Bγ) · ‖K‖2∞ ,

where c(D,β) > 0 is explicit and depends only on D (upper bound on the degree) and the
spectral gap β of (EXP), and

CN,M,2(Bγ) = sup
‖K‖∞=1

M−1

2N

∑

[e,e′]∈Badp(2,M)

Q2(e, e
′)|BγK(e)−BγK(e′)|2

+M−2
∑

e∈Bad(M)

νγ1 (e)|BγK(e)− P1,UBγK(e)|2 ,

where P1,U is the orthogonal projector on 1 in ℓ2(B1, U).

The quantities CN,M (Bγ), CN,M,2(Bγ) are estimated in Proposition 7.7.

Proof of Proposition 7.1. Let Qγ = S∗
γSγ (where now the adjoint is considered in ℓ2(νγ1 )).

The operator Qγ being self-adjoint on ℓ2(νγ1 ) is equivalent to the relation

(7.3) νγ1 (e)Qγ(e, e′) = νγ1 (e
′)Qγ(e′, e)

for all e, e′ ∈ B1. Note that Qγ(e, e′) = 0 unless [e, e′] is a pair.
Define Dγ(e) =

∑
e′ Qγ(e, e′) ≤ 1 and Mγ(e, e′) = Dγ(e)δe=e′ −Qγ(e, e′).

Then using (7.3), we have the Dirichlet identity

(7.4)
1

2

∑

e,e′

νγ1 (e)Qγ(e, e′)|K(e)−K(e′)|2 = 〈K,MγK〉νγ1 .

We observe that for any K ∈ ℓ2(νγ1 ),
(7.5) ‖SγK‖νγ1 ≤ ‖K‖νγ1 .

Indeed, denoting 〈·, ·〉ν := 〈·, ·〉νγ1 , we have ‖SγK‖2ν = 〈K,QγK〉ν and 〈K,MγK〉ν ≥ 0 by

Dirichlet, so ‖K‖2ν ≥ 〈K,DγK〉ν ≥ 〈K,QγK〉ν as claimed.

Remark 7.3. The Dirichlet identity shows that

F = {K ∈ C
B : MγK = 0} = {K ∈ C

B : (I −Q)K = 0} .
Remark 7.4. If J ⊥ F in ℓ2(B1, U), then 〈J, (I −Q)J〉U ≥ 3

4 ‖J‖2U .
Indeed, 〈τ+δy, J〉U = 0 for all y ∈ V , so

∑
x∼y J(x, y) = 0 for all y ∈ V and thus

(QJ)(x0, x1) = (S∗SJ)(x0, x1) = J(x0,x1)
q(x1)2

. As min q(x) ≥ 2, we get ‖QJ‖U ≤ 1
4 ‖J‖U and

the claim follows.
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Fix a large M > 0. We call e ∈ B1 bad if νγ1 (e) >
M
N . We call a pair [e, e′] ∈ P (B1)

bad if νγ1 (e)Qγ(e, e′) < M−1

N . We call Bad(M) and Badp(M) the sets of bad e and [e, e′],
respectively.

To prove Proposition 7.1, we first note that by (7.4), and letting Kγ = BγK,

(7.6) ‖w‖2ν − ‖Sγw‖2ν ≥ 〈w,Mγw〉ν = 〈Kγ ,MγKγ〉ν

=
1

2

∑

[e,e′]∈P (B1)

νγ1 (e)Qγ(e, e′)|Kγ(e)−Kγ(e
′)|2

≥ M−1

2N

∑

[e,e′] 6∈Badp(M)

Q(e, e′)|Kγ(e)−Kγ(e
′)|2

=M−1〈Kγ , (I −Q)Kγ〉U − M−1

2N

∑

[e,e′]∈Badp(M)

Q(e, e′)|Kγ(e)−Kγ(e
′)|2 ,

where we used Q(e, e′) ≤ 1. By Remark 7.4,

〈Kγ , (I −Q)Kγ〉U = 〈Kγ − PF,UKγ , (I −Q)(Kγ − PF,UKγ)〉U
≥ 3

4
· ‖Kγ − PF,UKγ‖2U .

Now

(7.7) ‖Kγ − PF,UKγ‖2U ≥M−1
∑

e 6∈Bad(M)

νγ1 (e)|Kγ(e)− PF,UKγ(e)|2

=M−1‖Kγ − PF,UKγ‖2ν −M−1
∑

e∈Bad(M)

νγ1 (e)|Kγ(e) − PF,UKγ(e)|2

≥M−1‖w‖2ν −M−1
∑

e∈Bad(M)

νγ1 (e)|Kγ(e)− PF,UKγ(e)|2.

We used that ‖Kγ − PF,UKγ‖2ν ≥ ‖w‖2ν since w = PF⊥,ν(Kγ − PF,UKγ). The result is
obtained by putting together (7.6) and (7.7). �

Proof of Proposition 7.2. We now let Qγ
2 = S2 ∗

γ S2
γ (where the adjoint is taken in ℓ2(νγ1 )).

Then Qγ
2(e, e

′) 6= 0 iff there exists e′′, e1, e
′
1 such that e  e1  e′′ and e′  e′1  e′′.

We denote the set of such pairs [e, e′] by P2(B1) and let Mγ
2(e, e

′) = D2δe=e′ −Q2(e, e
′),

where D2(e) =
∑

e′ Qγ
2(e, e

′) ≤ 1.

Fix M > 0. We say that [e, e′] ∈ P2(B1) is bad if νγ1 (e)Q2(e, e
′) < M−1

N . We call
Badp(2,M) the set of bad pairs in P2(B1).

The proof is then exactly similar to Proposition 7.1, replacing the space F by the space
of constant functions and using [8, Theorem 1.1] instead of Remark 7.4. �

Later on, we will need to iterate the result of Proposition 7.2, considering S2ℓ
γ instead of

S2
γ . Since S∗

γ is not exactly stochastic, Sγ does not preserve the orthogonal of constants.

Still, we can iterate (6.11) to get S∗ l
γ 1 = 1−η1

∑l−1
s=0 S∗ s

γ ξγ , where ξγ(x0, x1) =
|ζγx0(x1)|2

| Im ζγx0 (x1)|
.

Hence, for any K we have 〈1,S l
γK〉ν = 〈1,K〉ν − η1〈

∑l−1
s=0 S∗ s

γ ξγ ,K〉ν . Denoting

ZlK := ξγ
2l−1∑

s=0

Ss
γK , Z0K := 0 ,

we see that if K ⊥ 1, then S2l
γ K + η1ZlK ⊥ 1.

Proposition 7.5. Let K ∈ Hm. Let w = P
1⊥,νBγK be the orthogonal projection of BγK

on 1⊥ in ℓ2(νγ1 ). Then for any M > 0 we have
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‖S2ℓ
γ w‖ν ≤

Ä
1−M−2c(D,β)

äℓ/2 ‖w‖ν +
ℓ−1∑

l=0

CN,M,l,2(Bγ)
1/2‖K‖∞ + 2η1

ℓ−1∑

l=1

‖Zlw‖ν .

where CN,M,l,2(Bγ) = CN,M,2((S2l
γ + η1Zl)P1⊥,νBγ).

Proof. The proof is by induction on ℓ. This holds for ℓ = 1 by Proposition 7.2. Assume
the result holds for ℓ. If w ⊥ 1, we have just seen that (S2ℓ

γ + η1Zℓ)w ⊥ 1 in ℓ2(νγ1 ). So
using Proposition 7.2 and (7.5),

‖S2(ℓ+1)
γ w‖ν ≤ ‖S2

γ (S2ℓ
γ + η1Zℓ)w‖ν + η1‖Zℓw‖ν

≤
Ä
1−M−2c(D,β)

ä1/2 ‖(S2ℓ
γ + η1Zℓ)w‖ν + CN,M,ℓ,2(Bγ)

1/2 ‖K‖∞ + η1‖Zℓw‖ν .
Since ‖(S2ℓ

γ + η1Zℓ)w‖ ≤ ‖S2ℓ
γ w‖+ η1‖Zℓw‖, the claim follows. �

The rest of this section is devoted to estimating the “bad” quantities.

Proposition 7.6. Under assumptions (BSCT) and (Green), for any s ≥ 1, there exists
Cs such that for all M > 1 we have

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

νγ1 (Bad(M)) ≤ CsM
−s and lim sup

N→∞

#Badp(M)

N
≤ CsM

−s .

Proof. We have νγ1 (Bad) = νγ1 {e : νγ1 (e) > M
N }, so

νγ1 (Bad) ≤M−sN s
∑

e∈B1

νγ1 (e)ν
γ
1 (e)

s =M−s
( N

µγ1(B1)

)s+1 1

N

∑

e∈B1

µγ1(e)
s+1 .

Recalling the definition of µγ1 (6.6), and using Remark A.3, we get
( N

µγ1(Bk)

)s+1 1

N

∑

e∈B1

µγ1(e)
s+1 −→

N−→+∞

1

E[
∑

o′∼o µ̂
γ
1(o, o

′)]s+1
E

ñ∑
o′∼o

µ̂γ1(o, o
′)s+1

ô

uniformly in Re γ ∈ I1, for any fixed Im γ = η1. By Remark A.4, this is bounded by some
constant Cs. The second assertion is proved similarly. �

Proposition 7.7. For all t ∈ N,

CN,M(St
uγBγ) ≤

2M−1

N
#Badp(M)1/3

Ç∑
e

1

νγ1 (e)

å1/3Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)6å1/3

+ 2M−2νγ1 (Bad(M))1/2
Ç∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)4å1/2

+ 2M−2νγ1 (Bad(M))1/2
Ç∑

e

[(PF,Uν
γ
1 )(e)]

2

νγ1 (e)

å1/4Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)8å1/4

,

where (PF,Uν
γ
1 )(e) =

1
d(te)

∑
te′=te ν

γ
1 (e

′), and

(7.8) CN,M,2(St
uγBγ)

≤ 2M−1

N
#Badp(2,M)1/3

Ç∑
e

1

νγ1 (e)

å1/3 Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)6å1/3

+ 2M−2νγ1 (Bad(M))1/2
Ç∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)4å1/2

+ 2M−2νγ1 (Bad(M))1/2
Ç

1

N2

∑

e

1

νγ1 (e)

å1/4Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)8å1/4

.
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Similar estimates hold if Bγ is replaced by P
1⊥,νBγ, where P1⊥,ν is the projection on the

orthogonal of constants in ℓ2(νγ1 ).

We first deduce the following corollary. Recall that the operators Fγ from Corollary 10.4
depend on a parameter T ∈ N

∗, and Bγ = mγZ−1
γ Fγ . In this section, T is fixed, but will

be taken to +∞ in Section 10.

Corollary 7.8. For any s > 0, there exists Cs,T such that, for all M ,

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

sup
t∈N

CN,M (St
uγBγ) ≤ Cs,TM

−s

and

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

sup
t∈N

CN,M,2(St
uγBγ) ≤ Cs,TM

−s .

Similar estimates hold if Bγ is replaced by P
1⊥,νBγ .

Proof of Corollary 7.8. This will follow from Propositions 7.6 and 7.7 if we show that

(7.9) sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

N−2
∑

e

1

νγ1 (e)
< +∞

(7.10) sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)α

< +∞

(α = 4, 6, 8) and

(7.11) sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

∑

e

1

νγ1 (e)

1

d(te)2

∑

te′=te,te′′=te

νγ1 (e
′)νγ1 (e

′′) < +∞ .

For (7.9), we have by Remark A.3 that

N−2
∑

e

1

νγ1 (e)
=

∑
e µ

γ
1(e)

N
· 1

N

∑

e

1

µγ1(e)
−→
N→∞

E

(∑

o′∼o

µ̂γ1(o, o
′)

)
· E
(∑

o′∼o

1

µ̂γ1(o, o
′)

)

uniformly in Re γ ∈ I1, for any fixed Im γ = η1. So the claim follows Remark A.4.
Similarly, using 1

d ≤ 1, (7.11) is uniformly bounded by

1

E (
∑

o′∼o µ̂
γ
1(o, o

′))
E

Ñ
∑

o′∼o

∑

o′′∼o′,o′′′∼o′

1

µ̂γ1(o, o
′)
µ̂γ1(o

′′, o′)µ̂γ1(o
′′′, o′)

é
.

We next consider (7.10). We only treat the cases Bγ = mγ

Zγ
Lγd−1ST,γ and Bγ = mγ

Zγ

‹T γ , as

they capture all difficulties. We start with Bγ = mγ

Zγ
Lγd−1ST,γ .

Let f yx = ζγx (y)

4mγ
xNγ(x)Nγ (y)

and gyx = −1

4mγ
xζ

γ
y (x)Nγ(x)Nγ (y)

, where Nγ(x) = Im g̃γ(x̃, x̃) > 0. If

e = (x, y), then Bγ(e, w) = f yx
∑T−1

s=0
T−s
T (P s Nγδw

d )(x) + gyx
∑T−1

s=0
T−s
T (P s Nγδw

d )(y). Hence,

∑

w∈V

|Bγ(e, w)| ≤
T−1∑

s=0

(
|f yx |

∑

w∈V

(
P sNγδw

d

)
(x) + |gyx|

∑

w∈V

(
P sNγδw

d

)
(y)
)

=
T−1∑

s=0

Ä
|f yx | (P sd−1Nγ)(x) + |gyx| (P sd−1Nγ)(y)

ä
.
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Thus,

∑

e

νγ1 (e)
[ ∑

w∈V

|Bγ(e, w)|
]α

≤ (2T )α−1
T−1∑

s=0

∑

(x,y)

νγ1 (x, y)(|f yx |α|(P sd−1Nγ)(x)|α + |gyx|α|(P sd−1Nγ)(y)|α) ,

which is uniformly bounded by some CT as N → ∞; see Remark A.5. Similarly, if

Bγ = mγ

Zγ

‹T γ , then taking f yx =
mγ

xζ
γ
y (x)

ζγy (x)ζ
γ
x (y)+1

, we have Bγ(e, e
′) = f yxδe′(e) for e = (x, y). It

follows that
∑

e′ |Bγ(e, e
′)| = |f yx |. Hence, we get the uniform asymptotic bound

(7.12) E

(∑

o′∼o

µ̂γ1(o, o
′)

)
E

(∑

o′∼o

µ̂γ1(o, o
′) |f̂ o′o |α

)
.

Note that |f̂ o′o | = |m̂γ
o |

|ζ̂γo (o′)+ζ̂γ
o′
(o)

−1
|
= |m̂γ

o |

|2Re ζ̂γo (o′)+2m̂γ
o |

≤ |m̂γ
o |

2 Im m̂γ
o
by (2.7). So (7.12) is bounded

by some C using (Green); see Remarks A.4 and A.5. �

Proof of Proposition 7.7. An important point here is to obtain a bound that does not
depend on t. Recalling (7.2), we first estimate

(7.13)
∑

[e,e′]∈Badp(M)

Q(e, e′)|St
uγBγK(e)− St

uγBγK(e′)|2

≤ 4
∑

[e,e′]∈Badp(M)

Q(e, e′)|St
uγBγK(e)|2 = 4

∑

e

n(e)|St
uγBγK(e)|2 ,

where n(e) =
∑

e′:[e,e′]∈Badp(M)Q(e, e′). Using Hölder, this is less than

4

Ç∑
e

n3(e)

å1/3Ç∑
e

1

νγ1 (e)

å1/3Ç∑
e

νγ1 (e)|St
uγBγK(e)|6

å1/3

.

But again by Hölder and the fact that Q is stochastic, we have
∑

e

n3(e) ≤
∑

e

(∑

e′

1l[e,e′]∈Badp(M)

)(∑

e′

Q(e, e′)3/2
)2

≤ #Badp(M) .

Next, recalling (6.7), (6.9), we have |St
uγBγK(e)| ≤ (St

γ |BγK|)(e). As St
γ and S∗ t

γ are

substochastic, and νγ1 (e)St
γ(e, e

′) = νγ1 (e
′)S∗ t

γ (e′, e), we have

∑

e

νγ1 (e)[St
γ |BγK|(e)]6 ≤

∑

e

νγ1 (e)
(∑

e′

St
γ(e, e

′)
)5(∑

e′

St
γ(e, e

′)[|BγK|(e′)]6
)

≤
∑

e,e′

νγ1 (e
′)S∗ t

γ (e, e′)[|BγK|(e′)]6 ≤
∑

e′

νγ1 (e
′)[|BγK|(e′)]6 .

Collecting the estimates, we showed that (7.13) is bounded by

4 (#Badp(M))1/3
Ç∑

e

1

νγ1 (e)

å1/3 Ç∑
e

νγ1 (e) [|BγK|(e)]6
å1/3

.

For the second term in (7.2), we have

(7.14)
∑

e∈Bad(M)

νγ1 (e)|St
uγBγK(e)− PF,USt

uγBγK(e)|2

≤ 2
∑

e∈Bad(M)

νγ1 (e)
(î
St
γ |BγK|(e)

ó2
+
î
PF,USt

γ |BγK|(e)
ó2)
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and again, as St
γ and S∗ t

γ are substochastic,

∑

e∈Bad(M)

νγ1 (e)
î
St
γ |BγK|(e)

ó2 ≤ νγ1 (Bad(M))1/2
Ç∑

e

νγ1 (e) [|BγK|(e)]4
å1/2

.

Also,

∑

e∈Bad(M)

νγ1 (e)
î
PF,USt

γ |BγK|(e)
ó2

≤ νγ1 (Bad(M))1/2
Ç∑

e

νγ1 (e)
î
PF,USt

γ |BγK|(e)
ó4å1/2

.

Using that PF,U is stochastic and St
γ is substochastic, we have

∑

e

νγ1 (e)
î
PF,USt

γ |BγK|(e)
ó4 ≤∑

e,e′

νγ1 (e)PF,U (e, e
′)
î
St
γ |BγK|(e′)

ó4

≤
(∑

e′

[(PF,Uν
γ
1 )(e

′)]2

νγ1 (e
′)

)1/2 (∑

e′

νγ1 (e
′)
î
St
γ |BγK|(e′)

ó8)1/2

≤
Ç∑

e

[(PF,Uν
γ
1 )(e)]

2

νγ1 (e)

å1/2Ç∑
e

νγ1 (e) [|BγK|(e)]8
å1/2

.

This yields the first inequality. The second one is proven similarly. �

Remark 7.9. Note that if ‖K‖∞ ≤ 1, then

(7.15) ‖BγK‖2νγ1 =
∑

e∈B

νγ1 (e)|BγK(e)|2 ≤
∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)2
,

so supη1>0 lim supN→∞ supRe γ∈I1,Im γ=η1 ‖BγK‖2
νγ1

≤ CT by the proof in Corollary 7.8.

For a quantity A(N, γ,Λ) depending on N, γ (and possibly on an additional parameter
Λ), we will write A(N, γ,Λ) = OΛ(1)N−→+∞,γ to mean that, for any given Λ,

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

A(N, γ,Λ) < +∞ .

For instance, if ‖K‖∞ ≤ 1, then ‖BγK‖2
νγ1

= OT (1)N−→+∞,γ. This is true more generally

for ‖BγK‖2
νγ
k
, with Bγ = mγ

Zγ
Fγ : Hm → Hk, and Fγ as in Corollary 10.4.

Similarly, for the operator Zl appearing in Proposition 7.5, the arguments in Proposi-
tion 7.7 and Corollary 7.8 show that ‖ZlW‖νγ1 = Ol,T (1)N−→+∞,γ.

Finally, by Corollary 7.8, suptCN,M,2(St
uγBγ) is uniformly bounded by Cs,TM

−s for any
M and s, as N → +∞. We use the notation OT (M

−∞)N−→+∞,γ to express this.

8. Transition matrices with phases

We now consider the operator Suγ given in (6.7). If (MuγK)(x0;xk) = uγx1(x0)K(x0;xk),
where uγx1

(x0) is the function of modulus 1 defined in (6.5), then Suγ = SγMuγ .
It is well known that adding phases to a matrix with positive entries will strictly diminish

its spectral radius, unless the phases satisfy very special relations : this is the contents
of Wielandt’s theorem [36, Chapter 8]. This is reflected in Proposition 8.1. Without the
error term, part (i) says that the norm of S4

uγ is strictly smaller than one, in contrast to S4
γ

(the latter only contracts the norm on proper subspaces, see Section 7). The contraction
property of S4

uγ holds true except in special cases, described in part (ii) of Proposition 8.1.
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Note that we are not using Wielandt’s theorem directly, as we want some information
on the operator norm of S4

uγ instead of its spectral radius. In addition, as in Section 7, we
need estimates that are uniform both as N → ∞ and as γ approaches the real axis.

Recall from Section 7 that Bγ is an operator Hm → Hk with 1 ≤ k ≤ m. As in
Section 7, the case k = 1 suffices for our purposes, but we need more general operators
Aγ : Hm → H1 defined in terms of Bγ . The quantities CN,M (Aγ), CN,M,2(Aγ) were
introduced in Propositions 7.1 and 7.2. In particular, CN,M,2(I) corresponds to the case
where Aγ is the identity operator.

Proposition 8.1. Fix γ ∈ C
+, AγK ∈ H1, ε ∈ (0, 1), M > 0 and a graph G = GN .

Denote η1 = Im γ. Then

(i) either we have

(8.1) ‖S4
uγAγK‖2νγ1 ≤ (1− ε)2‖AγK‖2νγ1 + C̃N,M,2(Aγ) · ‖K‖2∞

with

C̃N,M,2(Aγ) = max{CN,M (Aγ), CN,M,2(Aγ), CN,M (SuγAγ), CN,M,2(S2
uγAγ)} ,

(ii) or there exist θ : V → R and constants sj with |sj| ≤ 1, j = 1, 2, such that
∥∥∥∥uγx1

(x0)− s2
e−i[θ(x0)+θ(x1)]

nγx0

∥∥∥∥
2

νγ1

≤ cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η21 ‖ξγ‖2νγ1

]
+ C ′

N,M ,

and

‖uγx1
(x0)− s1n

γ
x1
ei[θ(x0)+θ(x1)]‖2νγ1 ≤ cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η21 ‖ξγ‖2νγ1

]
+ C ′

N,M ,

where ξγ(x0, x1) =
|ζγx0(x1)|2

| Im ζγx0(x1)|
, nγx = (mγ

x)(mγ
x)

−1 and C ′
N,M =

8M2CN,M,2(I)
c(D,β) .

Moreover, there is an explicit f(β,D), depending only on the spectral gap β and
on the degree, such that cM,β ≤ f(β,D)M3 as M → +∞.

In particular, in case (ii),

(8.2) ‖uγx0
(x1)u

γ
x1
(x0)− s1s2‖2νγ1 ≤ 4cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η21 ‖ξγ‖2νγ1

]
+ 4C ′

N,M .

Proof. (a) We start with some preliminary inequalities. Denote 〈·, ·〉ν = 〈·, ·〉νγ1 .
Let δ1 =

3
4M

−2, Kγ = AγK and let w = PF⊥Kγ be the orthogonal projection of Kγ on

F⊥ in ℓ2(νγ1 ). By the proof of Proposition 7.1,

〈w,Mγw〉ν ≥ δ1 ‖w‖2ν − CN,M (Aγ)‖K‖2∞.
By Remark 7.3 and the fact that Mγ∗ = Mγ , we have

〈w,Mγw〉ν = 〈Kγ ,MγKγ〉ν ≤ ‖Kγ‖2ν − ‖SγKγ‖2ν .
So if f = PFKγ = Kγ − w ∈ F is the projection of Kγ on F , we have

(8.3) ‖Kγ − f‖2ν ≤ δ−1
1

Ä
‖Kγ‖2ν − ‖SγKγ‖2ν + CN,M (Aγ)‖K‖2∞

ä
.

Similarly, if δ2 =M−2c(D,β) and C 1 = P1|Kγ | is the projection of |Kγ | on 1, then using
Proposition 7.2, we get

(8.4) ‖ |Kγ | − C 1‖2ν ≤ δ−1
2

Ä
‖Kγ‖2ν − ‖S2

γ |Kγ | ‖2ν + CN,M,2(Aγ)‖K‖2∞
ä
.

Now ∥∥∥∥∥Kγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

≤ ‖Kγ − f‖ν +
∥∥∥∥∥f − ‖Kγ‖ν

f

|f |

∥∥∥∥∥
ν

and ∥∥∥∥∥f − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

= ‖ |f | − ‖Kγ‖ν 1‖ν
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(this is true even if f vanishes, if we give an arbitrary value of modulus 1 to f
|f | in this

case). Also,

‖ |f | − ‖Kγ‖ν 1‖ν ≤ ‖ |Kγ | − |f |‖ν + ‖ |Kγ | − ‖Kγ‖ν 1‖ν
and

‖ |Kγ | − |f |‖ν ≤ ‖Kγ − f‖ν .
Finally, ‖ |Kγ | − ‖Kγ‖ν 1‖ν ≤ ‖ |Kγ | − C 1‖ν + | ‖Kγ‖ν − C | ≤ 2 ‖ |Kγ | − C 1‖ν . Putting
all these inequalities together, we obtain

(8.5)

∥∥∥∥∥Kγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

≤ 2 ‖Kγ − f‖ν + 2 ‖ |Kγ | − C 1‖ν .

Comparing with (8.3) and (8.4), this says the following : if ‖S2
γ |Kγ | ‖ν is close to ‖Kγ‖ν

and if ‖SγKγ‖ν is close to ‖Kγ‖ν , then Kγ must be close to ‖Kγ‖ν f
|f | , where f is a function

that depends only on the terminus.
Repeating the arguments of (8.3) with MuγSuγKγ instead of Kγ , then taking f̃ =

PFMuγSuγKγ ∈ F , we get

(8.6) ‖MuγSuγKγ − f̃‖2ν ≤ δ−1
1

Ä
‖SuγKγ‖2ν − ‖S2

uγKγ‖2ν + CN,M (SuγAγ)‖K‖2∞
ä
.

Similarly to (8.4), if C̃ 1 = P1|SuγKγ |, we get

(8.7)
∥∥∥ |SuγKγ | − C̃ 1

∥∥∥
2

ν
≤ δ−1

2

Å
‖SuγKγ‖2ν −

∥∥∥S2
γ |SuγKγ |

∥∥∥
2

ν
+CN,M,2(SuγAγ)‖K‖2∞

ã
.

Finally, arguing as in (8.5), we have

(8.8)

∥∥∥∥∥MuγSuγKγ − ‖Kγ‖ν
f̃

|f̃ |

∥∥∥∥∥
ν

≤ 2
∥∥∥MuγSuγKγ − f̃

∥∥∥
ν
+ 2

∥∥∥ |SuγKγ | − C̃ 1
∥∥∥
ν
+ ‖Kγ‖ν − ‖SuγKγ‖ν .

(b) We can now start the proof itself. Suppose (i) is not true :

‖S4
uγKγ‖2ν > (1− ε)2‖Kγ‖2ν + C̃N,M,2(Aγ) · ‖K‖2∞.

Using ‖S4
uγKγ‖ν ≤ ‖SuγKγ‖ν = ‖SγMuγKγ‖2ν , ‖S4

uγKγ‖ν ≤ ‖S2
γ |Kγ |‖ν = ‖S2

γ |MuγKγ |‖2ν ,
‖S4

uγKγ‖ν ≤ ‖S2
γ |SuγKγ |‖ν and ‖Kγ‖ν ≥ ‖SuγKγ‖ν , we see that we must also have

‖Kγ‖2ν − ‖SγMuγKγ‖2ν < 2ε ‖Kγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞ ,

‖Kγ‖2ν − ‖S2
γ |MuγKγ |‖2ν < 2ε ‖Kγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞

‖SuγKγ‖2ν − ‖S2
γ |SuγKγ |‖2ν < 2ε ‖SuγKγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞

as well as

‖SuγKγ‖2ν − ‖S2
uγKγ‖2ν < 2ε ‖SuγKγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞ .

Applying (8.3), (8.4) and (8.5) to MuγKγ instead of Kγ , and f = PFMuγKγ , it follows
that

(8.9)

∥∥∥∥∥MuγKγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥

2

ν

≤ 16(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν .

Applying (8.6), (8.7) and (8.8) yields

(8.10)

∥∥∥∥∥MuγSuγKγ − ‖Kγ‖ν
f̃

|f̃ |

∥∥∥∥∥

2

ν

≤ 24(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν + 3ε · ‖Kγ‖2ν .
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As f, f̃ ∈ F , we have f
|f |(x0, x1) = eiθ(x1) and f̃

|f̃ |
(x0, x1) = eiθ

′(x1) for some θ, θ′ : V → R.

Note that in this case, (Sγ
f
|f |)(x0, x1) = eiθ(x0) − η1ξ

γ(x1, x0)e
iθ(x0), where ξγ(x0, x1) =

|ζγx0(x1)|2

| Im ζγx0(x1)|
. Applying Sγ to (8.9), we thus get

∥∥∥SuγKγ − ‖Kγ‖νeiθ(x0)
∥∥∥
2

ν
≤ 2

∥∥∥∥∥SγMuγKγ − ‖Kγ‖νSγ
f

|f |

∥∥∥∥∥

2

ν

+ 2η21 ‖ξγ‖2ν · ‖Kγ‖2ν

≤ 32(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν + 2η21 ‖ξγ‖2ν · ‖Kγ‖2ν ,
Applying Muγ and comparing with (8.10), it follows that

(8.11)
∥∥∥uγx1(x0)e

iθ(x0) − eiθ
′(x1)

∥∥∥
2

ν
≤ (2× 32 + 2× 24)(δ−1

1 + δ−1
2 ) · ε+ 4η21 ‖ξγ‖2ν + 6ε .

Repeating the procedure with Kγ replaced by SuγKγ , and f replaced by f̃ , the same
arguments show that there exists θ′′ : V → R such that

(8.12)
∥∥∥uγx1(x0)e

iθ′(x0) − eiθ
′′(x1)

∥∥∥
2

ν
≤ (112δ−1

1 + 112δ−1
2 + 6) · ε+ 4η21‖ξγ‖2ν .

Hence we have proved that uγx1
(x0) is close to both ei(θ(x0)−θ′(x1)) and ei(θ

′(x0)−θ′′(x1)).

(c) Because of relation (2.7), the function u satisfies uγx1
(x0) = uγx0

(x1)
nγ
x1

nγ
x0

, where nγx =

(mγ
x)(mγ

x)
−1.

To conclude the proof, we show : if ei(θ(x0)−θ′(x1)) and ei(θ
′(x0)−θ′′(x1)) are close to uγ , and

if the function uγx1
(x0) satisfies the relation above, then this gives constraints on θ, θ′, θ′′

that imply part (ii) of the proposition.

Let g(x0, x1) = ei(θ(x0)−θ′(x1)) and c = (112δ−1
1 + 112δ−1

2 + 6). We have shown in (b)
that ‖uγx1

(x0) − g‖2ν ≤ cε + 4η21‖ξγ‖2ν . Recall that we denote by ι the involution of edge

reversal. Hence, if g̃(x0, x1) = g(x1, x0)
nγ
x1

nγ
x0

, we get

(8.13) ‖g̃ − uγx1
(x0)‖2ν = ‖ιg − uγx0

(x1)‖2ν ≤ cε+ 4η21 ‖ξγ‖2ν .
Thus, ‖g̃ − g‖2ν ≤ 4cε+ 16η21 ‖ξγ‖2ν . Hence, defining

h1(x0, x1) = nγx1
ei[θ(x1)+θ′(x1)] and h2(x0, x1) = nγx0

ei[θ(x0)+θ′(x0)] ,

we get
‖h1 − h2‖2ν = ‖g̃ − g‖2ν ≤ 4cε + 16η21 ‖ξγ‖2ν .

Note that the functions h1, h2 have modulus 1, and Sγh1 = h2 − η1ιξ
γh2, so

‖S2
γh1 − h1‖ν ≤ 2 ‖Sγh1 − h1‖ν ≤ 2 (‖h2 − h1‖ν + η1‖ξγ‖ν) ≤ 4c1/2ε1/2 + 8η1 ‖ξγ‖ν .

Consider P1,νh1 = s1, the projection of h1 to the space of constant functions. Arguing

as in (8.4), we can write ‖h1 − s1‖2ν ≤ δ−1
2 (‖h1‖2ν − ‖S2

γh1‖2ν + 4CN,M,2(I)) . But ‖h1‖2 −
‖S2

γh1‖2 = (‖h1‖+ ‖S2
γh1‖)(‖h1‖ − ‖S2

γh1‖) ≤ 2 ‖S2
γh1 − h1‖. Hence,

‖h1 − s1‖2ν ≤ 8δ−1
2 c1/2ε1/2 + 16η1δ

−1
2 ‖ξγ‖ν + 4δ−1

2 CN,M,2(I)

We observe that ‖h1 − s1‖ = ‖nγx1
ei(θ(x1)+θ′(x1)) − s1‖ = ‖g̃nγx0

ei(θ
′(x0)+θ′(x1)) − s1‖ =

‖g̃ − e−i(θ′(x0)+θ′(x1))

nγ
x0

s‖. Thus, comparing with (8.13),

∥∥∥∥uγx1
(x0)− s

e−i(θ′(x0)+θ′(x1))

nγx0

∥∥∥∥
2

ν
≤ 16δ−1

2 c1/2ε1/2 + 32η1δ
−1
2 ‖ξγ‖ν

+ 8δ−1
2 CN,M,2(I) + 2cε + 8η21‖ξγ‖2ν

This is the first half of (ii) with

(8.14) cM,β = max{16δ−1
2 c1/2, 2c, 32δ−1

2 , 8} .
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Remembering that δ1 = 3
4M

−2, δ2 = M−2c(D,β) and c = (112δ−1
1 + 112δ−1

2 + 6), we see

that there is an explicit f(β,D) such that cM,β ≤ f(β,D)M3 as M → +∞. Note that
|s| ≤ 1 since ‖h1‖ν = 1.

The second half of (ii) is proven similarly, using (8.12) instead of (8.11). Here we take

g′(x0, x1) = ei(θ
′(x0)−θ′′(x1)), h′1(x0, x1) =

1
nγ
x1

e−i[θ′(x1)+θ′′(x1)], s′1 = P1h
′
1 and h′2(x0, x1) =

1
nγ
x0

e−i[θ′(x0)+θ′′(x0)].

To prove (8.2), we write
∥∥∥uγx1

(x0)
2 − ss′

nγ
x1

nγ
x0

∥∥∥
2 ≤ 2

∥∥∥uγx1
(x0)[u

γ
x1
(x0) − s e

−iθ̃(x0,x1)

nγ
x0

]
∥∥∥
2
+

2
∥∥∥s e−iθ̃(x0,x1)

nγ
x0

[uγx1
(x0) − s′eiθ̃(x0,x1)nγx1

]
∥∥∥
2
, where we put θ̃(x0, x1) = θ′(x0) + θ′(x1). Since

uγx1
(x0)

2 nγ
x0

nγ
x1

= uγx1
(x0)u

γ
x0
(x1), the proof is complete. �

9. Step 4 : End of the proof of Theorem 3.3

Our aim is to show that limη0↓0 limN→+∞VarInb,η0(FγK) = 0, for the operators Fγ that
appear in Corollary 10.4. A main step was carried out in Proposition 5.2, and the upper
bound was put in a convenient form in (6.8). We now use the estimates of Sections 7 and
8 to complete the proof. We denote Bγ = mγ

Zγ
Fγ : Hm → Hk as in Section 7, where Zγ is

defined in (6.3). It should be kept in mind that Fγ may depend on a parameter T that is
fixed in this section, but will be taken arbitrarily large in the next one.

Recall that we take γ = λ + i(η4 + η0), where λ, η, η0 come from Proposition 5.2. In
other words, γ = λ + iη1 ∈ C

+ with λ ∈ I1 and η1 = η4 + η0. Let K ∈ Hm so that
BγK ∈ Hk. Applying (6.8), recalling that νγk = 1

µγ
k
(Bk)

µγk, we obtain

(9.1)
1

n2

n∑

r,r′=1

〈Rγ
n,rFγK,Rγ

n,r′FγK〉γ =
µγk(Bk)

Nn2

∑

r′≤r≤n

〈Sr−r′

uγ BγK,BγK〉νγ
k

+
µγk(Bk)

Nn2

∑

r<r′≤n

〈BγK,Sr′−r
uγ BγK〉νγ

k
+

1

n2

n∑

r,r′=1

On,r,r′(η1,FγK) .

Fix M very large and take n = M9. We apply Proposition 8.1 with ε = M−8 to

the family of operators {S4j
uγBγK}M9

j=1. Call ˜̃CN,M (Bγ) = maxM
9

j=1 C̃N,M,2(S4j+k−1
uγ Bγ)

1/2 ·…
µγ
1 (B)

µγ
k
(Bk)

. We use the notation in Remark 7.9 throughout the section. In particular,

˜̃CN,M (Bγ) = OT (M
−∞)N−→+∞,γ thanks to Corollary 7.8.

Remark 9.1. It is useful to note that the norm ‖Sj
uγ‖νγ

k
→νγ

k
for k > 1 is controlled by the

same norm for k = 1. To see this, note that for K ∈ ℓ2(νγk ), we have (Sk−1
uγ K)(x0;xk) =∑

(x−k+1;x−1)x0,1
Λ(x−k+1;x1)K(x−k+1;x1) for some function Λ(x−k+1;x1). Here the sum

is over those (x−k+1;x−1) for which the path (x−k+1, x−k+2, . . . , x−1, x0, x1) does not

backtrack, cf. (2.3). So (Sk−1
uγ K)(x0;xk) only depends on (x0, x1) : we may define

φK ∈ ℓ2(νγ1 ) by φK(x0, x1) = (Sk−1
uγ K)(x0;xk). If I : ℓ2(νγ1 ) → ℓ2(νγk ) is the map

(I φ)(x0;xk) = φ(x0, x1), we have for any j ≥ k, [Sj−k+1
uγ I φK ](x0;xk) = (Sj

uγK)(x0;xk).
Moreover, [SuγI φ](x0;xk) = [I (Suγφ)](x0;xk). Thus,

‖Sj
uγK‖2νk = ‖Sj−k+1

uγ I φK‖2νk = ‖I (Sj−k+1
uγ φK)‖2νk ≤ µγ1(B)

µγk(Bk)
‖Sj−k+1

uγ φK‖2ν1 ,

where we used that
∑

x0,1(x2;xk) µk(x0;xk) ≤ µ1(x0, x1) by (6.12). Hence,

‖Sj
uγK‖2νk ≤ µγ1(B)

µγk(Bk)
‖Sj−k+1

uγ ‖2ν1→ν1 · ‖φK‖2ν1 .
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But
∑

(x−k+1;x−1)x0,1
|Λ(x−k+1;x1)| ≤ 1, and µγ1(x0, x1)|Λ(x−k+1;x1)| = µγk(x−k+1;x1) by

(6.6), (6.7) and (2.7). Hence,

‖φK‖2µ1
=

∑

(x0,x1)

µγ1(x0, x1)

∣∣∣∣
∑

(x−k+1;x−1)x0,1

Λ(x−k+1;x1)K(x−k+1;x1)

∣∣∣∣
2

≤
∑

(x0,x1)

µγ1(x0, x1)
∑

(x−k+1;x−1)x0,1

|Λ(x−k+1;x1)| · |K(x−k+1;x1)|2

=
∑

(x−k+1;x1)

µγk(x−k+1;x1) · |K(x−k+1;x1)|2 = ‖K‖2µk
.

So ‖φK‖2ν1 ≤ µγ
k
(Bk)

µγ
1 (B)

‖K‖2
νγ
k
. Summarizing, we have shown that for any j ≥ k, we have

‖Sj
uγ‖νk→νk ≤ ‖Sj−k+1

uγ ‖ν1→ν1 .

First alternative : For γ, ε as above, assume that case (i) of Proposition 8.1 is satisfied

for all the operators {S4j
uγBγK}M9

j=1. Applying (8.1) for S4t
uγBγK, t ≤ j, we obtain if k = 1,

(9.2) ‖S4j
uγBγK‖νγ1 ≤ (1− ε)j‖BγK‖νγ1 + j max

1≤t≤j
{C̃N,M,2(S4t

uγBγ)
1/2} · ‖K‖∞ .

For higher k, we apply (9.2) to φBγK(x0, x1) = (Sk−1
uγ BγK)(x0;xk) = (AγK)(x0, x1),

where Aγ = Sk−1
uγ Bγ , instead of BγK. We get by Remark 9.1,

‖S4j+k−1
uγ BγK‖νγ

k
≤ (1− ε)j‖BγK‖νγ

k
+ j ˜̃CN,M(Bγ) · ‖K‖∞ .

Using the euclidean division r′ − r − k + 1 = 4mr,r′ + nr,r′ with nr,r′ < 4, we see that for
r′ − r ≥ 4 + k − 1,

|〈BγK,Sr′−r
uγ BγK〉νγ

k
| ≤ ck(1− ε)(r

′−r)/4‖BγK‖2νγ
k
+ n ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k
,

where ck = 1

(1−ε)
(k−1+n

r,r′
)/4 ≤ 2k/4 if ε ≤ 1

2 . Hence, since 4 + k − 1 ≤ 4k, we have

∣∣∣∣
∑

r′≤n

∑

r<r′

〈BγK,Sr′−r
uγ BγK〉νγ

k

∣∣∣∣ ≤
( ∑

r′≤n

∑

r≤r′−4k

|〈BγK,Sr′−r
uγ BγK〉νγ

k
|+ 4nk‖BγK‖2νk

)

≤
[
4nk + nck

n∑

m=1

(1− ε)m/4
]
‖BγK‖2νγ

k
+ n3 ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k

≤ n(ck + 4k)

ε
‖BγK‖2νγ

k
+ n3 ˜̃CN,M(Bγ) · ‖K‖∞‖BγK‖νγ

k
.

Recall that ε =M−8 and n =M9. Comparing with (9.1), we get

(9.3)

∥∥∥∥
1

n

n∑

r=1

Rγ
n,rFγK

∥∥∥∥
2

γ
≤ µγk(Bk)

N

( c′k
M

‖BγK‖2νγ
k
+M9 ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k

)

+
1

n2

n∑

r,r′=1

On,r,r′(η1,FγK) .

Second alternative : Now assume case (ii) of Proposition 8.1 is satisfied; with some
complex numbers sj = sj(N) and some function θ. We denote ‖ ‖ν = ‖ ‖ℓ2(νγ

k
), θ0(x0;xk) =

θ(x0), θ1(x0;xk) = θ(x1), n
γ
0(x0;xk) = nγx0

and nγ1(x0;xk) = nγx1
. Then we have
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Proposition 9.2. Let ‖K‖∞ ≤ 1. For AγK = Sℓ
uγBγK, we have for any t ∈ N

∗,
∣∣∣〈BγK,S2t

uγAγK〉ν − (s1s2)
t〈BγK, e

iθ0S2t
γ e

−iθ0AγK〉ν
∣∣∣

≤ t
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′

N,M

ä1/4
OT (1)N−→+∞,γ .

Proof. Recall that Suγ = SγMuγ with Muγ the multiplication by uγx1(x0). We have

∥∥∥S2
uγAγK − s1s2e

iθ0S2
γe

−iθ0AγK
∥∥∥
ν
=

∥∥∥∥∥S
2
uγAγK − s1s2Sγn

γ
0e

i[θ0+θ1]Sγ
e−i[θ0+θ1]

nγ1
AγK

∥∥∥∥∥
ν

≤
∥∥∥SγMuγSγMuγAγK − s2Sγn

γ
0e

i[θ0+θ1]SγMuγAγK
∥∥∥
ν

+

∥∥∥∥∥s2Sγn
γ
0e

i[θ0+θ1]SγMuγAγK − s1s2Sγn
γ
0e

i[θ0+θ1]Sγ
e−i[θ0+θ1]

nγ1
AγK

∥∥∥∥∥
ν

.

Using (7.5) and Cauchy-Schwarz, the first term is bounded by
∥∥∥uγx1(x0)− s2n

γ
0e

i[θ0+θ1]
∥∥∥
ℓ4(νγ

k
)
‖SγMuγAγK‖ℓ4(νγ

k
) .

But uγ , s2, n
γ
0 all have modulus 1, so |uγx1(x0)−s2nγ0ei[θ0+θ1]|4 ≤ 4 |uγx1(x0)−s2nγ0ei[θ0+θ1]|2.

Hence, ‖uγx1(x0) − s2n
γ
0e

i[θ0+θ1]‖ℓ4(νγ1 ) ≤ (4cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ 4C ′

N,M )1/4 by

the first part of (ii). For higher k, using
∑

x0,1 (x2;xk) µk(x0;xk) ≤ µ1(x0, x1) by (6.12), we

get ‖uγx1(x0)− s2n
γ
0e

i[θ0+θ1]‖ℓ4(νγ
k
) ≤ (

µγ
1 (B)

µγ
k
(Bk)

)1/4‖uγx1(x0)− s2n
γ
0e

i[θ0+θ1]‖ℓ4(νγ1 ).
Next, ‖SγMuγAγK‖ℓ4(νγ

k
) = ‖Sℓ+1

uγ BγK‖ℓ4(νγ
k
). Arguing as in Proposition 7.7 and Corol-

lary 7.8, we see this is OT (1)N−→+∞,γ. Bounding the second term similarly, we get
∥∥∥S2

uγAγK − s1s2e
iθ0S2

γe
−iθ0AγK

∥∥∥
ν

≤
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′

N,M

ä1/4
OT (1)N−→+∞,γ .

Since ‖BγK‖ν = OT (1)N−→+∞,γ (see Remark 7.9), this proves the result for t = 1.

For higher t, let X = s1s2e
iθ0S2

γe
−iθ0 and Y = S2

uγ . Then ‖(Xt − Y t)AγK‖ =

‖∑t
i=1X

t−i(X − Y )Y i−1AγK‖ ≤ ∑t
i=1 ‖(X − Y )Y i−1AγK‖. Again, ‖Y i−1AγK‖ℓ4(νγ

k
) =

OT (1)N−→+∞,γ for each i and the claim follows. �

In sums like (9.1), we can make packets of size 2t, and we have for all m and for any t

(9.4)

∣∣∣∣∣∣

t−1∑

r=0

〈BγK,S2r+m
uγ BγK〉ν −

t−1∑

r=0

(s1s2)
r〈BγK, e

iθ0S2r
γ e

−iθ0Sm
uγBγK〉ν

∣∣∣∣∣∣

≤ t2
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′

N,M

ä1/4
OT (1)N−→+∞,γ .

As we will see below, the size 2t of packets should be chosen so that t(cM,βε
1/2)1/4 is small

as M gets large. Remembering that cM,β ≤ f(D,β)M3 and ε = M−8, we take t = Mα

with 0 < α < 1/4. We then group the sum (9.1) into packets and write

∣∣∣∣
∑

r′≤r≤n

〈Sr−r′

uγ BγK,BγK〉ν
∣∣∣∣ =

∣∣∣∣
n∑

r′=1

n−r′∑

r=0

〈Sr
uγBγK,BγK〉ν

∣∣∣∣

≤
∣∣∣∣

n∑

r′=1

⌊n−r′

2t
⌋−2∑

a=0

2t(a+1)−1∑

r=2ta

〈Sr
uγBγK,BγK〉ν

∣∣∣∣+ 4nt ‖BγK‖2ν ,
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where we estimated |∑n
r′=1

∑n−r′

r=2t(⌊n−r′

2t
⌋−1)

〈Sr
uγBγK,BγK〉ν | ≤ 4nt‖BγK‖2ν . Note that

∑2t(a+1)−1
r=2ta 〈Sr

uγ ·, ·〉 =∑t−1
r=0〈S2r+2ta

uγ ·, ·〉 +∑t−1
r=0〈S2r+1+2ta

uγ ·, ·〉. So using (9.4),

(9.5)

∣∣∣∣
n∑

r′=0

⌊n−r′

2t
⌋−2∑

a=0

2t(a+1)−1∑

r=2ta

〈Sr
uγBγK,BγK〉ν

∣∣∣∣

≤
∣∣∣∣

n∑

r′=0

⌊n−r′

2t
⌋−2∑

a=0

t−1∑

r=0

(s1s2)
r
Ä
〈BγK, e

iθ0S2r
γ e

−iθ0(S2ta
uγ + S2ta+1

uγ )BγK〉ν
ä ∣∣∣∣

+ n · n
t
· t2
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′

N,M

ä1/4
OT (1)N−→+∞,γ .

Lemma 9.3. Let ‖K‖∞ ≤ 1. For AγK = S2ta
uγ BγK or S2ta+1

uγ BγK we have for any L
∣∣∣∣∣∣

t−1∑

r=0

(s1s2)
r〈BγK, e

iθ0S2r
γ e

−iθ0AγK〉ν

∣∣∣∣∣∣
≤ L2ck
c(D,β)

OT (1)N−→∞,γ + tOT (L
−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

|s1s2 − 1|OT (1)N−→∞,γ .

Proof. First assume k = 1. We decompose e−iθ0AγK = C1+ f where f ⊥ 1 in ℓ2(νγ1 ). So

S2r
γ e

−iθ0AγK = CS2r
γ 1+ S2r

γ f .

For the term S2r
γ f we use Proposition 7.5, which yields, for any L,

‖S2r
γ f‖ν ≤

Ä
1− L−2c(D,β)

är/2 ‖f‖ν +
r−1∑

l=0

CN,L,l,2(e
−iθ0Aγ)

1/2 + 2η1

r−1∑

l=1

‖Zlf‖ν .

By Corollary 7.8 (recalling that r ≤ t ≤ Mα), we have
∑r−1

l=0 CN,L,l,2(e
−iθ0Aγ)

1/2 =

tOT (L
−∞)N−→+∞,γ. Indeed, the term e−iθ0 has no impact, as it can be bounded by 1 in

the proof of Proposition 7.7. We also have ‖f‖ν ≤ ‖AγK‖ν ≤ ‖BγK‖ν = OT (1)N−→∞,γ,
and ‖Zlf‖ν = Ol,T (1)N−→∞,γ by Remark 7.9. Thus,
∣∣∣∣∣∣

t−1∑

r=0

(s1s2)
r〈BγK, e

iθ0S2r
γ f〉ν

∣∣∣∣∣∣

≤ 2L2

c(D,β)
OT (1)N−→∞,γ + tOT (L

−∞)N−→∞,γ + η1OM,T (1)N−→∞,γ .

For the term CS2r
γ 1, we have S l

γ1 = 1 − η1
∑l−1

s=0 S s
γ ιξ

γ = 1 + η1Ol(1)N−→∞,γ by (6.10).
Thus,

∣∣∣∣
t−1∑

r=0

(s1s2)
r〈BγK, e

iθ0S2r
γ 1〉ν

∣∣∣∣ ≤
∣∣∣∣
t−1∑

r=0

(s1s2)
r〈BγK, e

iθ01〉ν
∣∣∣∣+ η1OM (1)N−→∞,γ‖BγK‖ν

=

∣∣∣∣
(s1s2)

t − 1

s1s2 − 1
〈BγK, e

iθ01〉ν
∣∣∣∣+ η1OM (1)N−→∞,γ‖BγK‖ν

≤
Ç

2

|s1s2 − 1| + η1OM (1)N−→∞,γ

å
‖BγK‖ν .

Since |C| ≤ ‖AγK‖ν ≤ ‖BγK‖ν , this completes the proof for k = 1.

For higher k, as in Remark 9.1, we have ‖S2r
γ f‖νk ≤

…
µγ
1 (B)

µγ
k
(Bk)

‖S2r−k+1
γ φf‖ν1 , where now

φf (x0, x1) = (Sk−1
γ f)(x0;xk). We then note that f ⊥ 1 in ℓ2(νγk ) iff φf ⊥ 1 in ℓ2(νγ1 ).

Indeed, 〈1, φf 〉ν1 =
µγ
k
(Bk)

µγ
1 (B)

〈1, f〉νk , since 〈1, φf 〉ν1 =
∑

(x0,x1) ν1(x0, x1)(Sk−1
γ f)(x0;xk),
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so applying (6.9), (6.6) and (2.7), the claim follows. Hence, ‖S2r−k+1
γ φf‖ν1 . c(1 −

L−2C)r/2‖φf‖ν1 , where c = 1
(1−L−2)(k+3)/4 ≤ 2k+1 for large L. The error terms are the

same, this time with ‖Zlφf‖ν1 = Ol,T (1)N−→∞,γ. Finally, ‖φf‖ν1 ≤
…

µγ
k
(Bk)

µγ
1 (B)

‖f‖νk . �

Starting from (9.5) and applying the lemma, we obtain for ‖K‖∞ ≤ 1,

(9.6)
1

n2

∣∣∣∣∣∣
∑

r′≤n

∑

r≥r′

〈Sr−r′

uγ BγK,BγK〉ν

∣∣∣∣∣∣
≤ 1

t

ñ
2L2

c(D,β)
OT (1)N−→∞,γ + tOT (L

−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

|s1s2 − 1|OT (1)N−→+∞,γ

ô

+ t
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+OT (M

−∞)N−→∞,γ

ä1/4
OT (1)N−→+∞,γ

+ 4n−1t ‖BγK‖2ν .
Remember that n = M9 and t = Mα with 0 < α < 1/4. For the term 1

t
2L2

c(D,β) to be

small, we choose L =Mα′

with 0 < 2α′ < α. For instance, take α = 3/16 and α′ = 1/16.

For the other terms, we have t(cM,βε
1/2)1/4 = O(Mα−1/4) and n−1t = M−9+α. The

terms η1OM,T (1)N−→+∞,γ tend to 0 as η1 = η0 + η −→ 0, M and T being fixed. Finally,
‖BγK‖2ν = OT (1)N−→+∞,γ assuming ‖K‖∞ ≤ 1.

We can gather the first and second alternative into one statement :

Proposition 9.4. Let A > 0.
For all M , for all γ that fall either into the first alternative or into the second one with

|sγ1(N)sγ2(N)− 1| ≥ A, we have for ‖K‖∞ ≤ 1 and for n =M9,

∥∥∥∥
1

n

n∑

r=1

Rγ
n,rFγK

∥∥∥∥
2

γ
≤ 1

M3/16

ñ
2M1/8

c(D,β)
OT (1)N−→∞,γ +OT (M

−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

A
OT (1)N−→+∞,γ

ô

+OT (M
−1/16)N−→+∞,γ + η

1/4
1 OM,T (1)N−→+∞,γ .

Proof. The arguments in the proof of (7.10) readily show that 1
n2

∑n
r,r′=1 On,r,r′(η1, FγK) =

η1On,T (1)N−→∞,γ. The assertion follows from (9.1), (9.3) and (9.6). �

Proposition 9.5. Let I ⊂ I1 with Ī ⊂ I1. There exists a0 such that, if a ≤ a0, M is large
enough, η1 is small enough (M ≥M(a), η1 ≤ η(a)), and N is large enough :

The sequence sγ(N) = sγ1(N)sγ2(N) (when defined) must satisfy |sγ(N)− 1| > a13, if γ
stays in a set of the form Aa,η1 = {γ : Re γ ∈ I, Im γ = η1,P(|W(o) − γ| < a) ≤ 1− a}.

Before proving the proposition, let us finally give the

Proof of Theorem 3.3. We apply Proposition 5.2 and use Proposition 9.5 to show that we
are in the framework of Proposition 9.4.

Two cases may happen. Either W(o) is deterministic : there exists E0 such that
P(W(o) = E0) = 1. In that case, we fix a small a > 0, let J1 = I \ [E0 − 2a,E0 + 2a] and

J2 = I∩[E0−2a,E0+2a]. We then write VarInb,η0(FγK) = VarJ1nb,η0(FγK)+VarJ2nb,η0(FγK).

For Re γ ∈ J1, we have |γ − E0| > 2a, so P(|W(o) − γ| < a) = 0 and Proposition 9.5
applies with a arbitrarily small. Proposition 9.4, applied with A = a13, thus allows to
control VarJ1nb,η0(FγK), while VarJ2nb,η0(FγK) = OT (a).

If W(o) is not deterministic, there exists a such that for all E ∈ R, P(|W(o) − E| <
a) ≤ 1− a. Thus, for any complex γ, P(|W(o)− γ| < a) ≤ 1− a. In this case Proposition
9.5 may be applied with the fixed value A = a13 and all γ.
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Either way, we showed that there exists a0 such that, for all a ≤ a0, M ≥ M(a), we
have for any s and T ,

(9.7) lim
η0↓0

lim sup
N→∞

VarInb,η0(FγK)2 ≤ |I|2 1

M3/16

ñ
2M1/8

c(D,β)
CT + Cs,TM

−s +
CT

a13

ô

+ |I|2CTM
−1/16 + aCT .

Taking M → ∞ followed by a ↓ 0, this completes the proof of Theorem 3.3. �

We conclude the section with the

Proof of Proposition 9.5. We will use the following consequences of (Green) :

• There exists 0 < c0 <∞ such that for all γ ∈ C
+, Re γ ∈ I1, E

Ä∑
y∼o µ̂

γ
1(o, y)

ä
≤

c0, E
Ä∑

y∼o(µ̂
γ
1(o, y))

−1
ä
≤ c0 and E(

∑
y∼o |ζ̂γy (o)|−2) ≤ c0.

• There exists 0 < c1 < ∞, such that for all γ ∈ C
+, Re γ ∈ I1, P(|2 Im m̂γ

o | ≥
2r and |2m̂γ

o | ≤ 1
2r

−1) ≥ 1− c1r and P(
∑

y∼o |ζ̂γo (y)| ≤ 1
2r

−1) ≥ 1− c1r.

If γ falls into the second alternative, then

‖uγx0
(x1)u

γ
x1
(x0)− sγ(N)‖2ν(9.8)

≤ 4f(β,D)M3
î
M−4 + η1O(1)N−→+∞,γ

ó
+ 4C ′

N,M .

Let a0 = (2c0)
−2(6+3c1)

−12; this choice will become clear later on. Take a ≤ a0. There
exist M(a), η(a) and N(a) such that if M ≥ M(a), η1 ≤ η(a) and N ≥ N(a), then the
RHS side in (9.8) is ≤ a26. We fix ρ ≥ a26.

So take any a ≤ a0, M ≥ M(a), η1 ≤ η(a), and assume towards a contradiction that
we can find a subsequence Nk = Nk(η1) −→ +∞ and a sequence γk ∈ Aa,η1 , falling into
the second alternative on GNk

, such that |sγk(Nk) − 1|2 ≤ ρ. After extracting further
subsequences, let limNk→+∞ sγk(Nk) = s and γ0 = limNk→+∞ γk ∈ C. Then |s − 1|2 ≤ ρ,
Re γ0 ∈ I1, Im γ0 = η1, and by (9.8) and Remark A.3

E

(∑

y∼o

|ûγ0o (y)ûγ0y (o)− s|2µ̂γ01 (o, y)

)
≤ ρE

(∑

y∼o

µ̂γ01 (o, y)

)
,

which implies

E

(∑

y∼o

|ûγ0o (y)ûγ0y (o)− 1|2µ̂γ01 (o, y)

)
≤ 4ρE

(∑

y∼o

µ̂γ01 (o, y)

)
≤ 4c0ρ .

By the Cauchy-Schwarz inequality,

E

(∑

y∼o

|ûγ0o (y)ûγ0y (o)− 1|2µ̂γ01 (o, y)

)1/2

≥
E

Ä∑
y∼o |ûγ0o (y)ûγ0y (o)− 1|

ä

E

Ä∑
y∼o(µ̂

γ0
1 (o, y))−1

ä1/2
and thus

(9.9) E

(∑

y∼o

|ûγ0o (y)ûγ0y (o)− 1|
)

≤
(
4c0ρE

(∑

y∼o

(µ̂γ01 (o, y))−1

))1/2

≤ 2c0ρ
1/2 .

Since the value of γ0 is now fixed, let us omit it from the notation.
Let us write ζ̂γ0o (y) = ζ̂o(y) = r(o, y)e−iθ(o,y) with r ∈ R+ and θ ∈ R. This implies

ûo(y) = e2iθ(o,y) and |ûo(y)ûy(o)− 1| = |(eiθ(y,o) + e−iθ(o,y))(eiθ(y,o) − e−iθ(o,y))|.
Now (9.9) implies that

(9.10) E

(∑

y∼o

min
ǫ=±1

|eiθ(y,o) − ǫe−iθ(o,y)|2
)
≤ 2c0ρ

1/2 .
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Let us call ǫ(o, y) the value of ǫ achieving the min. By (2.7) we have

2m̂o = ζ̂y(o)
−1 − ζ̂o(y) = r(y, o)−1eiθ(y,o) − r(o, y)e−iθ(o,y)

for all y ∼ o. Thus,

(9.11) E

(∑

y∼o

∣∣∣e−iθ(o,y)
Ä
ǫ(o, y)r(y, o)−1 − r(o, y)

ä
− 2m̂o

∣∣∣
)

= E

(∑

y∼o

∣∣∣
Ä
eiθ(y,o) − ǫ(o, y)e−iθ(o,y)

ä
r(y, o)−1

∣∣∣
)

≤
√
2c0ρ

1/4
E

(∑

y∼o

r(y, o)−2

)1/2

≤ 2c0ρ
1/4 =: r6 .

It follows by the Chebychev/Markov inequality that

(9.12)
∑

y∼o

∣∣∣e−iθ(o,y)(ǫ(o, y)r(y, o)−1 − r(o, y))− 2m̂o

∣∣∣ ≤ r5

with probability ≥ 1− r.
The probability that |2 Im m̂o| ≥ 2r and |2m̂o| ≤ 1

2r
−1 is at least 1− c1r. Thus, (9.12)

implies that with probability ≥ 1− r − c1r, we have for any y ∼ o

(9.13) r ≤ |ǫ(o, y)r(y, o)−1 − r(o, y)| ≤ r−1 .

Combining (9.12) and (9.13), we see that for any y, y′ ∼ o,
∣∣∣e−iθ(o,y) − e−iθ(o,y′)

Ä
ǫ(o, y′)r(y′, o)−1 − r(o, y′)

ä Ä
ǫ(o, y)r(y, o)−1 − r(o, y)

ä−1
∣∣∣ ≤ r4 .

The previous identities imply that with probability ≥ 1− r − c1r,

(9.14) |e−iθ(o,y) − e−iθ(o,y′)| ≤ 2r4.

Now (2.4) says that

γ0 = W(o) +
∑

y∼o

ζo(y) + 2m̂o = W(o) +
∑

y∼o

r(o, y)e−iθ(o,y) + 2m̂o .

Using (9.12) and (9.14), we get for any fixed y′ ∼ o,

(9.15)

∣∣∣∣γ0 −W(o) −
Ç∑

y∼o

r(o, y) + ǫ(o, y′)r(y′, o)−1 − r(o, y′)

å
e−iθ(o,y′)

∣∣∣∣

≤ 2r4
∑

y∼o

r(o, y) + r5 ≤ 2r3

with probability ≥ 1− r − 2c1r. Here we used that
∑

y∼o r(o, y) ≤ 1
2r

−1 with probability
≥ 1− c1r. Since |γ0 −W(o)| ≥ a with probability ≥ a, it follows that

∣∣∣∣
∑

y∼o

r(o, y) + ǫ(o, y′)r(y′, o)−1 − r(o, y′)

∣∣∣∣ ≥ a− 2r3

with probability ≥ 1 − r − 2c1r − (1 − a). Taking the imaginary part in (9.15), we thus

get | Im e−iθ(o,y′)| ≤ 2r3+η1
a−2r3 . Assume η1 ≤ r3. Then if r < a/5, we get | Im e−iθ(o,y′)| < r2.

Hence, P(| Im e−iθ(o,y′)| ≥ r2) ≤ (2c1 + 1)r + 1 − a. But we know that |2 Im m̂o| ≥ 2r, so

taking the imaginary part in (9.12) and using (9.13), we also have that | Im e−iθ(o,y′)| ≥ r2

with probability ≥ 1− r − c1r. If (2 + 3c1)r < a, this will give a contradiction.
To prove the proposition, we take r = a

6+3c1
and choose a0 ≤ (2c0)

−2(6 + 3c1)
−12.

Recalling that 2c0ρ
1/4 = r6, we get ρ1/2 = (2c0)

−2( a
6+3c1

)12 ≥ a13 for a ≤ a0, as required.

We also take M > M(a), and η1 ≤ min(r3, η(a). �
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10. Step 5 : Back to the original eigenfunctions

In this section, we show that it suffices to consider the non-backtracking quantum vari-
ance in order to prove quantum ergodicity; in other words Theorem 3.3 implies Theorem
1.3. This part may be read before or after the others.

Given K ∈ Hk, we define the quantum variance by

(10.1) VarI(K) =
1

N

∑

λj∈I

|〈ψj ,KGψj〉| ,

where KG is as in Section 2.1.
More generally, fix η0 > 0 and suppose Kγ ∈ Hk satisfies conditions (Hol). We denote

VarIη0(K
γ) =

1

N

∑

λj∈I

∣∣∣
〈
ψj ,K

λj+iη0
G ψj

〉∣∣∣ ,

where the subscript η0 indicates that inside the variance, Im γ is fixed and equal to η0.
Denote γj = λj + iη0, and define

gj(x0, x1) = ζ
γj
x0(x1)

−1ψj(x1)− ψj(x0) and g∗j (x0, x1) = ζ
γj
x1(x0)

−1ψj(x0)− ψj(x1) ,

so g∗j and gj are defined like f∗j and fj (Section 3), respectively, with ζ replaced by ζ. Put

‚�VarInb,η0(K
γ) =

1

N

∑

λj∈I

∣∣∣
¨
g∗j ,K

γj
B gj
∂∣∣∣ .

Next, given γ ∈ C
+, define the function Nγ : V −→ C by

(10.2) Nγ(x) = Im g̃γ(x̃, x̃) ,

where x̃ is a point in ‹G projecting down to G = Γ\‹G. Recall the Laplacian P defined in

(1.1). We next introduce the operators Pγ ,ST,γ , S̃T,γ : CV → C
V defined by

(10.3) Pγ =
d

Nγ
P
Nγ

d
, ST,γ =

1

T

T−1∑

s=0

(T − s)P s
γ and S̃T,γ =

1

T

T∑

s=1

P s
γ ,

for T ∈ N
∗, and the operators Lγ , L̃γ : CV → C

B defined by

(LγJ)(x0, x1) =
|ζγx0

(x1)|2
|2mγ

x0 |2

(
J(x0)

Nγ(x1)
− J(x1)

ζγx0(x1)ζ
γ
x1(x0)Nγ(x0)

)
,(10.4)

(L̃γJ)(x0, x1) =
|ζγx0

(x1)|2
|2mγ

x0 |2

(
J(x0)

Nγ(x1)
− J(x1)

ζγx0(x1)ζ
γ
x1(x0)Nγ(x0)

)
.

Finally, denote VarIη0(K − 〈K〉γ) := VarIη0(K − 〈K〉γ1) where 1 ∈ H0 is the constant

function equal to 1 (so that, with the notation of Section 2.1, 1̂ is the identity operator).

Proposition 10.1. Fix η0 > 0 and T ∈ N
∗. For any J ∈ H0, we have

VarIη0(J − 〈J〉γ)) ≤ VarInb,η0(Lγd−1ST,γJ) +
‚�VarInb,η0(L̃

γd−1ST,γJ) + VarIη0(S̃T,γJ − 〈J〉γ) .
Proof. We have

(10.5) 〈f∗j , (LγjJ)Bfj〉 =
∑

(x0,x1)∈B

(
(LγjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ (LγjJ)(x1, x0)

)
ψj(x0)ψj(x1)

−
∑

(x0,x1)∈B

(LγjJ)(x0, x1)

(
|ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2
ζ
γj
x0(x1)

)
.
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We calculate 〈g∗j , (L̃γjJ)Bgj〉 similarly. We then note that

(LγjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ (LγjJ)(x1, x0)−
(L̃γjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

− (L̃γjJ)(x1, x0) = 0 ,

using that
|ζγx1 (x0)|2

|mγ
x1

|2
=

|ζγx0(x1)|2

|mγ
x0

|2
, by (2.7). Hence,

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉 =
∑

(x0,x1)∈B

(L̃γjJ)(x0, x1)

(
|ψj(x0)|2
ζ
γj
x1(x0)

+
|ψj(x1)|2

ζ
γj
x0(x1)

)

−
∑

(x0,x1)∈B

(LγjJ)(x0, x1)

(
|ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2
ζ
γj
x0(x1)

)
.

Let αx1
x0

=
|ζγx0(x1)|2

|2mγ
x0

|2Nγ(x1)
, and note that αx0

x1
=

|ζγx0 (x1)|2

|2mγ
x0

|2Nγ(x0)
by (2.7). Then

(L̃γjJ)(x0, x1)

ζ
γj
x1(x0)

− (LγjJ)(x0, x1)

ζ
γj
x1(x0)

= −2i

ñ
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx1
x0
J(x0)−

Im ζ
γj
x0(x1)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1
J(x1)

ô

and

(L̃γjJ)(x0, x1)

ζ
γj
x0(x1)

− (LγjJ)(x0, x1)

ζ
γj
x0(x1)

= 2i

ñ
Im ζ

γj
x0(x1)

|ζγjx0(x1)|2
αx1
x0
J(x0)−

Im ζ
γj
x1(x0)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1
J(x1)

ô
.

Hence,

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉

= −2i
∑

x0∈V

|ψj(x0)|2J(x0)
∑

x1∼x0

Ç
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx1
x0

+
Im ζ

γj
x0(x1)

|ζγjx0(x1)ζ
γj
x1(x0)|2

αx1
x0

å

+ 2i
∑

x0∈V

|ψj(x0)|2
∑

x1∼x0

Ç
Im ζ

γj
x0(x1)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1

+
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx0
x1

å
J(x1) .

Now Im ζγx0
(x1)+ Im ζγx1

(x0) · |ζγx0
(x1)|2 = |ζγx0

(x1)|2
î Im ζγx0(x1)

|ζγx0(x1)|2
+ Im ζγx1

(x0)
ó
= −2 Immγ

x1
·

|ζγx0
(x1)|2 by (2.7). Since 2 Immγ

x1
= Nγ(x1)|2mγ

x1
|2, we get

Im ζγx0(x1)+Im ζγx1(x0)|ζ
γ
x0

(x1)|2

|ζγx0(x1)ζ
γ
x1

(x0)|2
=

−Nγ(x1)|2m
γ
x1

|2

|ζ
γj
x1

(x0)|2
. Since αx1

x0
=

|ζγx1(x0)|2

Nγ(x1)|2m
γ
x1

|2
and αx0

x1
=

|ζγx1(x0)|2

Nγ(x0)|2m
γ
x1

|2
by (2.7), we thus have

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉

= 2i
∑

x0∈V

|ψj(x0)|2d(x0)J(x0)− 2i
∑

x0∈V

|ψj(x0)|2
1

Nγ(x0)

∑

x1∼x0

Nγ(x1)J(x1)

= 2i 〈ψj , [(I − Pγj )dJ ]Gψj〉 .
Hence,

VarIη0 [(I − Pγ)J ] ≤ VarInb,η0(Lγd−1J) +‡VarInb(L̃γd−1J) .

Now note that Pγ(ST,γJ) =
1
T

∑T
s=1(T − s+ 1)P s

γJ = ST,γJ − J + S̃T,γJ . Hence,

J = (I − Pγ)ST,γJ + S̃T,γJ ,

so for any J ∈ H0,

VarIη0(J − 〈J〉λ+iη0) ≤ VarIη0 [(I − Pγ)ST,γJ ] + VarIη0(S̃T,γJ − 〈J〉λ+iη0)

≤ VarInb,η0(Lγd−1ST,γJ) +
‡VarInb(L̃γd−1ST,γJ) + VarIη0(S̃T,γJ − 〈J〉λ+iη0) . �
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We now consider K ∈ Hm for m > 0. Define T γ : H1 → H1 and Oγ
1 : H1 → H0 by

(10.6) (T γK)(x0, x1) =
|ζγx0

(x1)ζ
γ
x1
(x0)|2

|ζγx0(x1)ζ
γ
x1(x0)|2 − 1

Ç −K(x0, x1)

ζγx0(x1)ζ
γ
x1(x0)

+K(x1, x0)

å
,

(10.7) (Oγ
1K)(x0) =

∑

x−1∼x0

(T γK)(x−1, x0)

ζγx−1(x0)
+

∑

x1∼x0

(T γK)(x0, x1)

ζγx1(x0)
.

For m ≥ 2, define Uγ
m : Hm → Hm, Oγ

m : Hm → Hm−1 and Pγ
m : Hm → Hm−2 by

(10.8) (Uγ
mK)(x0;xm) = ζγx1(x0)ζ

γ
xm−1

(xm)K(x0;xm) ,

(10.9) (Oγ
mK)(x0;xm−1) =

∑

x−1∈Nx0\{x1}

ζγx0(x−1)K(x−1;xm−1)

+
∑

xm∈Nxm−1\{xm−2}

K(x0;xm)ζγxm−1
(xm) .

(10.10) (Pγ
mK)(x1;xm−1) =

∑

x0∈Nx1\{x2},xm∈Nxm−1\{xm−2}

ζγx1(x0)K(x0;xm)ζγxm−1
(xm) .

Proposition 10.2. Fix η0 > 0. For any K ∈ H1, we have

VarIη0(K − 〈K〉γ) ≤ VarInb,η0(T γK) + VarIη0(O
γ
1K − 〈Oγ

1K〉γ) ,

and for any K ∈ Hm, m ≥ 2, we have

VarIη0(K − 〈K〉γ) ≤ VarInb,η0(Uγ
mK) + VarIη0(Oγ

mK − 〈Oγ
mK〉γ) + VarIη0(Pγ

mK − 〈Pγ
mK〉γ) .

Proof. Let K ∈ H1. We calculate 〈f∗j , (T γjK)Bfj〉 as in (10.5). By definition, we have
(T γjK)(x0,x1)

ζ
γj
x1

(x0)ζ
γj
x0

(x1)
+ (T γjK)(x1, x0) = K(x0, x1). So by definition of Oγ

1 , we get

〈f∗j , (T γjK)Bfj〉 = 〈ψj ,KGψj〉 − 〈ψj , (Oγj
1 K)Gψj〉 ,

and thus

VarIη0(K − 〈K〉γ) ≤ VarInb,η0(T γK) + VarIη0(O
γ
1K − 〈K〉γ) .

Recall the definition of 〈K〉γ in (1.5). We claim that

(10.11) 〈Oγ
1K〉γ = 〈K〉γ .

Indeed, we have 〈K〉γ =
∑

(x0,x1)∈BK(x0, x1)Φγ(x0, x1). On the other hand,

〈Oγ
1K〉γ =

∑

(x0,x1)∈B

(T γK)(x0, x1)Φγ(x1, x1)

ζγx0(x1)
+

∑

(x0,x1)∈B

(T γK)(x0, x1)Φγ(x0, x0)

ζγx1(x0)
.
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But
Φγ(x1,x1)
ζγx0 (x1)

+
Φγ(x0,x0)

ζγx1 (x0)
=

1+ζγx1 (x0)ζ
γ
x0

(x1)

ζγx0(x1)ζ
γ
x1

(x0)
Φγ(x0, x1) by (2.12) and the fact that Ψγ,x(y) =

Ψγ,y(x), by (2.8), so that Φγ(x, y) = Φγ(y, x). Hence,

〈Oγ
1K〉γ = −

∑

(x0,x1)∈B

|ζγx0
(x1)ζ

γ
x1
(x0)|2

|ζγx0(x1)ζ
γ
x1(x0)|2 − 1

K(x0, x1)(1 + ζγx1(x0)ζ
γ
x0
(x1))

|ζγx0(x1)ζ
γ
x1(x0)|2

Φγ(x0, x1)

+
∑

(x0,x1)∈B

|ζγx1
(x0)ζ

γ
x0
(x1)|2

|ζγx1(x0)ζ
γ
x0(x1)|2 − 1

K(x0, x1)(1 + ζγx0(x1)ζ
γ
x1
(x0))

ζγx1(x0)ζ
γ
x0(x1)

Φγ(x1, x0)

=
∑

(x0,x1)∈B

K(x0, x1)Φγ(x0, x1)

|ζγx0(x1)ζ
γ
x1(x0)|2 − 1

Ä
[ζγx1(x0)ζ

γ
x0
(x1)(1 + ζγx0(x1)ζ

γ
x1
(x0))]

− [1 + ζγx1(x0)ζ
γ
x0
(x1)]

ä
= 〈K〉γ .

This proves the proposition for m = 1. Now let m ≥ 2. It is easily checked that

〈f∗j , (U
γj
mK)Bfj〉 = 〈ψj , (K −Oγj

mK + Pγj
mK)Gψj〉 .

and thus

(10.12) VarIη0(K − 〈K〉γ) ≤ VarInb,η0(U
γ
kK) + VarIη0(Oγ

mK − Pγ
mK − 〈K〉γ) .

We now note that

(10.13) 〈K〉γ = 〈Oγ
mK − Pγ

mK〉γ .
Indeed, we have

〈Oγ
mK − Pγ

mK〉γ =
∑

(x−1;xm−1)∈Bm

ζγx0(x−1)K(x−1;xm−1)Φγ(x0, xm−1)

+
∑

(x0;xm)∈Bm

K(x0;xm)ζγxm−1
(xk)Φγ(x0, xm−1)

−
∑

(x0;xm)∈Bm

ζγx1(x0)K(x0;xk)ζ
γ
xm−1

(xm)Φγ(x1, xm−1) ,

so (10.13) follows from (2.12). Using (10.12), this completes the proof. �

Remark 10.3. If ψj(x0)ψj(x1) ∈ R for any j = 1, . . . , N and (x0, x1) ∈ B, then

〈f∗j , (‹T γjK)Bfj〉 =
∑

(x0,x1)

ψj(x0)ψj(x1)
( 1

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ 1
)‹T γj (x0, x1)

−
∑

(x0,x1)

(‹T γjK)(x0, x1)
( |ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2
ζ
γj
x0(x1)

)
,

so taking

(10.14) (‹T γK)(x0, x1) =
ζγx1(x0)ζ

γ
x0
(x1)

ζγx1(x0)ζ
γ
x0(x1) + 1

K(x0, x1)

and (‹Oγ
1K)(x0) =

∑
x−1∼x0

(T̃ γK)(x−1,x0)
ζγx−1

(x0)
+
∑

x1∼x0

(T̃ γK)(x0,x1)

ζγx1(x0)
, we get

VarIη0(K − 〈K〉γ) ≤ VarInb,η0(
‹T γK) + VarIη0(

›Mγ
1K − 〈‹Oγ

1K〉γ) ,

where we used that 〈‹Oγ
1K〉γ = 〈K〉γ , which is checked as in (10.11).
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Corollary 10.4. Suppose we have shown that limη0↓0 lim supN→∞VarInb,η0(FγK) = 0,

limη0↓0 lim supN→∞
‚�VarInb,η0(FγK) = 0 for any Fγ : Hm → Hk that is a polynomial

combination of Lγd−1ST,γ, Uγ
j , T γ, Oγ

j and Pγ
j (T fixed), and that

(10.15) lim
T−→+∞

lim
η0↓0

lim sup
N→∞

VarIη0(S̃T,γCγK − 〈CγK〉γ) = 0 ,

where Cγ : Hm → H0 is any polynomial combination of Uγ
j , T γ, Oγ

j and Pγ
j .

Then it will follow that limη0↓0 lim supN→∞VarIη0(K − 〈K〉γ) = 0 for any K ∈ Hm. In
other words, Theorem 1.3 will follow.

The same statement holds with T γ , Oγ
1 replaced by ‹T γ , ‹Oγ

1 if the eigenfunctions are
real.

Proof. The casem = 0 holds by Proposition 10.1, and the result follows by induction using
Proposition 10.2. For example, for m = 2, the conclusion is obtained by taking Fγ of the
form Uγ

2 , T γOγ
2 , Lγd−1ST,γOγ

1Oγ
2 , Lγd−1ST,γPγ

2 , and Cγ of the form Oγ
1Oγ

2 and Pγ
2 . �

Note that all these operators satisfy the assumptions of (Hol) from Definition 3.2,
except perhaps T γK and Oγ

1K. Indeed, the first two points of (Hol) are clear, and the
third one follows from the bounds in Corollary 7.8. The fact that we can not prove the
relevant bound (3.4) for T γ and Oγ

1 is the reason why we assume the eigenfunctions are

real, so that it suffices to deal with ‹T γ and ‹Oγ
1 , for which the bounds hold true.

Theorem 3.3 allows to say that limη0↓0 lim supN→∞VarInb,η0(FγK) = 0.

Since ‚�VarInb,η0(FγK) is defined exactly like VarInb,η0(FγK) except that ζ is replaced by

ζ, it is clear that it can be shown to vanish asymptotically using the same arguments,
simply replacing ζ by ζ when necessary. By Corollary 10.4, to finish the proof of Theorem
1.3, it suffices to show (10.15). This is what we do now.

Recall that we introduced ‖K‖γ for K ∈ Hk, k ≥ 1, in (4.1). For K ∈ H0, we let

‖K‖2γ = ‖NγK‖2H0
=

1

N

∑

x∈V

N2
γ (x)|K(x)|2 .

We also define (YγK)(x) = d(x)
Nγ(x)

·
∑

y∈V Nγ(y)K(y)∑
y∈V

d(y)
. Denoting 〈J〉U := 1

N

∑
x∈V J(y) the

uniform average of J , we have YγK = 〈NγK〉U
〈d〉U

· d
Nγ

. Fix I = (a, b) ⊂ I1 as in Section 4.

Proposition 10.5. Under assumptions (BSCT), (Green), if Kγ ∈ H0 satisfies the set
of assumptions (Hol), then for any interval I = (a, b) as above,

lim
η0↓0

lim sup
N→+∞

VarIη0(S̃T,γK
γ − YγK

γ)2

≤ D |I|
β2T 2

lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖Kλ+i(η4+η0) − Yλ+i(η4+η0)K

λ+i(η4+η0)‖2λ+i(η4+η0)
dλ .

Proof. We follow the steps in the proof of Theorem 4.1. Let Jγ = (S̃T,γ − Yγ)K
γ and

αγj (x) = N
1/2
γj (x). Then VarIη0(J

γ)2 ≤ ( 1
N

∑
λj∈I ‖α−1

γj ψj‖2)( 1
N

∑
λj∈I ‖αγjJ

γj
G ψj‖2). As in

the proof of (4.3), 1
N

∑
λj∈I ‖α−1

γj ψj‖2 . 3
πN

∫ b+2η
a−2η

∑
ρG(x)≥dR,η

Ψz+iη0,x̃
(x̃)

Nλ+iη0
(x) dλ ≤ 3(|I|+4η)

π for

any small η > 0, since Nγ(x) = Ψγ,x̃(x̃).

Hence, limη0↓0 lim supN→∞VarIη0(J
γ)2 ≤ 3|I|

π limη0↓0 lim supN→∞
1
N

∑
λj∈I ‖αγjJ

γj
G ψj‖2.

Now ‖αγjJ
γj
G ψj‖2 =

∑
x∈V Nγj (x)|Jγj (x)|2|ψj(x)|2. Arguing as in Section 4, we get

1

N

∑

λj∈I

‖αγjJ
γj
G ψj‖2 .

3

πN

∫ b+2η

a−2η

∑

ρG(x)≥dR,η

χ(λ)Nz+iη0(x)|Jz+iη0(x)|2Ψz+iη0,x̃(x̃) dλ ,
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where z := λ + iη4. This is bounded by 3
π

∫ b+2η
a−2η ‖Jz+iη0‖2z+iη0 dλ, since Ψγ,x̃(x̃) = Nγ(x)

and χ(λ) ≤ 1 on R.

Summarizing, we have limη0↓0 lim supN→∞VarIη0(J
γ)2 ≤ 9|I|

π2

∫ b+2η
a−2η ‖Jz+iη0‖2z+iη0

dλ.

Now recall that S̃T,γ = 1
T

∑T
s=1 P

s
γ , and Pγ = d

Nγ
P Nγ

d , so that P s
γ = d

Nγ
P s Nγ

d . Moreover,

YγK = d
Nγ

〈NγK〉U
〈d〉U

. So denoting γ = z + iη0, ‖K‖2d = 1
N

∑
x∈V d(x)|K(x)|2, we have

‖Jγ‖2γ = ‖NγJ
γ‖2H0

=
1

N

∑

x∈V

∣∣∣∣
1

T

T∑

s=1

d(x)
(
P sNγK

γ

d

)
(x)− 〈NγK

γ〉U
〈d〉U

d(x)

∣∣∣∣
2

≤ D ·
∥∥∥∥
1

T

T∑

s=1

P s
(NγK

γ

d
− 〈NγK

γ〉U
〈d〉U

1
)∥∥∥∥

2

d

≤ D

T 2

Ç T∑

s=1

(1− β)s
∥∥∥∥
NγK

γ

d
− 〈NγK

γ〉U
〈d〉U

1

∥∥∥∥
d

å2

≤ D

β2T 2

∥∥∥∥
NγK

γ

d
− 〈NγK

γ〉U
〈d〉U

1

∥∥∥∥
2

d
.

Here we used (EXP) and the fact that NγKγ

d − 〈NγKγ〉U
〈d〉U

1 is orthogonal to the constants in

ℓ2(V, d). Indeed, the orthogonal projector onto 1 in ℓ2(V, d) is P1,dJ = 〈1,J〉d
〈1,1〉d

1 = 〈dJ〉U
〈d〉U

1.

Since
〈NγKγ〉U

〈d〉U
1 =

NγYγKγ

d and 1
d ≤ 1, the proposition follows. �

Corollary 10.6. For any Cγ : Hm → H0 as in Corollary 10.4 and Ī ⊂ I1, ‖K‖∞ ≤ 1,

lim
η0↓0

lim sup
N→+∞

VarIη0(S̃T,γCγK − 〈CγK〉γ)2 ≤
c |I|2
β2T 2

.

Proof. Let K ′
γ = CγK − 〈CγK〉γ1. Then YγK

′
γ = 0, since YγCγK = d

Nγ

〈NγCγK〉U
〈d〉U

and

〈CγK〉γYγ1 =
〈NγCγK〉U

〈Nγ〉U
d
Nγ

〈Nγ〉U
〈d〉U

. Hence, denoting z = λ+ i(η4 + η0),

lim
η0↓0

lim sup
N→+∞

VarIη0(S̃T,γCγK − 〈CγK〉γ)2

≤ D |I|
β2T 2

lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖CzK − 〈CzK〉z‖2z dλ .

Now ‖CzK‖2z = 1
N

∑
x∈V N

2
z (x)|(CzK)(x)|2 ≤ 1

N

∑
x∈V N

2
z (x)[

∑
w∈Bm

|Cz(x,w)|]2. Sim-

ilarly, |〈CzK〉λ| ≤ 1∑
x Nz(x)

∑
xNz(x)

∑
w |Cz(x,w)|. For our operators Cz, we thus get

‖CzK‖2z = O(1)N−→+∞,z and |〈CzK〉z| = O(1)N−→+∞,z, as in Corollary 7.8. �

This proves (10.15) and ends the proof of Theorem 1.3 on the interval I.
Suppose further that ρ(∂I1) = 0. As I1 is open, we have I1 = ∪j∈NJj for open in-

tervals Jj = (aj , bj). Let J ς
j = (aj + ς, bj − ς) with ς > 0 small. Then J ς

j ⊂ I1, so

using (9.7) and Corollary 10.6, we get limη0↓0 lim supN→∞Var
Jςj
η0(K − 〈K〉γ) = 0. Now

VarI1η0(K
′) =

∑M
j=1Var

Jςj
η0(K

′)+Var
I1\∪M

j=1J
ς
j

η0 (K ′) for any givenM . By (A.13) and (Green),

we have Var
I1\∪M

j=1J
ς
j

η0 (K − 〈K〉γ) ≤ ♯{λj∈I1\∪M
k=1J

ς
k
}

N O(1)N−→+∞,γ . By the convergence of
empirical spectral measures (Remark A.3), and using the fact that ρ(∂I1) = 0, we have
♯{λj∈I1\∪M

k=1J
ς
k
}

N → ρ(I1 \ ∪M
k=1J

ς
k). Finally, ρ(I1 \ ∪M

k=1J
ς
k) → 0 as ς ↓ 0 and M −→ +∞.

The conclusion of Theorem 1.3 thus holds with I replaced by I1.

Appendix A. Benjamini–Schramm topology

A.1. Generalities. In this appendix we collect known facts on the Benjamini-Schramm
convergence, we refer the reader to [1, 6, 16, 17, 38] for details.
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A coloured rooted graph (G, o,W ) is a graph G = (V,E) with a marked vertex o ∈ V
called the root, and a map W : V → R which we see as a “colouring”; it can also be
regarded as a potential on ℓ2(V ). This is a special case of what is called a network in [6].
All graphs are assumed to be locally finite, i.e. each vertex has a finite degree.

If G is connected, we denote by BG(x, r) the r-ball {y ∈ V : dG(x, y) ≤ r}, where dG is
the length of the shortest path between x and y in G.

As in [6], we define a distance between coloured connected graphs by

(A.1) dloc
Ä
(G, o,W ), (G′, o′,W ′)

ä
=

1

1 + α
,

α := sup
¶
r > 0 : ∃ graph isomorphism φ : BG(o, ⌊r⌋) → BG′(o′, ⌊r⌋) with

φ(o) = o′ and |W ′(φ(v)) −W (v)| < 1/r ∀v ∈ BG(o, ⌊r⌋)
©
.

Two coloured rooted graphs (G, o,W ) and (G′, o′,W ′) are equivalent if there is a graph
isomorphism φ : G→ G′ such that φ(o) = o′ and W ′ ◦ φ =W . We denote the equivalence
class of (G, o,W ) by [G, o,W ].

Let G∗ be the set of equivalence classes of connected coloured rooted graphs. Then
dloc turns G∗ into a separable complete metric space. We may thus consider the set of
probability measures on G∗, denoted by P(G∗).

Any finite connected coloured graph (G,W ), G = (V,E), defines a probability measure
U(G,W ) ∈ P(G∗) by choosing the root x uniformly at random in V :

(A.2) U(G,W ) =
1

|V |
∑

x∈V

δ[G,x,V ] .

If (Gn,Wn) is a sequence of finite coloured graphs, we say that P ∈ P(G∗) is the local
weak limit of (Gn,Wn) if U(Gn,Wn) converges weakly-∗ to P in P(G∗). This notion of
convergence was introduced in [16] and generalized in [6]. In this case, we also say that
(Gn,Wn) converges in the sense of Benjamini-Schramm.

The subset G
D,A
∗ ⊂ G∗ of equivalence classes [G, o,W ] such that G is of degree bounded

by D, and W takes values in [−A,A], is compact. It follows that P(G D,A
∗ ) is compact

in the weak-∗ topology. Hence, if CD,A
fin denotes the set of finite coloured graphs (G,W ),

G = (V,E), of degree bounded by D and colouring W : V → [−A,A], then any sequence

(Gn,Wn) ⊂ CD,A
fin has a subsequence which converges in the sense of Benjamini-Schramm.

Let C(GD,A
∗ ) be the set of continuous functions f : G

D,A
∗ → R.

Then a sequence (Gn,Wn) ⊂ CD,A
fin has a local weak limit P iff there is an algebra

A ⊂ C(GD,A
∗ ) which separates points, such that for all f ∈ A ,

(A.3) lim
n→∞

1

|Vn|
∑

x∈Vn

f ([Gn, x,Wn]) =

∫

G
D,A
∗

f ([G, o,W ]) dP ([G, o,W ]) .

This follows from the compactness of G
D,A
∗ , see [34, Chapter 13].

It may not be very clear how a continuous function on G
D,A
∗ looks like, so we give a

basic example. If BF (o, r) is an r-ball, the sets CF = {[G,x,W ] : BG(x, r) ∼= BF (o, r)}
turn out to be clopen in G

D,A
∗ , so the characteristic function χCF

is continuous. Here
BG(x, r) ∼= BF (o, r) means there exists a graph isomorphism φ : BG(x, r) → BF (o, r) with
φ(x) = o, Using (A.3), it can be shown that in the special case where there is no colouring,

(Gn) ⊂ CD,A
fin has a local weak limit P iff

lim
n→∞

#{x : BGn(x, r)
∼= BF (o, r)}

|Vn|
= P({[G,x] : BG(x, r) ∼= BF (o, r)})
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for any BF (o, r). This was in fact the original criterion in [16]. Using it, one readily
checks that a sequence of (q + 1)-regular graphs (Gn) satisfies (BST) iff it converges to
the (q + 1)-regular tree Tq in the sense of Benjamini-Schramm, i.e. iff (Gn) has the local
weak limit δ[Tq ,o], with o ∈ Tq arbitrary. More generally, by considering the clopen sets

Cr = {[G,x,W ] : BG(x, r) is not a tree}, one sees that if (Gn,Wn) ⊂ CD,A
fin has a local

weak limit P that is concentrated on the subset T
D,A
∗ ⊂ G

D,A
∗ of coloured rooted trees,

then (Gn) satisfies (BST). Conversely, if (Gn) satisfies (BST) and if a subsequence of

(Gn,Wn) has a local weak limit P, then P must be concentrated on T
D,A
∗ .

A.2. Convergence of empirical spectral measures. We now show that Benjamini-
Schramm convergence implies convergence of the empirical spectral measures. This is
already known in some settings [1, 38, 39]. In this paper we need the variant stated as
Corollary A.2.

Given [G, o,W ] ∈ G
D,A
∗ , γ ∈ C

+ = {z, Im z > 0} and x ∼ y ∈ G, we define ζγx (y) as in
§2.2. Like in §2.1, Bk is the set of non-backtracking paths of length k on G.

Let F : (C \ {0})2s → C be a continuous function and γ ∈ C
+. Let

Fγ([G, o,W ]) =
∑

(x0;xs)∈Bs :x0=o

F
Ä
ζγx0

(x1), ζ
γ
x1
(x0), . . . , ζ

γ
xs−1

(xs), ζ
γ
xs
(xs−1)

ä
.

For s = 1, the sum reduces to
∑

x1:x1∼o. One can remark that Fγ([G, o,W ]) = Fγ([‹G, õ, W̃ ])

where ‹G is the universal cover of G and õ, W̃ are lifts of o,W .
Next, given Borel J ⊆ R, we define the measure

µ
(G,W )
o,F,γ (J) = Fγ([G, o,W ])〈δo, χJ(HG,W )δo〉 .

Fix a compact I ⊂ R and fix η ∈ (0, 1).

Lemma A.1. Suppose (λn, [Gn, on,Wn]) ⊂ I × G
D,A
∗ converges to (λ, [G, o,W ]) in I ×

G
D,A
∗ . Then µ

(Gn,Wn)
on,F,λn+iη converges weakly-∗ to µ

(G,W )
o,F,λ+iη.

Proof. Since all operators Hn = H(Gn,Wn) and H = H(G,W ) are uniformly bounded by
D + A, the supports of the spectral measures is compact, so it suffices to show that for

any k ∈ N, µ
(Gn,Wn)
on,F,λn+iη(t

k) → µ
(G,W )
o,F,λ+iη(t

k); see [34, Chapter 13].
Let k ∈ N. Denote γn = λn + iη, γ = λ+ iη. We have

∣∣∣µ(Gn,Wn)
on,F,γn

(tk)− µ
(G,W )
o,F,γ (tk)

∣∣∣ =
∣∣∣Fγn([Gn, on,Wn])〈δon ,Hk

nδon〉 − Fγ([G, o,W ])〈δo,Hkδo〉
∣∣∣ .

We first approximate F by a polynomial.

We have |ζλ+iη
x (y)| ≤ η−1 and | Im ζλ+iη

x (y)| = η ‖(‹H(ỹ|x̃) − λ − iη)−1δỹ‖2
ℓ2(G̃)

. Since

‖‹H(x|y) − λ − iη‖ℓ2→ℓ2 ≤ A + D + cI + 1 =: c for all λ ∈ I and η ∈ (0, 1), we get
| Im ζλ+iη

x (y)| ≥ ηc−2.
So let O ⊂ C be the compact region {ηc−2 ≤ |z| ≤ η−1}. If F is continuous on

O2s ⊂ C
2s, by Stone-Weierstrass, given R ∈ N

∗, there is a polynomial PR of 4s variables
such that sup(z1;z2s)∈O2s |F (z1, . . . , z2s) − PR(z1, z̄1, . . . , z2s, z̄2s)| ≤ 1

2R . Hence, for any

λ ∈ I and (x0;xs), if γ = λ+ iη, then

(A.4)
∣∣∣F
Ä
ζγx0

(x1), ζ
γ
x1
(x0), . . . , ζ

γ
xs
(xs−1)

ä
− PR

Ä
ζγx1

(x0), ζ
γ
x1(x0), . . . , ζ

γ
xs(xs−1)

ä∣∣∣ ≤ 1

2R
.

Let hη(t) = −(t − iη)−1. Given ǫ > 0, we may choose a polynomial Qǫ = Qη
ǫ such that

‖hη −Qǫ‖∞ < ǫ. It follows that ‖hη(H(x̃|ỹ)

G̃
− λ) − Qǫ(H

(x̃|ỹ)

G̃
− λ)‖ < ǫ. In particular, if

Zγ
ǫ (x, y) := Qǫ(H

(ỹ|x̃)

G̃
− λ)(ỹ, ỹ), we have for any λ ∈ I and (x, y) ∈ B,

(A.5) |ζγx (y)− Zγ
ǫ (x, y)| < ǫ .
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As PR is Lipschitz-continuous on O2s, we may thus find CR,η−1 such that

∣∣∣PR

Ä
ζγx0

(x1), . . . , ζ
γ
xs(xs−1)

ä
− PR

Ä
Zγ
ǫ (x0, x1), . . . , Z

γ
ǫ (xs, xs−1)

ä∣∣∣ ≤ CR,η−1 · ǫ = 1

2R

by choosing ǫ = 1
2R

1
CR,η−1

. Using (A.4), we thus get uniformly in λ ∈ I, (x0;xs),

(A.6)
∣∣∣F
Ä
ζγx0

(x1), ζ
γ
x1
(x0), . . . , ζ

γ
xs
(xs−1)

ä
− PR

Ä
Zγ
R(x0, x1), . . . , Z

γ
R(xs, xs−1)

ä∣∣∣ ≤ 1

R
,

where we now denote ZR because ǫ is a function of R. Define

Pγ([G, o,W ]) =
∑

(x1;xs),x0=o

PR

Ä
Zγ
R(x0, x1), . . . , Z

γ
R(xs, xs−1)

ä
.

Then up to an error
CD,s,A,k

R , it suffices to consider
∣∣∣Pγn([Gn, on,Wn])〈δon ,Hk

nδon〉 − Pγ([G, o,W ])〈δo,Hkδo〉
∣∣∣ .

Let dR be the degree of QR and choose an arbitrary integer r ≥ dR+s+k =: dR,s,k. Then

we may find nr such that for n ≥ nr, there exists ϕr : BGn(on, r)
∼−→ BG(o, r) with ‖W◦ϕr−

Wn‖BGn (o,r) < 1/r. Now 〈δon ,Hk
nδon〉 =

∑
u0,...,uk−1

Hn(on, u0)Hn(u0, u1) . . . Hn(uk−1, on)

andHn(v,w) = An(v,w)+Wn(v)δw(v). This only depends on BGn(on, k) and its colouring.
Similarly, the quantity Zγ

R(x, y) corresponding to (Gn, on,Wn) only depends on BGn(y,R)

and its colouring. Since r ≥ dR,s,k and ϕr : BGn(on, r)
∼−→ BG(o, r), if we let Hn =

AG +Wn ◦ ϕ−1
r on G, we get 〈δon ,Hk

nδon〉 = 〈δo,Hk
nδo〉. Similarly, Pγn([Gn, on,Wn]) =

Pγn([G, o,Wn ◦ ϕ−1
r ]). Let W ′

n =Wn ◦ ϕ−1
r . Then for n ≥ nr,

∣∣∣µ(Gn,Wn)
on,F,γn

(tk)− µ
(G,W )
o,F,γ (tk)

∣∣∣ ≤ C

R
+
∣∣∣Pγn([G, o,W

′
n])〈δo,Hk

nδo〉 − Pγ([G, o,W ])〈δo,Hkδo〉
∣∣∣ .

Writing Hk
n −Hk =

∑k
i=1Hk−i

n (Hn −H)H i−1, we have

|〈δo, (Hk
n −Hk)δo〉| ≤ C ′

k,D,A‖Wn ◦ ϕ−1
r −W‖BG(o,r) ≤

C ′
k,D,A

r
.

A similar argument yields |Pγ([G, o,W
′
n])−Pγ([G, o,W ])| ≤ CR,D,s,A

r and |Pγn([G, o,W
′
n])−

Pγ([G, o,W
′
n])| ≤ CR,D,s,A,I|λn − λ| ≤ CR,D,s,A,I

r for n ≥ n′r. We thus showed that for any

r ≥ dR,s,k, there exists n
′′
r such that if n ≥ n′′r , then |µ(Gn,Wn)

on,F,γn
(tk)−µ(G,W )

o,F,γ (tk)| ≤ CD,s,A,k

R +
C′

k,D,A+CR,D,s,A+CR,D,s,A,I

r . It follows that lim supn→∞ |µ(Gn,Wn)
on,F,γn

(tk)−µ(G,W )
o,F,γ (tk)| ≤ CD,s,A,k

R .
Since R is arbitrary, the proof is complete. �

If (G,W ) ∈ CD,A
fin , we now define, for γ ∈ C

+,

µ
(G,W )
F,γ =

1

|V |
∑

x∈V

µ
(G,W )
x,F,γ .

Corollary A.2. Suppose (Gn,Wn) ⊂ CD,A
fin has a local weak limit P. Fix a compact I ⊂ R

and η ∈ (0, 1). Then µ
(Gn,Wn)
F,λ+iη converges weakly to

∫
G

D,A
∗

µ
(G,W )
o,F,λ+iη dP([G, o,W ]), uniformly

in λ ∈ I. In other words, for any continuous ϕ : R → R, we have uniformly in λ ∈ I,

1

|Vn|
∑

x∈Vn

Fλ+iη([Gn, x,Wn])〈δx, ϕ(H(Gn,Wn))δx〉

−→
N−→+∞

∫

G
D,A
∗

Fλ+iη([G, o,W ])〈δo, ϕ(H(G,W ))δo〉dP([G, o,W ]) .
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Proof. Given continuous ϕ : R → R, define ϕ̂ : I × G
D,A
∗ → R by ϕ̂(λ, [G, o,W ]) =∫

ϕ(t) dµ
(G,W )
o,F,λ+iη(t). Lemma A.1 states ϕ̂ is continuous on I×G

D,A
∗ – hence, uniformly con-

tinuous. Let ϕ̂λ([G, o,W ]) = ϕ̂(λ, [G, o,W ]). Local convergence means that the measures
U(Gn,Wn) (defined in (A.2)) converge weakly to P. Thus, for any λ ∈ I, ∫ ϕ̂λ dU(Gn,Wn) →∫
ϕ̂λ dρ, i.e. 1

|Vn|

∑
x∈Vn

ϕ̂λ([Gn, x,Wn]) → ∫
ϕ̂λ([G, o,W ]) dP([G, o,W ]), which is the

statement of the lemma for fixed λ ∈ I.
Uniformity in λ comes from the uniform continuity of ϕ̂, which implies that the maps

λ 7→ ∫
ϕ̂λ dU(Gn,Wn) form a uniformly equicontinuous family. �

Remark A.3. Taking F ≡ 1, we get in particular the convergence of empirical spectral
measures. On the other hand, when ϕ ≡ 1, we get in particular that under assumption
(BSCT), if I ⊂ R is compact and η ∈ (0, 1) is fixed, then uniformly in λ ∈ I,

(A.7)
1

N

∑

(x0;xs)∈Bs

F
Ä
ζλ+iη
x0

(x1), ζ
λ+iη
x1

(x0), . . . , ζ
λ+iη
xs−1

(xs), ζ
λ+iη
xs

(xs−1)
ä

−→
N−→+∞

E


 ∑

(v0;vs)∈Bs:v0=o

F
Ä
ζ̂λ+iη
v0 (v1), ζ̂

λ+iη
v1 (v0), . . . , ζ̂

λ+iη
vs−1

(vs), ζ̂
λ+iη
vs (vs−1)

ä .

In the paper, we often encounter expressions of the form ϑγ(x0, x1) = F (ζγx0
(x1), ζ

γ
x1
(x0))

in the LHS. In this case, we write ϑ̂γ(v0, v1) := F (ζ̂γv0(v1), ζ̂
γ
v1(v0)) for the object defined

similarly at the limit. For instance, µ̂γ1 is defined like µγ1 but on the limiting tree (T ,W).
In the particular case of mγ , we have m̂γ

o = −1
2Gγ(o,o) .

It is worth noting that E[
∑

o′∼o F (ζ̂
γ
o (o

′))] = E[
∑

o′∼o F (ζ̂
γ
o′(o))]. This holds because

1
N

∑
(x0,x1) F (ζ

γ
x0
(x1)) =

1
N

∑
(x0,x1) F (ζ

γ
x1
(x0)).

Remark A.4. Using Lemma 2.2, we have |ζ̂γo′(o)|s ≤ | Im ζ̂γo (u)|−s for any u ∈ No \ {o′}.
In particular, |ζ̂γo′(o)|s ≤

∑
o′′∼o | Im ζ̂γo (o

′′)|−s. We thus see by (Green) that for any s > 0,

(A.8) sup
λ∈I1,η∈(0,1)

E(| Im Gλ+iη(o, o)|−s) <∞ , sup
λ∈I1,η∈(0,1)

E(|Gλ+iη(o, o)|s) <∞ ,

(A.9) sup
λ∈I1,η∈(0,1)

E

(∑

y∼o

|ζ̂λ+iη
y (o)|s

)
<∞ , sup

λ∈I1,η∈(0,1)
E

(∑

y∼o

|ζ̂λ+iη
o (y)|s

)
<∞ ,

sup
λ∈I1,η∈(0,1)

E

(∑

y∼o

| Im ζ̂λ+iη
y (o)|−s

)
<∞ .

We also have

sup
λ∈I1,η∈(0,1)

E


 ∑

(v0;vt)∈Bt:v0=o

∣∣∣ζ̂λ+iη
v0 (v1), ζ̂

λ+iη
v1 (v0) . . . ζ̂

λ+iη
vt−1

(vt), ζ̂
λ+iη
vt (vt−1)

∣∣∣
s


 <∞ .

To see this, consider for simplicity E[
∑

(v0;v2),v0=o |ζ̂γv0(v1)ζ̂γv1(v2)|s]. This is the limit of
1
N

∑
(x0;x2)∈B2

|ζγx0
(x1)ζ

γ
x1
(x2)|s. This sum is bounded by ( 1

N

∑
(x0;x2)∈B2

|ζγx0
(x1)|2s)1/2 ·

( 1
N

∑
(x0;x2)∈B2

|ζγx1
(x2)|2s)1/2 for any N . Using |Nx1 | − 1 ≤ D and taking N → ∞, we see

the limit is bounded by DE(
∑

o′∼o |ζ̂γo (o′)|2s)1/2 E(
∑

o′∼o |ζ̂γo (o′)|2s)1/2 ≤ DCs by (A.9),

for any λ ∈ I1 and η > 0. Hence, supλ∈I1,η>0 E[
∑

(v0;v2),v0=o |ζ̂γv0(v1)ζ̂γv1(v2)|s] ≤ DCs.

Remark A.5. Let us now look at quantities such as 1
N

∑
(x0,x1)

∑
(x2;xk),(y2;yk) |g̃γ(x̃k, ỹk)|s,

which we had to control in Section 4.
Let xk ∧ yk be the vertex of maximal length in (x0;xk) ∩ (x0; yk), so xk ∧ yk = xt for

some 1 ≤ t ≤ k. Then g̃γ(x̃k, ỹk) =
−
∏k−t−1

l=0 ζγxk−l
(xk−l−1)·ζ

γ
xt (yt+1)

∏k−1
l=t+1 ζ

γ
yl
(yl+1)

2mγ
xk

. We then
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write 1
N

∑
(x0,x1)

∑
(x2;xk),(y2;yk) =

1
N

∑
(x0,x1)

∑k
t=1

∑
(x2;xk),(y2;yk),xk∧yk=xt

, use Hölder’s in-

equality, and take N → ∞ to get a uniform bound involving E[
∑

o′∼o |ζ̂γo (o′)|s2 ] and
E[|2m̂o|−s1 ], both of which are finite. Hence, 1

N

∑
(x0,x1)

∑
(x2;xk),(y2;yk) |g̃γ(x̃k, ỹk)|s is uni-

formly bounded as N → ∞.
Finally, to see that 1

N

∑
(x,y) |f yx |α|P sd−1Nγ(x)|α is uniformly bounded in Corollary 7.8,

bound the sum by CD,α(
1
N

∑
(x,y) |f yx |2α)1/2( 1

N

∑
xNγ(x)

2α)1/2, apply Hölder’s inequality
to the first term, then take the limit.

A.3. Proofs of auxiliary results. We now turn to the proofs of some claims in Section 1.
In what follows, η0 ∈ (0, 1) is fixed.

Claim (1.8). Let χ : G
D,A
∗ → R and F : C → R be continuous. Then under (BSCT),

(A.10)
1

N

∑

x∈VN

χ([GN , x])
∑

y,d(y,x)=k

F (g̃λ+iη0
N (x̃, ỹ)) −→

N−→+∞
E

(
χ((T , o))

∑

v,d(v,o)=k

F (Gλ+iη0(o, v))
)

uniformly in λ ∈ I0. This is a variant of Corollary A.2 when one considers Fγ,χ :
(λ, [G,x,W ]) 7→ χ([G,x])

∑
y,d(y,x)=k F (g̃

γ(x, y)) instead of Fγ . In particular, taking k = 0
and χ = 1, we obtain (1.8).

Claim (1.9). We may assume F is compactly supported (cf. Lemma A.1), hence

uniformly continuous. Let hN (t) = 1
N

∑
x∈VN

χ([GN , x])
∑

y,d(y,x)=k F (t Im g̃λ+iη0
N (x, y)),

h(t) = E

Ä
χ((T , o))∑v,d(v,o)=k F (t ImGλ+iη0(o, v))

ä
, let cN (λ) = N∑

x̃∈DN
Im g̃

λ+iη0
N (x̃,x̃)

and

c(λ) = 1
E(ImGλ+iη0(o,o))

. The family hN is uniformly equicontinuous, and as in (A.10)

it converges uniformly to h. By (1.8), cN (λ) → c(λ) uniformly in λ. So |hN (cN (λ) −
h(c(λ))| → 0 uniformly in λ. This proves (1.9).

We now turn to the proof of Claim (1.7). Consider the set of (double)-coloured rooted
graphs (G, o,W, a), where now W : V −→ R and a : V → {0, 1}. We say (G, o,W, a)
and (G′, o′,W ′, a′) are equivalent if there is φ : G → G′ with φ(o) = o′, W ′ ◦ φ = W and

a′ ◦ φ = a. We let “GD,A
∗ be the corresponding set of equivalence classes and endow it with

a metric dloc defined similarly to (A.1). This amounts to the same definition as before,
except that the colourings now take values in R× {0, 1} instead of R. The notion of local
weak limit may obviously be extended to this situation.

Assuming that (BSCT) holds, then up to passing to a subsequence, (GN ,WN , 1lΛN
)

will have a local weak limit P̂ concentrated on {[T , o,W, a]}, whose marginals on T
D,A
∗

coincides with P. The fact that |ΛN | ≥ αN implies P̂(a(o) = 1) ≥ α, since {a(o) = 1} is

clopen in “GD,A
∗ . We claim that

(A.11) lim
N−→+∞

〈1lΛN
〉λ+iη0 =

Ê

Ä
a(o) Im Gλ+iη0(o, o)

ä
E (ImGλ+iη0(o, o))

uniformly in λ ∈ I0. Indeed, as in Lemma A.1, if F : I0 × “GD,A
∗ → C is given by

F (λ, [G,x,W, a]) = a(x) Im g̃λ+iη0(x, x), then F is continuous. So
∫
Fλ dUGN ,WN ,1lΛN

→
∫
Fλ dP̂ uniformly in λ as in Corollary A.2. Combined with (1.8), this yields (A.11). We

next note that for any α > 0,

(A.12) inf
λ∈I1,η0∈(0,1)

inf
a,P̂(a(o)=1)≥α

Ê

Ä
a(o) Im Gλ+iη0(o, o)

ä
E (ImGλ+iη0(o, o))

> 0 .

In fact, suppose on the opposite that for all ǫ > 0, we can find λ ∈ I1, η0 ∈ (0, 1) and a

such that P̂(a(o) = 1) ≥ α and Ê

Ä
a(o) Im Gλ+iη0(o, o)

ä
≤ ǫ. The latter implies

P̂

Ä
a(o) = 1, Im Gλ+iη0(o, o) ≥ ǫ1/2

ä
≤ ǫ1/2 .
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On the other hand, since a takes only the values 0 and 1,

P̂

Ä
a(o) = 1, ImGλ+iη0(o, o) ≥ ǫ1/2

ä
≥ P̂(ImGλ+iη0(o, o) ≥ ǫ1/2)− P̂(a(o) = 0) .

Thus,

P̂(ImGλ+iη0(o, o) ≥ ǫ1/2)− P̂(a(o) = 0) ≤ ǫ1/2 .

Equation (A.8) with s = 2 implies that P̂(ImGλ+iη0(o, o) < ǫ1/2) ≤ Cǫ, for some constant

C < ∞ independent of λ, η0. So P̂(ImGλ+iη0(o, o) ≥ ǫ1/2) ≥ 1 − Cǫ. By assumption,

P̂(a(o) = 0) ≤ 1 − α. Taking ǫ → 0 we would obtain α ≤ 0, a contradiction. We thus
proved (A.12). Since (A.11) holds uniformly in λ, we get (1.7).

Finally, as in the proof of (A.11), we may consider the set of double-coloured rooted
graphs (G, o,W,K), where K is a colouring of pairs of vertices x, y ∈ G, dG(x, y) ≤ R,
with values in {|z| ≤ 1} ⊂ C. Assuming (BSCT) holds, up to passing to a subse-

quence, (GN ,WN ,KN ) will have a local weak limit P̂ concentrated on {[T , o,W,K]} whose

marginals on T
D,A
∗ coincides with P. We then deduce as before that uniformly in λ ∈ I0,

(A.13) lim
N−→+∞

〈KN 〉λ+iη0
=

Ê

Ä∑
y:d(y,o)≤R K(o, y) Im Gλ+iη0(o, y)

ä
E (ImGλ+iη0(o, o))

.
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2010.
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