
HAL Id: hal-01503876
https://hal.science/hal-01503876v1

Submitted on 11 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model based object localization and shape estimation
using electric sense on underwater robots

Stéphane Bazeille, Vincent Lebastard, Sylvain Lanneau, Frédéric Boyer

To cite this version:
Stéphane Bazeille, Vincent Lebastard, Sylvain Lanneau, Frédéric Boyer. Model based object localiza-
tion and shape estimation using electric sense on underwater robots. IFAC 2017 : 20th IFAC World
Congress, Jul 2017, Toulouse, France. �10.1016/j.ifacol.2017.08.941�. �hal-01503876�

https://hal.science/hal-01503876v1
https://hal.archives-ouvertes.fr


Model based object localization and shape
estimation using electric sense on

underwater robots

Stéphane Bazeille ∗ , Vincent Lebastard ∗ , Sylvain Lanneau ∗

and Frédéric Boyer ∗

∗DAPI/IRCCYN, Ecole des Mines de Nantes, France

Abstract: Recently, biologists have shown that the weakly electric fish are able to estimate the
electric nature, the localization and the 3D geometric properties of an object using active electric
sense. Incredibly, the Gnathonemus petersii performs this task in the dark only by moving
towards and around the object, its vision is not required. In this paper, we proposed to address
the challenging issue of object localization and shape estimation using a real underwater robot
equipped with artificial electric sense. To that end, we used a corrected version of the dipolar
tensor dedicated to small objects [Ammari et al., 2014] able to capture the electric response of
big objects (typically objects whose size is about the one half of the robot length < 10cm). The
principal contribution consists in the development of a multi-scale exhaustive search algorithm
based on this tensor that allows to estimate in a same step the localization, orientation and
shape of an object from electric currents measured along a given trajectory close to the object.
Over 108 experiments, our method shows good results as on average we obtained 18% of shape
error, 25◦ of orientation error and 1cm of localization error within a range of [5, 11]cm distance
with the robot. These results are promising since the problem solved is known to be complex
localization and shape being intricately linked in the electrical measurements [Rasnow, 1996].

Keywords: Object localization, Shape estimation, Electric sensing, Modelization, Bio-robotics.

1. CONTEXT OF THE STUDY

1.1 Weakly electric fish

Electric sense is a bio-inspired sensorial ability. It has
been observed almost exclusively in aquatic or amphibious
animals [Bullock and Heiligenberg, 1986]. Several species
of fish have this capacity to sense changes in electric fields
in their vicinity. Among fishes, we can distinguish two typ-
ical modes of electro-perception: some fish passively sense
changes in the nearby electric fields (passive electric sense
[Bullock and Heiligenberg, 1986]), while others generate
their own weak electric fields and sense its distortions
with their skins (active electric sense) [Caputi et al., 1998].
Here, we will only consider the active modality of electric
sense. The fish that use active electric sense are called
weakly electric fish. These fish are principally nocturnal
and live in confined turbid waters of the equatorial forests
[Lissmann and Machin, 1958]. In such environments, wa-
ters are generally rich in suspended particles (turbib) and
cluttered with a lot of plant roots or trees. In these harsh
conditions, these fish use electric sense to avoid obstacles
while navigating, to communicate with conspecifics, or to
hunt their preys. Technically, electric fish perceive their
environment by self-generating an electric field thanks to
an electric organ located at the base of the tail, and by
measuring the distortions of this field through a dense
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Fig. 1. Our robot equipped with 4 pairs of electrodes.

array of electro-receptors distributed over their skin. Elec-
tric sense is an omnidirectional short range sense (typical
range equal to 1 fish length) that provides to the fish a
lot of information about their environment. Behavioral
experiments have shown that these fish can discriminate
the size and the shape of objects in the dark. In particular,
in [von der Emde et al., 1998], biologists demonstrated that
when perceiving an object a fish first identifies its electric
nature, then localizes the object and finally recognizes
the shape. This behavior is astonishing as it has been
shown that using electric sense the separation between
localization and object geometric properties is not obvious
at all. Indeed, localization and shape are both contained
in the electrical measurements but are mixed together in
a non linear relationship as shown in [Rasnow, 1996]. As
an example, a small sphere close to the fish can produce
the same electric response as a bigger one located further.
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Fig. 2. Experimental set up with our notations.

1.2 Robot equipped with electric sense

Electric sense is a short range omnidirectional percep-
tual ability ideally suited for muddy/turbib waters and
confined underwater environments, i.e. in conditions in
which our today underwater perception devices such as
vision and sonar are useless. The first, because turbid-
ity decreases the visibility, the second because multiple
echoes make the measured signals difficult to interpret.
Few artificial electric sensors inspired by weakly electric
fish exist today [Bai et al., 2012, Servagent et al., 2013,
Dimble et al., 2014, Truong et al., 2015]. In the paper we
will use the device presented in [Servagent et al., 2013].
The robot is designed as a long and thin plastic cylinder
(length lF = 22cm and radius rF = 1cm), on which 4 pairs
of conductive electrodes are arrayed. Among reasons, the
slender shape of sensor has been chosen to provide a simple
model [Boyer et al., 2012] and ensures the electric field to
exhibit a dipolar shape mimicking that of the fish. The
electric field is generated by setting a voltage U on the
2 tail electrodes (considered as the emitter) while the 6
others electrodes (considered as receivers) are grounded.
The voltage (U = 10V at 22kHz) is imposed through an
off-board sine wave generator. Note here that a continuous
voltage would generate an undesirable electrolysis. Then,
the currents that flow across the 6 receivers are measured
with an ampere-meter circuit.We note Ik the measure on
the electrode ek that belongs to the macro-electrode εK
(see Fig. 1). Here, we restrict the measure to the amplitude
of the electric current, the phase is not considered.

1.3 Definition of the measurement vector

The 6 measured currents are not used directly. In order to
facilitate the robot control and to obtain more information
about the surroundings of the robot, we use an electric
measurement vector denoted M and defined as:

M =

(
Ilat
δIax

)
, (1)

with Ilat =

(
Ilat,1
Ilat,2
Ilat,3

)
=

(
I1 − I2
I3 − I4
I5 − I6

)
, (2)

and δIax =

(
δIax,1
δIax,2
δIax,3

)
=

(I1 + I2 − I0ax,1)/2
(I3 + I4 − I0ax,2)/2
(I5 + I6 − I0ax,3)/2

 . (3)

Ilat (or ”lateral current”) represents the differential part
of left and right currents. The I0ax stand for the ”basal
current”, that is to say the current measured without any
perturbation and δIax (”or axial current”) represents the
common part of the left and right currents flowing across
each εi. As explained in [Boyer et al., 2012], the vector
of axial currents δIax models the variations of the total
resistance of the scene while its lateral counterparts Ilat
is proportional to the lateral incident field. From these
considerations, δIax allows to determine if the object is
conductive or insulating, and Ilat allows to determine
whether the object is on the left or on the right side of
the sensor. As a particular case, when Ilat = 0, the sensor
axis is necessarily aligned along the incident field.

2. PROBLEM STATEMENT

2.1 Problem definition

In this paper, we concentrate our efforts on the cogni-
tive tasks of localizing and estimating the shape of an
object using active electric sense. The considered scene
is composed of 1 static object and 1 robot moving along
a trajectory (from T (0) to T (n)) and at a distance d with
respect to the object (see Fig. 2).Our robot is controlled
by its forward velocity V and its angular yaw velocity
Ω. In the following, we consider that we have at our
disposal an accurate measure of these control inputs. In
[Khairuddin and Lionheart, 2016, Ammari et al., 2014],
authors show that at leading order, the electric response of
any shaped object can be described as that of an ellipsoid.
Therefore, objects are described by ellipsoids and their
electrical response are modeled analytically by their first
order generalized polarization tensor [Ammari et al., 2014].
Due to experimental constraints which prevent us from
measuring the object influence only (the aquarium walls
were perceived by the robot because of its smallness), all
experiments were performed twice with and without object
to be able to remove the effects of the aquarium. For this
reason, for all experiments, the robot trajectory has been
deliberately chosen as a simple straight line alongside the
object according to the simple control law:

V = C and Ω = 0, with C a constant. (4)

In the global reference frame, the robot pose T (k) will be
defined as: xr, yr, θr with k ∈ [1, n].

2.2 Mathematical definition

We search for the object O (defined by its electric conduc-
tivity, localization, and shape) that disturbs the electric
field generated by the robot. Moreover, we will do the
following assumptions:

• the water conductivity γ is perfectly known and
uniform,
• the displacement of the robot is known at each

currents measurement,
• the object can be modeled as a prolate ellipsoid (i.e.

axisymmetric about its major axis) whose length is
smaller than a half of the sensor length.



Under these experimental conditions, the object O (named
”real object”) is entirely described by 6 parameters: its
localization (x, y) and its orientation (θ) in the global
frame of reference, its semi-axis (a, b) and its electric
conductivity σ. The third semi-axis of the ellipsoid is equal
to the second one. All these parameters are constrained in
the following intervals:

• x, y ∈ [−lF , lF ] (limited by the perception range),
• θ ∈ [0, π/2],
• a, b ∈ [0, lF /4] with a ≥ b,
• σ ∈ {1e5, 1e−5}.

Giving the fact that the parameters are constrained in
small intervals and that we dispose of an analytical model
able to predict the measured currents imaging a given
scene (see Section 3), we propose to address the inverse
problem of object localization and estimation by using
a greedy algorithm that tests all possible direct models
while selecting the optimal solution. It has to be noted
that to obtain an accurate approximation of the ellipse
parameters a discriminative robot motion along the object
is essential. In the rest of the paper, we suppose that we
test m candidates among which O0 = (x0, y0, θ0, a0, b0, σ0)
is the best one.

3. MODELIZATION OF ELECTRIC SENSE

3.1 The analytical model for our slender robot

Assuming that we used the robot presented in the previous
section (lF = 22cm and rF = 1cm), we derived an
analytical model of the electrical response of an object
based on its leading order dipolar tensor [Boyer et al.,
2012]. The model considers that the object is small enough
to assume the electric field as uniform on its domain.Such
a model has given good recognition results in simulation
with such small objects [Lanneau et al., 2016]. For a given
scene, the currents measured on the receiving electrodes is
given by:

Ilat(T (k), Ox) =
1

4π
.P⊥.H.Rθs .P.R

t
θs .G

t.C0.U, (5)

δIax(T (k), Ox) =
1

4πγ
.C0.G.Rθs .P.R

t
θs .G

t.C0.U, (6)

where Ilat, δIax are vectors of currents 4× 1, C0 is a 4× 4
matrix encoding the robot morphology and conductivity,
P⊥ is a 4×4 diagonal matrix depending on the polarization
of the electrodes, Rθs is a rotation matrix depending on
the angle between the sensor and the object θs = θ − θr,
P a 3 × 3 diagonal matrix modeling the ellipsoid object
electric response (called tensor),G andH are 4×3 matrices
encoding the distance between the object center and the
electrodes, and U is the 4×1 polarization vector encoding
the voltage imposed to the emitting electrodes with respect
to the receiving ones. In [Boyer et al., 2012], P⊥, C0, U,G,
H are defined by:

P⊥ =

5.29e− 4 0 0 0
0 6.74e− 4 0 0
0 0 6.95e− 4 0
0 0 0 5.52e− 4

 ,

C0 = γ.

 0.07653 −0.03152 −0.02318 −0.02184
−0.03122 0.08393 −0.03199 −0.02071
−0.02292 −0.03206 0.07803 −0.02304
−0.02182 −0.02090 −0.02333 0.06605

 .
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Fig. 3. Experiment using Ammari tensor with a conductive
ellipsoid 33× 16mm with θs = 0◦, d = 70mm. For all
plots, experimental measurements are in blue, model
measurements with the real object are in dotted black,
and model measurements with the estimated object
are in red. 1) Ilat,1 2) Ilat,2, 3) Ilat,3 4) δIax,1 5) δIax,2,
6) δIax,3, 7) Legend 8) Scores 9) Result.

U =

 0
0
0
U0

 , G =


xc − x1
r31

yc
r31

0

...
...

...
xc − x4
r34

yc
r34

0

 ,

H =


3yc(xc − x1)

r51

2y2c − (xc − x1)2

r51
0

...
...

...
3yc(xc − x4)

r54

2y2c − (xc − x4)2

r54
0

 ,

with rk=1...4 =
√

(xc − xk)2 + (yc)2, xk the axial coor-
dinates of the electrode ek and xc, yc the object center
position in the sensor frame (see Fig. 2).

3.2 Expression of the ellipse tensor [Ammari et al., 2014]

As shown in [Ammari et al., 2014], at the leading order
the electric response of an object can be modeled by the
following tensor:

P = V.

(
λ1(η) 0 0

0 λ2(η) 0
0 0 λ2(η)

)
,

with V = 4/3.π.a.b2 the object’s volume, η = a/b its
aspect ratio, and λ1, λ2 defined as:

• (λ1, λ2) = (1/A, 1/B) for conductive objects,
• (λ1, λ2) = (1/(A−1), 1/(B−1)) for insulating objects.

where we introduced the elliptic integrals A, B as:
A(η) = η−2

∫ +∞

1

1

t2 (t2 − 1 + η−2)
dt,

B(η) = η−2
∫ +∞

1

1

(t2 − 1 + η−2)
2 dt.

(7)

For a sphere (i.e. a = b), which is a particular case of
the ellipse we have λ1 = λ2 = χ.a3 with a the radius of
the sphere, and χ a contrast factor. χ = 1 for conducting
objects and χ = −1/2 for insulating objects. Moreover, as
the sphere is isotropic, R and Rt can be removed in Eq. 5,6.



On Fig. 3 we present a first illustration of localization and
shape estimation using this ellipse tensor for an ellipsoid
of size 33× 16mm with θs = 0. This figure shows the good
approximation of the 6 Mi in comparison with the real
experimental measurements. The score evolutions for the
real object (black) compare to the estimated one (red) are
shown on subplot 8 and the result is shown on subplot 9.

4. OBJECT LOCALIZATION AND ESTIMATION

4.1 Developed approach

Our method can be structured into 2 stages. First, the
recognition of the electric conductivity of the object and
its side with respect to the robot is performed. Second,
the estimation of its localization and of its geometric
properties is done.
Stage 1: Detect the object, find σ0 and sensor side on
which the object is. Since the sensor goes forward, it
discovers its environment with its front head electrodes.
While δIax,1 = 0 the robot do not perceive the object so we
do not use the measurements. When δIax,1 6= 0, depending
on its sign we extract the electric conductivity of the object
σ0. Then from σ0, the side of the object is found depending
on the sign of Ilat,1 as shown in [Lebastard et al., 2016]
where the following scenarios were listed:

• δIax,1, Ilat,1 > 0 it is conducting on the left,
• δIax,1, Ilat,1 < 0 it is insulating on the left,
• δIax,1 > 0, Ilat,1 < 0 it is conducting on the right,
• δIax,1 < 0, Ilat,1 < 0 it is insulating on the right,
• δIax,1 > 0, Ilat,1 = 0 it is conducting facing the robot,
• δIax,1 < 0, Ilat,1 = 0 it is insulating facing the robot.

Stage 2: Estimate the 5 unknown parameters: x0, y0, θ0, a0
and b0. Giving the object electric conductivity and its side
with respect to the robot, while we perceive the object we
continue the localization and the shape estimation. This
estimation requires from the user the 3 discretization pa-
rameters εxy, εθ, εab that divide the research space defined
in Section 2.2. Then, for Om an object candidate, T (k) a
pose of the robot (xr,k, yr,k, θr,k) on the trajectory T , our
model computes a vector of 6 estimated currents through
the function f (see Eq. 8). Supposing n to be the number
of points along the trajectory, we have ∀k ∈ [1, n],

f(T (k), Om) = M̂(k) =

(
Ilat(T (k), Om)
δIax(T (k), Om)

)
. (8)

Then, we defined an evaluation function g as:

g(M,T,Om) =

n∑
k=1

(
6∑
i=1

|Mi(k)− fi(T (k), Om)|
|Mi(k)|

)
, (9)

which represents a scalar equivalent to the cumulative
residual error between the measured currents M and the
estimated currents f (for an given object Om) along the
whole trajectory. By estimating g(M,T,Om) for all Om,
the best object estimation disturbating the electric field is
the object O0 that minimizes g according to:

O0 = argmin
Om

g(M,T,Om). (10)

4.2 From an exhaustive testing to an optimized approach

The algorithm introduced in Section 4 is described in Alg.
1. It consists in systematically evaluating all the solutions,

input : n number of point of the trajectory
input : T the robot trajectory
input : M the measured currents along the trajectory
input : εxy, εθ, εab the discretization parameters
output: x0, y0, θ0, a0, b0, σ0 characterizing an ellipsoid.

/* Stage 1: Detect object and find σ0, side */
t← 0;
while M(t, 4) = 0 do

t+ = 1;
end
if Mt,4 > 0 then

σ ← 1e5;
if It,1 > 0 then

side = −lF ;
else

side = lF ;
end

else
σ ← 1e− 5;
if It,1 > 0 then

side = lF ;
else

side = −lF ;
end

end
/* Stage 2: Find x0, y0, θ0, a0, b0 */
/* Create candidates base */
m← 0;
for x← −lF to lF by εxy do

for y ← 0 to side by εxy do
for θ ← 0 to π by εθ do

for a, b← 0 to lF
4 by εab do

m+ = 1;
Om.score = 0;
Om.params = set params (x, y, θ, a, b, σ0);
Om.tensor = eval tensor (θ, a, b, σ0);

end
end

end
end
/* Evaluate all the candidates */
while (|M(t, 4)| > 0)&&(t < n) do

for k ← 1 to m do
for i← 1 to 6 do

Ok.score+ = |M(t, i)− fi(Tt, Ok.params))|;
end

end
end
/* Select the best candidate */
Om = sort least to greatest score(Om);
return O0.params;
Algorithm 1: Global algorithm: Ellipse localization and
shape estimation from a moving underwater robot.

and then selecting the set of parameters that minimizes
the cumulative residual error between the model and the
experimental measures. As the algorithm is designed, it
gives in any case a solution after browsing all the param-
eter space and testing all parameters combinations (the
evaluation of a single candidate includes the computation
of a tensor followed by a multiplication of matrices with a
maximum dimension of 4). However, the exhaustive testing



of all candidates is time consuming. The complexity only
depends on the space discretization parameters εxy, εθ, εab,
as their intervals are fixed by the sensor length: [−lF , lF ]
for x0, y0, [0, lF /4] for a0, b0, and [0;π/2] for θs. To com-
pute the complexity we will suppose εθ = 10◦ (i.e. a
constant), εxy = εab, and we will call X the number of
samples in the interval [0, lF /4] (i.e. X = lF /εxy). Then,
the complexity can be expressed as:

nb = (8X).(4X).(10).(C2
X)

= (8X).(4X).(10).(X!/(2!(X − 2)!)

= (8X).(4X).(10).(X.(X − 1).����(X − 2)!)/(2.����(X − 2)!)

= (160)X4 − (160)X3

where C2
X is the binomial coefficient estimating all the

combinations of the two semi-axis parameters without
repetition since a0 ≥ b0. For example, with our robot,
lF = 22cm with εxy = εab = 1mm (which seems to be
a desirable accuracy) the number of candidates reaches
1.29e9. To reduce the number of operations and improve
the performance of our algorithm, we developed an op-
timized approach that drastically reduces the number of
operations while keeping the same performance. This op-
timized approach is an iterative procedure that consists of
3 stages. We begin by localizing and estimating a sphere
(only 3 parameters: x0, y0 and radius a0). Then, from the
first approximation of the sphere, we localize and roughly
estimate an ellipse. Finally, from this approximated ellipse
we reduce again all the intervals and increase the accuracy
to the desired one. Assuming again εθ = 10◦, and keeping
the definition of X. The parameters intervals and accura-
cies at each of the steps are defined such as:

• x0 ∈ [−lF , lF ], with a grid of 4X, y0 ∈ [0, lF ], with
a grid of 2X and a0 ∈ [0, lF /4], with a grid of X/4
(rough approximation of a sphere),
• x0, y0 ∈ [−lF /2, lF /2], with a grid 2X and a0, b0 ∈

[−lF /8, lF /8], with a grid of X/2 (rough approxima-
tion of an ellipse),
• x0, y0 ∈ [−lF /8, lF /8], with a grid X and a0, b0 ∈

[−lF /16, lF /16], with a grid of X/2 (accurate approx-
imation of an ellipse).

The complexity at each stage is computed as:

• nb1 = (4X).(2X).(X/4) - Rough sphere,
• nb2 = (2X).(2X).(4).(C2

X/2) - Rough ellipse,

• nb3 = (X).(X).(10).(C2
X/2) - Accurate ellipse,

Then, the overall complexity can be written as Eq. 4.2.

nb = nb1 + nb2 + nb3

= 2X4 + 8X.(X/2).(X/2− 1) + 5X2(X/2).(X/2− 1)

= 2X4 + 2X.(X).(X − 2) + 5/4X2(X).(X − 2)

= (13/4)X4 − (9/2)X3

This strategy reduces dramatically the number of candi-
dates evaluated as this number is reduced to 5.5e7 for an
accuracy of 1mm.

5. EXPERIMENTAL RESULTS

5.1 Presentation of experiments

To validate our object localization and estimation method
we performed a large set of experiments in a 1m3 tank with
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Fig. 4. Experiment using Ammari tensor with a conductive
ellipsoid 33 × 16mm with θs = 90◦, d = 70mm. 1)
Ilat,1 2) Ilat,2, 3) Ilat,3 4) δIax,1 5) δIax,2, 6) δIax,3, 7)
Legend 8) Scores 9) Result.
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Fig. 5. Experiment using our new tensor with a conductive
ellipsoid 33 × 16mm with θs = 90◦, d = 70mm. 1)
Ilat,1 2) Ilat,2, 3) Ilat,3 4) δIax,1 5) δIax,2, 6) δIax,3, 7)
Legend 8) Scores 9) Result.

the slender shape robot presented in the Section 1. All
experiments were performed under the same conditions:
a straight line trajectory of about 40cm, and one object
situated in the middle of the trajectory at a distance d (see
Fig. 2). In these conditions, we experiment on 4 objects: 2
ellipsoids shapes (33×16mm and 27×18mm) with 2 differ-
ent electric conductivity each (aluminum that is conduc-
tive and plastic that is insulating), 4 different angles with
respect to the trajectory (0◦, 30◦, 60◦, 90◦), and 7 different
distances (d = 50, 60, 70, 80, 90, 100, 110mm). In total, we
performed 108 experiments instead of 112, because for
each object at 50mm and 90◦ the robot was colliding the
object. All results were obtained post-processing the raw
experimental data with c©Matlab on a desktop computer
equipped with an c©Intel Core i5 3.3 GHz CPU and 8 Go
of RAM. Globally, the average processing time was around
10 min for an average experiment time of 3 min.

5.2 Results with the ellipsoid tensor [Ammari et al., 2014]

In Tab. 1, we present the mean results over the 108
experiments using the dipolar tensor of [Ammari et al.,
2014]. This table summarizes errors on both x and y-axis
in mm, on the orientation in degrees, and on the shape in
percentage of shape error. This shape error is defined in
Eq. 11.
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Fig. 6. Robot electric field applied on an object depending
on its orientation. Up) θs = 0◦, Down) θs = 90◦. The
black vectors show the orientation of the electric field
in the 2 focus and in the center of an ellipse.

Fig. 7. The 3 objects defining the new tensor (right)
compared to the nominal tensor of the ellipse (left).

Es =

√
(a− a0)2 + (b− b0)2

(a2 + b2)
. (11)

Moreover, we add the average processing time in minutes
for a single experiment. Globally, errors are smaller on the
localization than on the shape and the orientation. More-
over, errors are more important on insulating objects than
on conductive objects. These errors are mainly due to the
violation of an assumption on which is based our analytical
model. In [Boyer et al., 2012] we suppose that the object
was small enough (a0 ≤ rF with rF = 1cm) to consider
the electric field uniform on its domain. But, in this paper,
we experiment on objects bigger than 1cm as their length
is about 6.rF (our biggest object is 6.6cm long). In fact,
this unconsidered assumption is not problematic when the
object and the sensor are aligned, i.e. θs = 0 as the
electric field is globally uniform over the object in this case
(see Fig. 6.a). Unfortunately, when the angle θs increases
towards π/2, the non uniformity of the electric field is
more visible (see Fig. 6.b) and causes an underestimation
of the amplitude of the estimated Ilat and δIax. This can be
seen on Fig. 4 which reproduces experiments shown Fig. 3
after increasing θs to π/2. Because localization and shape
are intricately linked in the electric measurements, this
modelization error unavoidably leads to important errors
on the object localization and on the shape estimation.
It has to be noted that this phenomenon appears for both
conducting and insulating object and that it increases with
θs. To overcome this underestimation of the amplitude, we
proposed a corrected tensor suited to bigger objects. This
tensor models objects by 3 dipoles instead of one (1 ellipse
and 2 spheres, see Fig. 7) to take into account the non
uniformity of the electric field on the object (Fig. 6. b).

5.3 A new tensor for our analytical model

This new tensor consists in computing a 2 spheres elec-
tric responses superimposed to the ellipse electric re-
sponse (see Fig. 7). The 2 spheres parameters (localization

x1, y1, x2, y2 and 2 radius r1, r2) depends on the ellipse
localization and size (x, y, a, b) and are obtained such as:

∀i ∈ [1, 2], xi = x+ ((−1)i.0.8.
√

(a2 + b2)),

yi = y,

ri = b+
a

10
.

(12)

The estimated currents are modeled as a weighted sum
between the ellipse currents (Mell) and the 2 spheres
currents (Msph1 and Msph2) using Eq. 13.

M = (1− µ).Mell +
µ

2
.(Msph1 +Msph2). (13)

The weights depend on the angle θs and the electric
conductivity of the object according to Eq. 14 and 15.
The weights are computed as:

µ


[0;

π

2
]→ [0; 1]

θs 7→ 1− 2

π
.|θs| for conducting object.

(14)

µ


[0;

π

2
]→ [0;

1

2
]

θs 7→
1

2
− 1

π
.|θs| for insulating object.

(15)

It has to be noted that the parameters of the corrected
tensor have been identified empirically on few experiments
in order to complement the underestimated signal due to
big objects. Using this correction, in the conditions of Fig.
4, it can be seen on Fig. 5 that the estimated currents
Ilat and δIax and the measurements are closer to each
other. To clearly show the advantage of such a correction,
we compare in Tab. 1 the mean results for the shape, the
orientation and the localization obtained along our 108 ex-
periments described at the beginning of this section. Tab. 1
shows that the results are improved, as we gain in average:
2.2% on the shape errors, 3−4mm on the localization and
2◦ on the orientation. This global improvement is even
more visible on the shape error histogram presented on
Fig. 9.a. Tab. 1 also shows that the results are a bit better
for conducting objects than insulating objects but one can
see that our corrected tensor is more beneficial for insulting
object with an improvement of 3.5% on the shape instead
of 1%.
Now, to clearly illustrate the effectiveness of localization
and shape estimation algorithm we show on Fig. 8 the
results on 54 experiments that is to say half of the results:
real objects are plotted in red, and the corresponding
estimated objects are plotted in blue. On this figure, it
can be seen that for both objects, results are getting worst
(localization and position) as the distance increases since
in this case the signal-to-noise ratio decreases. The errors
that remain on the localization and on the shape are due to
the fact that both are linked in the measurements. In fact,
multiple couples (object/localization) produce exactly the
same measurements, thus, the algorithm sometimes cannot
distinguish between a small object situated close from a
bigger situated further. As a consequence, to complement
these results and evaluate our algorithm and model, we
performed 2 additional experiments that consist in esti-
mating the shape when the localization x0, y0 is supposed
known (resp. estimating the localization assuming the
shape a0, b0 is known). Experiments for the 2 particular
cases are presented on Fig.10.a and 10.b. Remarkably,
results are really good in both cases even for long distances



Loc. and shape estimation

Params εa, εb(m) εθ(
◦) εx, εy(m)

Values 0.001 10 0.001

Nominal model

Errors Es (%) θ (◦) x (m) y (m)

All obj. 20.37 25.80 0.0107 0.0113

Conductive 18.01 24.01 0.0094 0.0076

Insulating 22.73 27.58 0.0121 0.0151

Time 9.5 min / experiment

New model

Errors Es (%) θ (◦) x (m) y (m)

All obj. 18.48 24.32 0.0103 0.0010

Conductive 17.13 26.69 0.0099 0.0076

Insulating 19.82 21.96 0.0106 0.0137

Time 10.3 min / experiment

Table 1. Object localization and shape estima-
tion. Mean on 108 experiments: 4 objects, 4

orientations at 7 distances.

Shape giving loc. Loc. giving shape

Params εa, εb(m) εθ(
◦) εx, εy(m) εθ(

◦)

Values 0.001 10 0.002 10

Nominal model

Errors Es (%) θ (◦) x (m) y (m) θ (◦)

All obj. 18.59 23.79 0.0049 0.0085 29.59

Conductive 14.03 18.21 0.0051 0.0098 21.51

Insulating 23.15 29.36 0.0048 0.0072 37.66

New model

Errors Es (%) θ (◦) x (m) y (m) θ (◦)

All obj. 15.28 19.24 0.0043 0.0084 21.55

Conductive 11.48 11.88 0.0049 0.0102 21.96

Insulating 19.08 26.60 0.0037 0.0067 21.15

Time 1.23 min / expe. 1.02 min / experiment

Table 2. Shape estimation giving the localiza-
tion and object localization giving the shape.

Mean on 108 experiments.

when the signal-to-noise ratio is very low. This is trivially
explained by the fact that we estimate 3 parameters in-
stead of 5 which reduces a lot the number of candidates. To
see globally this result on the 108 experiments we show on
Fig. 9.b the shape error histogram with the nominal model
and the new one estimating the shape with the knowledge
of the localization. This histogram shows again a global
decrease of 3% of the shape errors which demonstrates the
improvements brought by the new model.

6. CONCLUSION AND FUTURE WORK

We demonstrate in this paper that an underwater robot
equipped with electric sense can estimate at the same time
the pose and the geometric properties of an object while
navigating in its surroundings. We built an algorithm that:
first detects the object, then finds its electric nature and
the side of the object with respect to the robot and, finally,
estimates the pose and the object shape. Our algorithm
has been tested on 4 different big objects with 2 differ-
ent electric conductivity, 4 different orientations and at
7 distances. We obtain as average 18% of errors on the
shape, 25 degrees on the orientation and less than 1cm
over 108 experiments. The observed errors are mainly due
to 2 factors that will be explored in future work. First
inaccuracies of the model remain, in particular we still
neglect the polarization of the sensor by the object and

this phenomena has to be taken into account for the big
objects we used. Secondly, the trajectory we chose is some-
times not discriminative enough to estimate with accuracy
the object localization and geometric properties. As an
example in nature, the electric fish approach the object
and turn around it to estimate its pose and shape. In
our future work we plan to enrich the sensing information
by following more complex trajectories. For example, we
will try to mimic the trajectory of the fish by navigating
towards the object and turning around it. This will be
achieved by using reactive behavior based on electric sense
recently presented in [Lebastard et al., 2016].
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Fig. 8. Object localization and estimation with the new tensor for 2 different object, 4 orientations, 7 distances.
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(b) Shape estimation with the knowledge of the localization

Fig. 9. Histograms of the shape error for the 108 experiments: Nominal model (blue), New model (red).
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Fig. 10. Shape estimation giving the localization (left) and object localization giving the shape (right). Both results are
obtained using the new tensor.


