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Abstract

Materials and methods: Two registration methods based on optical flowinestion
have been programmed to run on a graphics progmagmomit (GPU). One of these
methods by Horn & Schunck is tested on a 4DCT thdeta set with 10 phases and 41
landmarks identified per phase. The other metho€dmynelius & Kanade is tested on a
series of six 3D cone beam CT (CBCT) data setsaacwhventional planning CT data set
from a head and neck cancer patient. In each sktdata sets 6 landmark points have
been identified on the cervical vertebrae and #eelof skull. Both CBCT to CBCT and
CBCT to CT registration is performed.

Results: For the 4DCT registration average landmark erras weduced by deformable
registration from 3.5 £ 2.0 mm to 1.1 £ 0.6 mm. RBCT to CBCT registration the
average bone landmark error was 1.8 + 1.0 mm &gl registration and 1.6 £ 0.8 mm
after deformable registration. For CBCT to CT ré&gison errors were 2.2 + 0.6 mm and
1.8 £ 0.6 mm for rigid and deformable registratiespectively. Using GPU hardware the
Horn & Schunck method was accelerated by a fadtdBoThe 4DCT registration can be

performed in 37 seconds. The head and neck caatienpregistration takes 64 seconds.



Discussion:Compared to image slice thickness, which limitsuaacy of landmark point
determination, we consider the landmark point aacyrof the registration acceptable.
The points identified in the CBCT images do notegas full impression of the result of
doing deformable registration as opposed to riggistration. A larger validation study is
being planned in which soft tissue landmarks wadltilitate tracking the deformable
registration. The acceleration obtained using GRdllwvare means that registration can

be done online for CBCT.

Introduction

Organ deformation during successive image guidetiotizerapy (IGRT) sessions
represents a significant challenge to optimal plagand delivery of radiation doses. To
facilitate a more precise conformation of doseshttumor and sparing normal tissue,
multiple 3D cone beam CT (CBCT), conventional CTMRRI datasets can be acquired
during the treatment course. To update existing gidans based on this newly obtained
data, the data must be correlated to a referertesetaFor this task a registration method
is needed. A per pixel-based (deformable) registiatechnique is required to fully
account for the non-homogeneous deformation througthe volume. However, such
methods are much more time consuming to performpeoed to methods estimating
homogeneous (rigid or affine) transforms. Moreovethe deformable registration is not
regularized sufficiently it can result in physigalhon-plausible deformations causing
significant errors in subsequent dose calculatiomghis paper we evaluate the accuracy
of two fully automated image based deformable tegjisn methods driven by the

concept of optical flow [1], [2]. These methods werhosen based on our previous



experience with registration of 2D MRI for onlineRvtemperature monitoring [3]. As a
preliminary validation study we report the resuft using one of these methods for
registering 4DCT lung acquisitions and the otherrigistering head and neck CBCT
and conventional CT acquisitions.

To compute such complex registrations in a clitycatceptable time frame, we
implemented the two algorithms in parallel on a owodity graphics processing unit
(GPU), an emerging platform for general purpose matation. The methods used in the
study presented here are easily parallelizable mgakthem ideal for GPU
implementation. Furthermore, the running times lefse methods are relatively short
even in a non-accelerated version meaning thagrafisent acceleration will allow us to
do deformable registration in very short time frameSeveral other deformable
registration methods have already been demonstvatbdsignificant speedups on GPUs
[4], [5], [6]. Consequently, this paper also inahsdan evaluation of the running times of

the two algorithms.

Materials and methods

Optical flow based registration

The process of estimating optical flow means figdan quantitative measure of how
image intensity information has changed betweenitmages. Technically both images
are regarded as part of one mathematical functioerevspatial changes have occurred in
the time between acquisitions transforming one ematp the other. The optical flow is a
vector field consisting of the changes in spacedioates. These vectors can be thought

of as ‘optical velocity’ vectors showing the direct of image intensity flow. We focus



on two optical flow based methods for deformablage registration; a 3D version of the
Horn & Schunck algorithm [1] and the extension bistalgorithm by Cornelius &
Kanade [2] to handle intensity changes that do artde as a direct consequence of
geometric motion, i.e. intensity variation due taoypical properties of the acquisitions
themselves.

The Horn & Schunck method is based on an assumputiopreserved image
intensity in the two 3D images to be registeredisTimeans that it only works for
registering images of the same modality and ontyirfaages with consistent grey values
when multiple image sets are compared. It is aksumed that the deformation is
smooth. This is in general a valid assumption fuft 8ssue deformation. The Horn &
Schunck method is thus suitable for registeringcessive CT images due to the
reproducibility of Hounsfield Units for this modali

When registering MR to MR or CBCT to CT the assuomptof intensity
preservation is no longer valid. In the CBCT mayaihe Hounsfield Units are affected
by the larger contribution from x-ray scatter. Alde@ design of the detector and the
image reconstruction algorithm used has an impad¢i@unsfield unit reproducibility for
CBCT. To facilitate handling of intensity differezs; Cornelius & Kanade extended the
original algorithm thus enabling it to tolerate somieviation from the assumption. In
their work it was further assumed that the non-oretelated intensity differences are
smoothly varying in space.

Both our implementations utilize a multi-resolutiapproach. This means that the
organ deformation is first approximated on low teson versions of the 3D acquisitions

to be registered. The result of this coarse registn is then used as a starting point for a



registration at a higher resolution. This continuedil the deformation has been
approximated at the highest resolution. This sgsaenables us to systematically handle

modes of deformation at different scales.

GPU based registration

The very specialized parallel hardware architectofrenodern GPUs enables them to
perform a vast number of numerical calculations ishort time frame allowing them to
outperform the CPU in normal computers for a nundfeapplications. The degree of
GPU acceleration of an algorithm attainable dep@mdsow suitable the algorithm is for
being split into a large number of small computagithat can be run simultaneously. The
registration methods we focus on here are vergdudr such a parallelization, and thus
we have utilized the computational capabilities &f GPU for accelerating the
computations required in the Horn & Schunck andn€bus & Kanade methods. The

GPU implementations are based on the CUDA framevrork Nvidia [7].

Image material

The Horn & Schunck registration has been evaluatethe POPI-model which is a 4D
thorax virtual phantom [8]. It consists of 10 CTtalaets of resolution 482x360x141
which have been acquired at different breathingspbaluring a single breathing cycle.
The images were acquired at the Léon Bérard Cabester, Lyon, France. In each data

set corresponding to a breathing phase 41 landpwnks have been manually identified,



and these points are used for our validation. Téweel spacing of the acquisitions is
0.98x0.98x2.0 mm

The image material used for validating the CorreefuKanade method is a series
of 6 CBCT images of a head and neck cancer pagiedta conventional planning CT
image acquired at the Department of Oncology, Aarduaiversity Hospital. The scans
have been conducted weekly during the treatmenteatarting at the first fraction. The
CBCT images are of dimensions 512x512x51 with ael/@pacing of 0.47x0.47x3.0
mm®, while the conventional CT image is of dimensidk2x512x55 with a voxel
spacing of 0.78x0.78x3.0 nimValidation of bone alignment is based on 6 landma
points in each 3D data set. These points have meanmually positioned prior to
registration at easily identifiable positions oe thony anatomy of the cervical vertebrae
and the base of skull representing clinically ralgvmatch points. Positioning of these

points is illustrated in figure 1.

Registration validation studies

Three series of registration experiments have bagied out:

1) CT to CT registration using the Horn & Schunck regstration method:
Following the convention from the POPI initiativikimages from the 4D data set
(at time phases numbered 0, 2, 3, 4, 5, 6, 7, 8aihve been registered to the

reference image at phase 1.



2) CBCT to CBCT registration using the Cornelius & Kanade registration
method: The CBCT images numbered 2 to 6 have been registereaCBCT
image 1.

3) CBCT to CT registration using the Cornelius & Kanade registration method:

The CBCT images have been registered to the plgr@inimage.

For the Horn & Schunck method a reference CPU basptémentation has also been
implemented allowing us to compare the computatioes between the CPU and GPU

versions.

Image preprocessing

The CBCT images were processed using GREYCstoratiage denoising filter [9]. As
the publicly available implementation of this filteorks in two dimensions, an in-house
program has been used that simply filters each éenslige independently. The effect of
the filter is to remove noise (and in some casgfaets from the CBCT reconstruction)
while preserving the edge contrast between diftekerds of morphology. See figure 2
for an example.

The registration methods we present in this paperdasigned to estimate the
detailed deformation of morphology. If there is lzd displacement of patient position
(that is translation and/or rotation) between twiages it is necessary to do a rigid
alignment of the images before the deformable tegien in order to supply the method
with a suitable starting point for estimation ofjan deformation. The rigid registration
method we use is based on the Insight RegistramohSegmentation Toolkit (ITK). The

measure used to compare images is based on mafoamation. Input images are



filtered using a threshold filter so that only bom@rphology is included in the rigid
registration. Again a multi-resolution approacttaiken.

For validation study 1 no image preprocessing veaglired as the images were
already rigidly aligned. In validation studies 2a® a rigid registration was required. A
bounding box corresponding to the physical exté@BCT image 1 has been cut out of

the planning CT image and resampled to the sansdutes as the CBCT images.

Results

Validation study 1: Registration of the POPI 4DCT data set

The registration accuracy, evaluated on the tamegistration error (TRE) of landmark
positions, is summarized in table 1. The distararescalculated as the Euclidian length
of 3D vectors. Original average landmark distancasv8.5 mm + 2.0 mm. After
registration, this average distance was equallionin £ 0.6 mm.

A visualization of the registration result can beers in figure 3. In this
visualization the source image is shown in a rédd@or while the reference image is
shown in a bluish color. Where the images alignray gscale image emerges. In the
unregistered case on the left blue and red araaglearly be seen indicating that the
morphology is not aligned. In the registered caséhe right these colored areas have

almost disappeared indicating that the images baea successfully registered.



Validation study 2: CBCT to CBCT registration

In table 2 the alignment error of the landmark poipositioned on the bony anatomy is
summarized both before registration, after thedrigigistration, and after the deformable
registration. Original average landmark distanes w.8 mm + 1.1 mm. After the rigid
registration, this average distance was equal ® mim + 1.0 mm and after the
deformable registration it was 1.6 mm = 0.8 mm.

The result of registering CBCT image 3 to CBCT imdgis visualized in figure
4. The images depicting the results of the rigmisteation show an acceptable alignment
of most bony anatomy, but it can be seen thatdfteissue and the area surrounding the
oral cavity is not aligned. Improved alignment Is#aned as a result of the deformable
image registration as shown in the visualizatiom.figure 5 a visualization of the

computed transformation can be seen showing teadeformation is smooth.

Validation study 3: CBCT to planning CT registration

The average alignment errors after the CBCT to &Jistrations are found in table 3.
After the rigid registration, this average distam@es equal to 2.2 mm = 0.6 mm and after
the deformable registration it was 1.8 mm + 0.6 mm.

The result of registering CBCT image 6 to the plag CT image can be seen in
figure 6. Again it can be seen that even thoughsthél and spine is aligned after the
rigid registration, deformable registration is negdto account for changes in jaw

positioning and deformation of soft tissue.



Time consumption

On an Intel Core 2 CPU at 2.4 GHz the Horn & Sclkuregistration used for the each
3D image in the POPI dataset in validation studiaes 30 minutes. On an Nvidia
Geforce 8800GTX GPU in the same machine each ratiest takes 37 seconds, making
the GPU versiod8.7 times faster

For the 3D Cornelius & Kanade method we did nottevia CPU reference
implementation. Subsequently we do not know thecegdference in processing time
between CPU and GPU. However we expect the acteleraf this method to be
somewhat smaller than for the Horn & Schunck mettod to a less efficient use of
socalled shared memory on the GPU. Each 3D retistraf the CBCT images in

studies 2 and 3 using the Cornelius & Kanade metakeks 64 seconds.

Discussion

When specifying landmark points the limiting facton the accuracy is the slice
thickness. This is because a point may be betwsenstices which makes it hard to
identify. In the light of this we consider the iggation accuracy results in validation
study 1 very acceptable as the mean landmark isrmell below the slice thickness. This
accuracy is comparable to results for the Demogeriéhm previously reported in the
POPI initiative [9].

In validation study 2 and 3 we used landmark poiattrack the registration of
clinically relevant points on the cervical vertebrand the base of skull. For this
preliminary study we did not do a dedicated evadmabf the error in landmark point

identification but we estimate that the error icledandmark point position may be as
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high as 2.0 mm. The magnitude of this error is hyadie to the slice thickness of 3 mm.
It is interesting to note that although the rigégjistration was done on bone morphology
the mean landmark erron bone morphologis reduced by the deformable registration.
In all registrations the mean error is smaller than slice thickness. As demonstrated in
figures 4 and 6 a rigid registration is not suffiti in describing the geometrical
difference between the images. However these geimaletdifferences have been
substantially reduced by the deformable registnatio

Based on these studies we are optimistic that tireelius & Kanade method is
suitable for registering head and neck CBCT imafyjem a series of radiotherapy
treatments to the planning image. Hopefully thidl wilow us to compensate for the
unreliable Hounsfield units by using the inversansformation of the one found in
validation study 3 to map the Hounsfield units frtma planning CT to each CBCT. This
will make it possible to evaluate the doses dediderin the treatment fraction
corresponding to each CBCT acquisition by doingoaedcalculation on the corrected
CBCT image. This has previously been suggested dng¥et al. [10]. When all CBCT
images are registered to the same geometricakrefersystem, it will then be possible to
evaluate the actual accumulated dose from a sefifactions for comparison with the
planned doses. This can be done by deforming tke distributions from each CBCT to
the geometrical reference frame constituted byplaening CT [11]. Furthermore an
accurate registration makes it possible to do aatmmsegmentation by transferring
segmentations from the planning CT. Currently gdahead and neck CBCT registration

study is being planned in which landmarks in bosevall as soft tissue will be used for
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accuracy evaluation. Also a smaller slice thicknedls be used allowing us to more
accurately positioning landmarks.

In the pursuit of online IGRT, the performance loé required image processing
in a sufficiently short time frame constitutes a@uechnical challenge. Using the GPU
has led to a very significant reduction of the ségition time. The explanation of this
reduction in processing time must be found in thealelized architecture of the GPU.
An acceleration in the magnitude presented hemdtinly possible for the the Horn &
Schunck method but should be attainable for otlegistration methods which lend
themselves to being split into a large number dépendent calculations. We expect the
registration time of the methods presented in plaiger to be reduced even more as the
performance of graphics hardware increases. Inctireent implementation a fixed
number of computations is performed for each imag®lution. We plan to adjust the
amount of computation to the degree of deformatictually present in the input images.
This should also reduce computation time for mosiges. By splitting the images into
blocks to be registered, is it also possible tdrithgte computations onto multiple GPUs.
This does however introduce an overhead from theang synchronization needed at
block boundaries so whether or not this would spgedhe registration significantly is
unclear.

So far we have shown that using GPUs the menticegidtration methods can be
accelerated to a level which is acceptable for imsan online setting in which the
deformable registration is done while the patienstill on the treatment couch. This is

the first step towards online dose plan adjustment.
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The processing power of GPUs can be utilized ndy dor registration as
presented here, but for many of the compute intensnaging tasks in IGRT making it

an ideal and cost-efficient tool, which can helgatting further towards online IGRT.
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Mean Orignal

Registration Distance / Mean TRE /
(source/reference Standard deviation Maximum Orignal Standard deviation Maximum TRE
image number) (mm) Distance (mm) (mm) (mm)
0/1 0.5/0.5 2.4 0.7/0.3 1.4
2/1 0.5/0.6 2.6 0.7/0.4 1.7
3/1 221/1.8 6.6 1.3/0.8 3.4
4/1 45/25 10.0 1.2/0.5 2.7
5/1 6.0/2.9 12.1 1.3/0.7 3.6
6/1 6.5/3.3 14.0 1.2/0.6 3.2
7/1 5.5/3.0 14.0 1.3/0.6 2.8
8/1 3.8/1.6 6.2 1.0/0.5 2.7
9/1 2.1/1.0 4.5 0.9/0.6 25
Average 3.5/2.0 8.0 1.1/0.6 2.7

Table 1: Target registration error (TRE) compatecbriginal distances of landmark
points in the POPI data set.

After deformable

Before registration After rigid registration registration

(source/refer Mean / Std. Mean / Std. Mean / Std.

ence image) dev. (mm) Max (mm) dev. (mm) Max (mm) dev. (mm) Max (mm)
2/1 43/1.3 6.4 17711 3.5 1.6/0.4 1.9

3/1 42/1.6 6.5 25/1.1 3.7 1.8/1.0 3.4

4/1 52/1.1 6.6 1.8/1.2 3.9 14/1.0 3.1

5/1 6.5/0.8 8.0 1.4/0.9 2.7 1.4/0.6 2.1

6/1 7.2/10.9 8.6 1.7/10.7 2.8 1.7/0.8 3.0
Average 58/1.1 7.2 1.8/1.0 3.3 1.6/0.8 2.7

Table 2: Evaluation of distances of bony landmdokshe CBCT-to-CBCT registration.

After rigid registration After deformable registration
Mean / Std. dev. Mean / Std. dev.

Source image (mm) Max (mm) (mm) Max (mm)
CBCT 1 22/1.0 3.7 1.4/0.6 2.7
CBCT 2 1.7/04 2.2 1.4/05 1.9
CBCT 3 1.9/05 2.9 1.7/0.3 2.2
CBCT 4 2.8/0.6 4.1 27/1.1 4.9
CBCT 5 2.0/0.3 25 1.7/05 2.6
CBCT 6 2.3/0.7 3.7 2.0/0.6 3.3
Average 22/0.6 3.2 1.8/0.6 3.0

Table 3: Evaluation of distances of bony landmdokdshe CBCT-to-CT registration.
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Figure 1: Visualization of the positioning of trmblmark points on the images acquired
from the head and neck cancer patient.

Figure 2: The effect of applying the GREYCstoratidter to a head and neck CBCT
image. The unfiltered image is the one on the riglhe level of noise has been reduced
without blurring the image. Window-level settingavie been set to emphasize the
difference between the two images.
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Figure 3: Differences between source and referanege before (left) and after (right)
registration of an image from the POPI data setadgital slice and an axial slice are
shown before and after registration. The sourcegéma shown in a reddish color while
the reference image is shown in a bluish colorngjva gray scale image where the
images align.
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Figure 4: Red/blue visualization of the differermmtween the rigid registration (left) and
the deformable registration (right) of CBCT imagé3CBCT image 1. A saggital slice
and an axial slice are shown for each registration.

] |

I I
Figure 5: lllustration of the transformation apglito the axial slice shown in figure 4.

The transform is used to deform a rectilinear gnth a grid spacing of 10 mm. Only the
in-plane deformation can be seen.
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Figure 6: Red/blue visualization of the differef@#ween the rigid registration (left) and
the deformable registration (right) of CBCT imagetd the planning CT image. A
saggital slice and an axial slice are shown foheagistration.
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