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Abstract 

Materials and methods: Two registration methods based on optical flow estimation 

have been programmed to run on a graphics programming unit (GPU). One of these 

methods by Horn & Schunck is tested on a 4DCT thorax data set with 10 phases and 41 

landmarks identified per phase. The other method by Cornelius & Kanade is tested on a 

series of six 3D cone beam CT (CBCT) data sets and a conventional planning CT data set 

from a head and neck cancer patient. In each of these data sets 6 landmark points have 

been identified on the cervical vertebrae and the base of skull. Both CBCT to CBCT and 

CBCT to CT registration is performed. 

Results: For the 4DCT registration average landmark error was reduced by deformable 

registration from 3.5 ± 2.0 mm to 1.1 ± 0.6 mm. For CBCT to CBCT registration the 

average bone landmark error was 1.8 ± 1.0 mm after rigid registration and 1.6 ± 0.8 mm 

after deformable registration. For CBCT to CT registration errors were 2.2 ± 0.6 mm and 

1.8 ± 0.6 mm for rigid and deformable registration respectively. Using GPU hardware the 

Horn & Schunck method was accelerated by a factor of 48. The 4DCT registration can be 

performed in 37 seconds. The head and neck cancer patient registration takes 64 seconds. 
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Discussion: Compared to image slice thickness, which limits accuracy of landmark point 

determination, we consider the landmark point accuracy of the registration acceptable. 

The points identified in the CBCT images do not give a full impression of the result of 

doing deformable registration as opposed to rigid registration. A larger validation study is 

being planned in which soft tissue landmarks will facilitate tracking the deformable 

registration. The acceleration obtained using GPU hardware means that registration can 

be done online for CBCT.  

  

Introduction 

Organ deformation during successive image guided radiotherapy (IGRT) sessions 

represents a significant challenge to optimal planning and delivery of radiation doses. To 

facilitate a more precise conformation of doses to the tumor and sparing normal tissue, 

multiple 3D cone beam CT (CBCT), conventional CT or MRI datasets can be acquired 

during the treatment course. To update existing dose plans based on this newly obtained 

data, the data must be correlated to a reference dataset. For this task a registration method 

is needed. A per pixel-based (deformable) registration technique is required to fully 

account for the non-homogeneous deformation throughout the volume. However, such 

methods are much more time consuming to perform compared to methods estimating 

homogeneous (rigid or affine) transforms. Moreover, if the deformable registration is not 

regularized sufficiently it can result in physically non-plausible deformations causing 

significant errors in subsequent dose calculations. In this paper we evaluate the accuracy 

of two fully automated image based deformable registration methods driven by the 

concept of optical flow [1], [2]. These methods were chosen based on our previous 
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experience with registration of 2D MRI for online MR temperature monitoring [3]. As a 

preliminary validation study we report the result of using one of these methods for 

registering 4DCT lung acquisitions and the other for registering head and neck CBCT 

and conventional CT acquisitions.  

To compute such complex registrations in a clinically acceptable time frame, we 

implemented the two algorithms in parallel on a commodity graphics processing unit 

(GPU), an emerging platform for general purpose computation. The methods used in the 

study presented here are easily parallelizable making them ideal for GPU 

implementation. Furthermore, the running times of these methods are relatively short 

even in a non-accelerated version meaning that a significant acceleration will allow us to 

do deformable registration in very short time frames. Several other deformable 

registration methods have already been demonstrated with significant speedups on GPUs 

[4], [5], [6]. Consequently, this paper also includes an evaluation of the running times of 

the two algorithms. 

Materials and methods 

Optical flow based registration 

The process of estimating optical flow means finding a quantitative measure of how 

image intensity information has changed between two images.  Technically both images 

are regarded as part of one mathematical function where spatial changes have occurred in 

the time between acquisitions transforming one image into the other. The optical flow is a 

vector field consisting of the changes in space coordinates. These vectors can be thought 

of as ‘optical velocity’ vectors showing the direction of image intensity flow. We focus 
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on two optical flow based methods for deformable image registration; a 3D version of the 

Horn & Schunck algorithm [1] and the extension of this algorithm by Cornelius & 

Kanade [2] to handle intensity changes that do not arise as a direct consequence of 

geometric motion, i.e. intensity variation due to physical properties of the acquisitions 

themselves. 

The Horn & Schunck method is based on an assumption of preserved image 

intensity in the two 3D images to be registered. This means that it only works for 

registering images of the same modality and only for images with consistent grey values 

when multiple image sets are compared. It is also assumed that the deformation is 

smooth. This is in general a valid assumption for soft tissue deformation. The Horn & 

Schunck method is thus suitable for registering successive CT images due to the 

reproducibility of Hounsfield Units for this modality.  

When registering MR to MR or CBCT to CT the assumption of intensity 

preservation is no longer valid. In the CBCT modality the Hounsfield Units are affected 

by the larger contribution from x-ray scatter. Also the design of the detector and the 

image reconstruction algorithm used has an impact on Hounsfield unit reproducibility for 

CBCT. To facilitate handling of intensity differences, Cornelius & Kanade extended the 

original algorithm thus enabling it to tolerate some deviation from the assumption. In 

their work it was further assumed that the non-motion-related intensity differences are 

smoothly varying in space. 

Both our implementations utilize a multi-resolution approach. This means that the 

organ deformation is first approximated on low resolution versions of the 3D acquisitions 

to be registered. The result of this coarse registration is then used as a starting point for a 
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registration at a higher resolution. This continues until the deformation has been 

approximated at the highest resolution. This strategy enables us to systematically handle 

modes of deformation at different scales. 

 

GPU based registration 

The very specialized parallel hardware architecture of modern GPUs enables them to 

perform a vast number of numerical calculations in a short time frame allowing them to 

outperform the CPU in normal computers for a number of applications. The degree of 

GPU acceleration of an algorithm attainable depends on how suitable the algorithm is for 

being split into a large number of small computations that can be run simultaneously. The 

registration methods we focus on here are very suited for such a parallelization, and thus 

we have utilized the computational capabilities of a GPU for accelerating the 

computations required in the Horn & Schunck and Cornelius & Kanade methods. The 

GPU implementations are based on the CUDA framework from Nvidia [7]. 

 

Image material 

The Horn & Schunck registration has been evaluated on the POPI-model which is a 4D 

thorax virtual phantom [8]. It consists of 10 CT data sets of resolution 482×360×141 

which have been acquired at different breathing phases during a single breathing cycle. 

The images were acquired at the Léon Bérard Cancer Center, Lyon, France. In each data 

set corresponding to a breathing phase 41 landmark points have been manually identified, 
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and these points are used for our validation. The voxel spacing of the acquisitions is 

0.98×0.98×2.0 mm3.  

The image material used for validating the Cornelius & Kanade method is a series 

of 6 CBCT images of a head and neck cancer patient and a conventional planning CT 

image acquired at the Department of Oncology, Aarhus University Hospital. The scans 

have been conducted weekly during the treatment course starting at the first fraction. The 

CBCT images are of dimensions 512×512×51 with a voxel spacing of 0.47×0.47×3.0 

mm3, while the conventional CT image is of dimensions 512×512×55 with a voxel 

spacing of 0.78×0.78×3.0 mm3. Validation of bone alignment is based on 6 landmark 

points in each 3D data set. These points have been manually positioned prior to 

registration at easily identifiable positions on the bony anatomy of the cervical vertebrae 

and the base of skull representing clinically relevant match points. Positioning of these 

points is illustrated in figure 1. 

 

Registration validation studies 

 

Three series of registration experiments have been carried out: 

 

1) CT to CT registration using the Horn & Schunck registration method: 

Following the convention from the POPI initiative all images from the 4D data set 

(at time phases numbered 0, 2, 3, 4, 5, 6, 7, 8 and 9) have been registered to the 

reference image at phase 1.  
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2) CBCT to CBCT registration using the Cornelius & Kanade registration 

method: The CBCT images numbered 2 to 6 have been registered to CBCT 

image 1. 

3) CBCT to CT registration using the Cornelius & Kanade registration method: 

The CBCT images have been registered to the planning CT image. 

 

For the Horn & Schunck method a reference CPU based implementation has also been 

implemented allowing us to compare the computation times between the CPU and GPU 

versions. 

Image preprocessing 

The CBCT images were processed using GREYCstoration image denoising filter [9]. As 

the publicly available implementation of this filter works in two dimensions, an in-house 

program has been used that simply filters each image slice independently. The effect of 

the filter is to remove noise (and in some cases artifacts from the CBCT reconstruction) 

while preserving the edge contrast between different kinds of morphology. See figure 2 

for an example. 

The registration methods we present in this paper are designed to estimate the 

detailed deformation of morphology. If there is global displacement of patient position 

(that is translation and/or rotation) between two images it is necessary to do a rigid 

alignment of the images before the deformable registration in order to supply the method 

with a suitable starting point for estimation of organ deformation. The rigid registration 

method we use is based on the Insight Registration and Segmentation Toolkit (ITK). The 

measure used to compare images is based on mutual information. Input images are 
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filtered using a threshold filter so that only bone morphology is included in the rigid 

registration. Again a multi-resolution approach is taken.  

For validation study 1 no image preprocessing was required as the images were 

already rigidly aligned. In validation studies 2 and 3, a rigid registration was required. A 

bounding box corresponding to the physical extent of CBCT image 1 has been cut out of 

the planning CT image and resampled to the same resolution as the CBCT images. 

 

Results 

Validation study 1: Registration of the POPI 4DCT data set 

 

The registration accuracy, evaluated on the target registration error (TRE) of landmark 

positions, is summarized in table 1. The distances are calculated as the Euclidian length 

of 3D vectors. Original average landmark distance was 3.5 mm ± 2.0 mm. After 

registration, this average distance was equal to 1.1 mm ± 0.6 mm. 

A visualization of the registration result can be seen in figure 3. In this 

visualization the source image is shown in a reddish color while the reference image is 

shown in a bluish color. Where the images align a gray scale image emerges. In the 

unregistered case on the left blue and red areas can clearly be seen indicating that the 

morphology is not aligned. In the registered case to the right these colored areas have 

almost disappeared indicating that the images have been successfully registered. 
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Validation study 2: CBCT to CBCT registration 

In table 2 the alignment error of the landmark points positioned on the bony anatomy is 

summarized both before registration, after the rigid registration, and after the deformable 

registration.  Original average landmark distance was 5.8 mm ± 1.1 mm. After the rigid 

registration, this average distance was equal to 1.8 mm ± 1.0 mm and after the 

deformable registration it was 1.6 mm ± 0.8 mm.  

The result of registering CBCT image 3 to CBCT image 1 is visualized in figure 

4. The images depicting the results of the rigid registration show an acceptable alignment 

of most bony anatomy, but it can be seen that the soft tissue and the area surrounding the 

oral cavity is not aligned. Improved alignment is obtained as a result of the deformable 

image registration as shown in the visualization. In figure 5 a visualization of the 

computed transformation can be seen showing that the deformation is smooth. 

 

Validation study 3: CBCT to planning CT registration 

The average alignment errors after the CBCT to CT registrations are found in table 3. 

After the rigid registration, this average distance was equal to 2.2 mm ± 0.6 mm and after 

the deformable registration it was 1.8 mm ± 0.6 mm. 

 The result of registering CBCT image 6 to the planning CT image can be seen in 

figure 6. Again it can be seen that even though the skull and spine is aligned after the 

rigid registration, deformable registration is needed to account for changes in jaw 

positioning and deformation of soft tissue. 
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Time consumption 

On an Intel Core 2 CPU at 2.4 GHz the Horn & Schunck registration used for the each 

3D image in the POPI dataset in validation study 1 takes 30 minutes. On an Nvidia 

Geforce 8800GTX GPU in the same machine each registration takes 37 seconds, making 

the GPU version 48.7 times faster.  

For the 3D Cornelius & Kanade method we did not write a CPU reference 

implementation. Subsequently we do not know the exact difference in processing time 

between CPU and GPU. However we expect the acceleration of this method to be 

somewhat smaller than for the Horn & Schunck method due to a less efficient use of 

socalled shared memory on the GPU. Each 3D registration of the CBCT images in 

studies 2 and 3 using the Cornelius & Kanade method takes 64 seconds. 

 

Discussion 

When specifying landmark points the limiting factor on the accuracy is the slice 

thickness. This is because a point may be between two slices which makes it hard to 

identify.  In the light of this we consider the registration accuracy results in validation 

study 1 very acceptable as the mean landmark error is well below the slice thickness. This 

accuracy is comparable to results for the Demons algorithm previously reported in the 

POPI initiative [9].  

In validation study 2 and 3 we used landmark points to track the registration of 

clinically relevant points on the cervical vertebrae and the base of skull. For this 

preliminary study we did not do a dedicated evaluation of the error in landmark point 

identification but we estimate that the error in each landmark point position may be as 
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high as 2.0 mm. The magnitude of this error is mainly due to the slice thickness of 3 mm. 

It is interesting to note that although the rigid registration was done on bone morphology 

the mean landmark error on bone morphology is reduced by the deformable registration.  

In all registrations the mean error is smaller than the slice thickness. As demonstrated in 

figures 4 and 6 a rigid registration is not sufficient in describing the geometrical 

difference between the images. However these geometrical differences have been 

substantially reduced by the deformable registration. 

Based on these studies we are optimistic that the Cornelius & Kanade method is 

suitable for registering head and neck CBCT images from a series of radiotherapy 

treatments to the planning image. Hopefully this will allow us to compensate for the 

unreliable Hounsfield units by using the inverse transformation of the one found in 

validation study 3 to map the Hounsfield units from the planning CT to each CBCT. This 

will make it possible to evaluate the doses delivered in the treatment fraction 

corresponding to each CBCT acquisition by doing a dose calculation on the corrected 

CBCT image. This has previously been suggested by Yang et al. [10]. When all CBCT 

images are registered to the same geometrical reference system, it will then be possible to 

evaluate the actual accumulated dose from a series of fractions for comparison with the 

planned doses. This can be done by deforming the dose distributions from each CBCT to 

the geometrical reference frame constituted by the planning CT [11]. Furthermore an 

accurate registration makes it possible to do automatic segmentation by transferring 

segmentations from the planning CT. Currently a larger head and neck CBCT registration 

study is being planned in which landmarks in bone as well as soft tissue will be used for 
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accuracy evaluation. Also a smaller slice thickness will be used allowing us to more 

accurately positioning landmarks. 

In the pursuit of online IGRT, the performance of the required image processing 

in a sufficiently short time frame constitutes a huge technical challenge. Using the GPU 

has led to a very significant reduction of the registration time. The explanation of this 

reduction in processing time must be found in the parallelized architecture of the GPU. 

An acceleration in the magnitude presented here is not only possible for the the Horn & 

Schunck method but should be attainable for other registration methods which lend 

themselves to being split into a large number of independent calculations. We expect the 

registration time of the methods presented in this paper to be reduced even more as the 

performance of graphics hardware increases. In the current implementation a fixed 

number of computations is performed for each image resolution. We plan to adjust the 

amount of computation to the degree of deformation actually present in the input images. 

This should also reduce computation time for most images. By splitting the images into 

blocks to be registered, is it also possible to distribute computations onto multiple GPUs. 

This does however introduce an overhead from the memory synchronization needed at 

block boundaries so whether or not this would speed up the registration significantly is 

unclear. 

So far we have shown that using GPUs the mentioned registration methods can be 

accelerated to a level which is acceptable for use in an online setting in which the 

deformable registration is done while the patient is still on the treatment couch. This is 

the first step towards online dose plan adjustment.  
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The processing power of GPUs can be utilized not only for registration as 

presented here, but for many of the compute intensive imaging tasks in IGRT making it 

an ideal and cost-efficient tool, which can help us getting further towards online IGRT. 
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Registration 
(source/reference 
image number) 

Mean Orignal 
Distance / 

Standard deviation 
(mm) 

Maximum Orignal 
Distance (mm) 

Mean TRE / 
Standard deviation 

(mm) 
Maximum TRE 

(mm) 
0/1 0.5 / 0.5 2.4 0.7 / 0.3 1.4 
2/1 0.5 / 0.6 2.6 0.7 / 0.4 1.7 
3/1 2.2 / 1.8 6.6 1.3 / 0.8 3.4 
4/1 4.5 / 2.5 10.0 1.2 / 0.5 2.7 
5/1 6.0 / 2.9 12.1 1.3 / 0.7 3.6 
6/1 6.5 / 3.3 14.0 1.2 / 0.6 3.2 
7/1 5.5 / 3.0 14.0 1.3 / 0.6 2.8 
8/1 3.8 / 1.6 6.2 1.0 / 0.5 2.7 
9/1 2.1 / 1.0 4.5 0.9 / 0.6 2.5 
Average 3.5 / 2.0 8.0 1.1 / 0.6 2.7 

Table 1:  Target registration error (TRE) compared to original distances of landmark 
points in the POPI data set. 
 
 
 

 Before registration After rigid registration 
After deformable 

registration 

(source/refer
ence image) 

Mean / Std. 
dev. (mm) Max (mm) 

Mean / Std. 
dev. (mm) Max (mm) 

Mean / Std. 
dev. (mm) Max (mm) 

2/1 4.3 / 1.3 6.4 1.7 / 1.1 3.5 1.6 / 0.4 1.9 
3/1 4.2 / 1.6 6.5 2.5 / 1.1 3.7 1.8 / 1.0 3.4 
4/1 5.2 / 1.1 6.6 1.8 / 1.2 3.9 1.4 / 1.0 3.1 
5/1 6.5 / 0.8 8.0 1.4 / 0.9 2.7 1.4 / 0.6 2.1 
6/1 7.2 / 0.9 8.6 1.7 / 0.7 2.8 1.7 / 0.8 3.0 
Average 5.8 / 1.1 7.2 1.8 / 1.0 3.3 1.6 / 0.8 2.7 

Table 2: Evaluation of distances of bony landmarks for the CBCT-to-CBCT registration.  
 
 

 After rigid registration After deformable registration 

Source image 
Mean / Std. dev. 

(mm) Max (mm) 
Mean / Std. dev. 

(mm) Max (mm) 
CBCT 1 2.2 / 1.0 3.7 1.4 / 0.6 2.7 
CBCT 2  1.7 / 0.4 2.2 1.4 / 0.5 1.9 
CBCT 3  1.9 / 0.5 2.9 1.7 / 0.3 2.2 
CBCT 4 2.8 / 0.6 4.1 2.7 / 1.1 4.9 
CBCT 5 2.0 / 0.3 2.5 1.7 / 0.5 2.6 
CBCT 6 2.3 / 0.7 3.7 2.0 / 0.6 3.3 
Average 2.2 / 0.6 3.2 1.8 / 0.6 3.0 

Table 3: Evaluation of distances of bony landmarks for the CBCT-to-CT registration.  
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Figure 1: Visualization of the positioning of the landmark points on the images acquired 
from the head and neck cancer patient.  
 
 

 
Figure 2: The effect of applying the GREYCstoration filter to a head and neck CBCT 
image. The unfiltered image is the one on the right. The level of noise has been reduced 
without blurring the image. Window-level settings have been set to emphasize the 
difference between the two images. 
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Figure 3: Differences between source and reference image before (left) and after (right) 
registration of an image from the POPI data set. A saggital slice and an axial slice are 
shown before and after registration. The source image is shown in a reddish color while 
the reference image is shown in a bluish color giving a gray scale image where the 
images align. 
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Figure 4: Red/blue visualization of the difference between the rigid registration (left) and 
the deformable registration (right) of CBCT image 3 to CBCT image 1. A saggital slice 
and an axial slice are shown for each registration. 
 

 
Figure 5: Illustration of the transformation applied to the axial slice shown in figure 4. 
The transform is used to deform a rectilinear grid with a grid spacing of 10 mm. Only the 
in-plane deformation can be seen. 
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Figure 6: Red/blue visualization of the difference between the rigid registration (left) and 
the deformable registration (right) of CBCT image 6 to the planning CT image. A 
saggital slice and an axial slice are shown for each registration.  
 


