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Abstract Biomonitoring using birds of prey as sentinel

species has been mooted as a way to evaluate the success of

European Union directives that are designed to protect

people and the environment across Europe from industrial

contaminants and pesticides. No such pan-European eval-

uation currently exists. Coordination of such large scale

monitoring would require harmonisation across multiple

countries of the types of samples collected and analysed-

matrices vary in the ease with which they can be collected

and the information they provide. We report the first ever

pan-European assessment of which raptor samples are

collected across Europe and review their suitability for

biomonitoring. Currently, some 182 monitoring pro-

grammes across 33 European countries collect a variety of

raptor samples, and we discuss the relative merits of each

for monitoring current priority and emerging compounds.

Of the matrices collected, blood and liver are used most

extensively for quantifying trends in recent and longer-

term contaminant exposure, respectively. These matrices

are potentially the most effective for pan-European

biomonitoring but are not so widely and frequently
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collected as others. We found that failed eggs and feathers

are the most widely collected samples. Because of this

ubiquity, they may provide the best opportunities for

widescale biomonitoring, although neither is suitable for all

compounds. We advocate piloting pan-European monitor-

ing of selected priority compounds using these matrices

and developing read-across approaches to accommodate

any effects that trophic pathway and species differences in

accumulation may have on our ability to track environ-

mental trends in contaminants.

Keywords Bird of prey � Contaminant � Monitoring �
Sample type � Matrix

Introduction

Raptors (birds of prey and owls) were among the first

wildlife species known to be affected by anthropogenic

pollutants. Pesticide and/or contaminant related declines in

peregrine falcon (Falco peregrinus), bald eagle (Haliaeetus

leucocephalus), white-tailed sea eagle (Haliaeetus albi-

cilla) and sparrowhawk (Accipiter nisus) populations have

been widely documented in Europe and North America in

the 20th Century (Hickey 1969; Ratcliffe 1980; Nisbet

1989; Newton and Wyllie 1992; Rutz et al. 2006; Sielicki

and Mizera 2009). These were largely caused by primary

and/or secondary exposure to organochlorine pesticides

(OCPs), such as dichlorodiphenyltrichloroethanes (DDTs)

and cyclodiene pesticides (Drins), other organochlorine

pollutants such as polychlorinated biphenyls (PCBs), and

toxic metals such as mercury (Hg) and lead (Pb) (Ratcliffe

1970; Garcı́a-Fernández et al. 1995, 1996, 2005a, b; Weech

et al. 2003; Mateo 2009). Organochlorine pesticides and

pollutants (OCs) are now restricted in their use or banned

in many countries but they are highly persistent in the

environment and lower level exposure still occurs, partic-

ularly in higher trophic level wildlife (Sonne et al. 2010;

Eulaers et al. 2011b; Luzardo et al. 2014). Other threats

remain. For example, Pb intoxication in birds of prey,

caused by ingestion of Pb shot and ammunition fragments

in unretrieved game, is an ongoing concern for raptor

populations (Krone et al. 2004, 2006, 2009; Garcı́a-Fer-

nández et al. 2005a; Hunt et al. 2006; Helander et al. 2009;

Finkelstein et al. 2012; Group of Scientists 2014). There is

also exposure to newer compounds, such as new bromi-

nated and organophosphate flame retardants and pharma-

ceuticals (Cuthbert et al. 2011; Covaci et al. 2011). Many

of these substances are associated with adverse health

effects on the endocrine, immune, nervous and reproduc-

tive systems in both humans (Lutz et al. 1999; Yorifuji

et al. 2008; Hatcher-Martin et al. 2012) and wildlife (Mateo

et al. 2003; Cortinovis et al. 2008; Henny et al., 2009;

Naidoo et al. 2009; Frederick and Jayasena 2010; Harris

and Elliott 2011). In some cases, they can cause wide-

spread acute mortality and endanger the survival of spe-

cies; examples include the effects of diclofenac on Gyps

vultures in Asia (Oaks et al. 2004) and Pb in the California

condor (Gymnogyps californianus; Finkelstein et al. 2012).

The vulnerability of raptors to environmental contami-

nants is in part due to their trophic position at the top of

foodpyramids. Persistent, bioaccumulative contaminants

can be transferred, and in some cases biomagnified, along

food chains and accumulated in high concentrations by

apex predators (Furness 1993; Elliott et al. 2009; Guigueno

et al. 2012). In addition, raptors are vulnerable to (primary

or secondary) poisoning because of facultative scavenging

and of an increased likelihood that sick and moribund prey

are likely to be caught (Langlier 1993; Green et al. 2004),

as has been demonstrated for strychnine (Martı́nez-López

et al. 2006) and is likely to occur for currently-used com-

pounds such as anticoagulant rodenticides and anti-

cholinesterase compounds (e.g. Rattner et al. 2014a). Early

observations on the impacts of OCs on raptors spawned an

increase in the numbers of analytical studies using raptor

tissues and eggs and subsequent recognition that raptors

can be powerful sentinels of marine and terrestrial envi-

ronmental contamination (Sergio et al. 2005; Rattner

2009). As a result, raptors have been widely used in some

regions of the world in biomonitoring programs. Such

programmes assess spatial and temporal trends in concen-

trations of bioaccumulative environmental chemicals and

investigate associated effects on populations (Gómez-

Ramı́rez et al. 2014). They can provide early warning of

the potential impacts in humans (Pain et al. 2010), pro-

tected wildlife species and on the wider environment and

they can be used to track the success of mitigation in

reducing exposure (Helander 2003; Shore et al. 2005;

Garcı́a-Fernández et al. 2005b).

In the European Union (EU), regulation of industrial

chemicals, plant protection products, pharmaceuticals, and

biocides is governed by directives such as Regulation (EC)

No 1907/2006 and ammendements (REACH—Registra-

tion, Evaluation, Authorisation & Restriction of Chemi-

cals), Regulation (EC) No 1107/2009 concerning the

authorisation of plant protection products, Regulation (EC)

No 726/2004 concerning the authorisation of human and

verterinary pharmaceuticals, and The Biocidal Product

Regulation (BPR, Regulation (EU) 528/2012). These

directives apply across all EU Member States but lack any

monitoring of their effectiveness in protecting against

environmental pollution. This may be partly because such

monitoring is challenging given the large spatial scales

involved. However, a recent survey (Gómez-Ramı́rez et al.

2014) identified a number of European long-term, national

scale, biomonitoring programmes that use raptors as
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sentinels of environmental contamination. Although almost

all the programmes are restricted to western European

countries, the types of biological samples needed for

analysis are routinely collected throughout all of Europe,

typically as part of surveys of raptor populations (Derlink

et al. in preparation). Incorporation of such samples into

existing contaminant monitoring programmes could extend

the reach of pollution monitoring to a pan-European scale

and thereby provide assessment of the effectiveness of

regulation of chemicals across the EU.

Coordination and integration of large spatial scale

monitoring across multiple independent monitoring pro-

grammes is challenging. It requires mutual sharing, dis-

semination and adoption of best practice in terms of the

types of samples collected and analysed (Gómez-Ramı́rez

et al. 2014). Sample matrices vary in the information they

provide about exposure and effects and not all are suit-

able for biomonitoring. The scientific relevance of each

sample type for monitoring depends on the objectives of

the study, for example if the monitoring program is

intended to detect contaminant trends or evaluate effects,

and if so at what level of biological organization. Fur-

thermore, choice of matrix should ideally be related to the

toxicokinetics and toxicodynamics of the compounds of

interest and the site of toxic action (Walker et al. 2008). It

is also important to use matrices in which pollutant con-

centrations are above the analytical limit of detection in a

significant proportion of the samples and, more pragmati-

cally, to use those types of samples that are likely to be

widely available. However, we are unaware of any pub-

lished evaluation that examines the potential widescale

availability of different types of sample for analysis or that

evaluates their usefulness and limitations for monitoring

contaminants. This lack of information presents a signifi-

cant barrier to developing EU-scale monitoring for con-

taminants using raptor tissues.

Our aim in the present study was to undertake the first

ever assessment of the potential widescale availability of

raptor samples in Europe for biomonitoring and the relative

merits of each. We combined data from a recent European

inventory on contaminant monitoring in raptors (Gómez-

Ramı́rez et al. 2014) with a survey of raptor population

monitoring activities that are ongoing over the same geo-

graphical area (Derlink et al. in preparation). This allowed us

to ascertain which sample matrices might be most available

for monitoring and which contaminants are currently pri-

oritized for monitoring in birds of prey and owls in Europe.

These earlier surveys did not provide information on which

sample types are predominantly used to analyse different

contaminants. We therefore additionally reviewed 249

papers published between 1966 and 2015, which reported

contaminant concentrations in raptors in Europe. This pro-

vided information on sample types most widely used to

monitor each of our identified priority contaminant classes.

Details of the methods by which we searched the literature

are given in Supporting Information S.I. Document 1. Our

specific objectives were to: (i) determine which raptor

samples are currently collected across Europe; (ii) assess

which sample types are predominantly used to measure

priority compound groups, and (iii) review the suitability of

these different sample types for contaminant monitoring in

general and for priority compounds specifically.

Collection of different sample types across Europe

Most raptors are protected species and lethal sampling of

individuals is not permissible on legal or ethical grounds.

Active monitoring of raptors is limited to (invasive and non-

invasive) non-destructive sampling. This includes blood and

biopsies taken from live birds, plucked feathers and preen oil,

and samples taken without contact with a living bird such as

moulted feathers, addled or deserted eggs, regurgitated pel-

lets, excrement, and tissues from carcasses that have been

found and collected. Collection of samples can be demanding

logistically since nests are often difficult to access and col-

lection usually requires skilled and trained personnel, spe-

cialised equipment and legal permits. Therefore, ifmonitoring

is to be conducted across continental and other large spatial

scales, it is only likely to be feasible if it utilises samples that

are already being collected as part of existing monitoring

programmes or after careful prior selection of the suit-

able sample material and species. Two recent inventories

collected by questionnaires (Gómez-Ramı́rez et al. 2014;

Derlink et al. in preparation) provide, for the first time,

information on the extent of raptor monitoring and sample

collection throughout Europe. We combined the data from

these two surveys and found that, within Europe, there was

information for 281 different raptormonitoring schemes from

across 35 European countries (Table 1; S.I. Fig. 1). Of these,

182 programmes from 33 countries collect raptor samples.

The United Kingdom (UK), Sweden and Italy are the coun-

tries with the highest number of schemes collecting samples,

while there appeared to be no sample collections of raptor

material in Luxembourg and Serbia (Table 1). There were no

responses to the questionnaires from Greece, Lithuania,

Albania,Moldova,Macedonia andMontenegro and sowe are

unaware of any raptor monitoring schemes in those countries.

Of the different sample types, feathers and addled/de-

serted eggs are the most frequently collected matrices

across the 182 schemes (55 and 50 % of schemes,

respectively; Table 1). Food remains (45 %), regurgitated

pellets (36 %), internal tissues (34 %), and blood (30 %)

were also commonly collected. The questionnaires indi-

cated that carcasses were collected by 78 schemes and

presumably crop and gizzard contents and internal organs
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are likely to be available from those carcasses that are not

severely decomposed; the questionnaire returns on the

number of schemes collecting food remains and internal

tissues may therefore be an underestimate. Preen oil was

collected by only a few (3 %) schemes, perhaps reflecting

the fact that is only relatively recently that is has been used

for monitoring contaminants in raptors (van Den Brink

1997; Yamashita et al. 2007; Jaspers et al. 2008, 2011;

Eulaers et al. 2011b).

What contaminants are measured in different
sample matrices?

The scope of current contaminant monitoring programmes

using raptors (Gómez-Ramı́rez et al. 2014) suggests that, in

Europe, the priority compounds of interest remain persistent

organic pollutants (POPs). These include organochlorine

insecticides (measured in 42 schemes from 12 countries),

polychlorinated biphenyls (41 schemes from 13 countries)

Table 1 Number of schemes that collect each type of sample in raptors from European countries

Number Samples collected

Schemes Feather Egg Food remains Carcass Internal tissues Blood Pellets Preen oil

Austria 5 3 2 4 2 1 2

Belarus 1 1 1 1 1 1

Belgium 5 2 1 1 2 1 1 1 1

Bosnia/herzegovina 3 1

Bulgaria 1 1 1 1 1 1 1

Croatia 4 2

Cyprus 2 1 1 1 1

Czech Republic 1 1 1 1

Denmark and Greenland 6 2 2 1 1 2 1

Estonia 7 3 1 2 1 2 2

Finland 8 4 4 2 3 3 1

France 11 2 4 5 5 2 1

Georgia 2 1 1

Germany 7 1 6 1 3 2

Hungary 10 4 3 7 3 1 1 6

Iceland 1 1 1 1 1 1 1 1

Ireland 10 8 3 7 9 4 4 6

Italy 29 11 5 5 9 10 6 4

Latvia 4 2 2 3 1 1 1

Luxembourg 2

Netherlands 4 1 1 1 1

Norway 5 5 2 2 1 3 2

Poland 1 1

Portugal 14 7 3 5 4 2 4 7

Romania 3 1 2 1 2

Russian Federation 2 1 1 2 1 1 1 2

Serbia 1

Slovakia 10 3 4 5 4 3 1 3

Slovenia 11 2 1 2 3 1 1 3

Spain 9 7 5 5 5 8 4

Sweden 30 11 9 4 2 7 2 2

Switzerland 5 2 1 1 1 1

Turkey 7 3 1 1 1 1 1 2

Ukraine 2 1 1

United Kingdom 58 10 25 21 16 10 3 12

Total schemes 281 100 91 81 78 62 54 66 6

Total countries 35 28 27 23 23 20 27 23 5
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and brominated flame retardants (21 schemes from 10

countries). Perfluorinated compounds which include per-

fluorooctanesulfonic acid (PFOS),more recently classed as a

POP in the Stockholm Convention, are monitored in fewer

(7) schemes (from 5 countries); as are dioxins and furans (4

schemes from 3 countries). Two other compound classes,

metals/metalloids and anticoagulant rodenticides, are also

widelymonitored in raptors across Europe (37 schemes from

13 countries and 14 schemes from 6 countries, respectively;

Gómez-Ramı́rez et al. 2014). Although other various com-

pounds are measured as part of investigations into accidental

and deliberate poisoning of raptors in Europe, they are not

the focus of the present study (see reviews by Berny 2007;

Guitart et al. 2010).

Many of the types of raptor sample that are widely

collected throughout Europe (Table 1) can be used to

monitor these priority contaminants (Gómez-Ramı́rez et al.

2014). Chemical analysis provides a quantitative measure

of exposure/accumulation while genetic and stable isotope

analysis of some matrices (feathers, blood and internal

tissues) can sometimes be used to identify sources of

exposure (Scheuhammer and Templeton 1998; Podlesak

et al. 2005; Elliott et al. 2009; Hobson 2011). Other

matrices (blood, internal tissues, faeces) are also useful for

measuring effect biomarkers (Martinez-Haro et al. 2011b;

Bourgeon et al. 2012; Espı́n et al. 2015). Our review of 249

papers indicated that eggs and liver are the preferred

sample matrices when analysing contaminants and were

used in twice as many studies as other matrices (Table 2).

Studies that used eggs predominantly focussed on POPs

(93 % of 88 studies reporting egg contaminant

concentrations) whereas liver was used for analysing all the

priority compound groups. Most other internal tissue

matrices were analysed for a large variety of compound

classes, except for fat (used for POPs and perfluorinated

compounds only) and bone (predominantly used when

quantifying Pb). Of samples that can be taken from live

birds, feathers were used in 6–10 fold more studies that

preen oil or regurgitated pellets and were analysed for all

priority compound groups other than anticoagulant

rodenticides.

Given the potentially wide but variable availability of

raptor samples across Europe, it can be difficult to deter-

mine which sample matrices may be the best for widescale

monitoring of priority compounds. We therefore critically

evaluate the factors that affect the usefulness of each

matrix for contaminant monitoring in general and for

specific priority compound groups in particular. Consider-

ation of sampling, transport and storage of these matrices is

also important when selecting matrices for analysis and

these are briefly summarised in S.I. Table 1 but are

otherwise outside the scope of this paper; they are covered

in more detail by Espı́n et al. (2014a).

The relative merits of different sample matrices
for contaminant monitoring

Addled and deserted eggs

For both ethical and legal reasons, the taking of unhatched

viable eggs is permitted only in exceptional circumstances

Table 2 Number of published studies (identified from a literature review—see text for details) that analysed different pollutant groups in various

sample types from raptor and owl species from Europe

No/studies in which

sample type analysed

No/studies measuring contaminant in each matrix type

POPs PFASs Lead Mercury Cadmium Anticoagulant

rodenticides

n = 137 n = 11 n = 71 n = 59 n = 48 n = 20

Eggs 88 82 4 11 13 10 0

Feathers 45 10 4 15 21 11 0

Blood/plasma/serum 42 17 3 21 5 15 1

Liver 98 40 3 33 24 23 18

Kidney 40 11 0 21 19 17 0

Muscle 22 15 1 3 3 3 0

Bone 18 0 0 17 0 8 0

Brain 15 7 0 5 2 4 0

Fat 13 12 1 0 0 0 0

Preen oil 7 5 2 0 0 0 0

Regugitated pellets 4 0 0 3 0 0 1

n number of studies reporting concentrations of that compound group

Total number of studies reviewed was 249, see S.I. Table 3 for references. Studies often analysed more than one sample type and multiple

contaminant groups
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and requires specific licensing from national regulatory

bodies; it is not considered further in the present paper. In

contrast, licensed collection and storage of addled and

deserted eggs is relatively easy, as reflected by their

widespread collection amongst groups that monitor Euro-

pean raptors (91 schemes from 27 countries—Table 1, S.I.

Fig. 1). They are important for and widely used in con-

taminant monitoring studies (Table 2) in part because

many pollutants, particularly organic contaminants, are

sequestered in eggs (or sometimes eggshells) during for-

mation of the egg. Development of the chick embryo

depends on a first phase that consists of the synthesis of

lipids by the maternal liver and transport of these lipids to

the ovary for incorporation into the maturing oocyte prior

to the laying of the egg (Speake et al. 1998). During this

process, maternal lipophilic contaminants may be trans-

ported along with lipid reserves into the developing oocyte.

Thus, contaminant burdens in eggs are directly related to

levels in the adult breeding female (Becker and Sperves-

lage 1989), and reflect exposure in this precise segment of

the population that has similar hormonal status and is

generally in a healthy condition (Dell’Omo et al. 2008).

This is useful for biomonitoring as it may help reduce intra-

specific variability in accumulation, although the derived

data is not directly indicative of exposure in males and non-

breeders.

The necessary restriction of being able to use only

failed/addled or deserted eggs limits the number of samples

available for analysis. There are also other disadvantages

for biomonitoring. Addled eggs, by definition, are a non-

random sample in that they only represent failed breeding

outcomes. They therefore have a greater likelihood of

containing contaminant concentrations that cause adverse

effects on hatchability (Henny and Elliott 2007), although

failed eggs can sometimes contained higher concentrations

than addled eggs (Jaspers et al. 2005). Furthermore, egg

sequence is often unknown but can affect pollutant con-

centrations (Furness and Camphuysen 1997) as can

microbial decomposition, the extent of which will depend

on the time elapsed between embryo death and collection

of the egg (Mulhern and Reichel 1971; Herzke et al. 2002).

Biases associated with decomposition are likely to be less

significant for highly persistent compound groups but any

detection of less persistent transformation products, such as

heptachlor exo-epoxide and oxychlordane, may be the

result of microbiological degradation in the egg and not

reflect either maternal exposure or that of successfully

hatched young chicks (Herzke et al. 2002).

While egg contaminant concentrations provide infor-

mation on exposure in breeding females, the breeding

strategy of the species can influence whether egg concen-

trations reflect current local exposure or exposure in other

areas used by females before nesting (Nisbet and Reynolds

1984; Henny and Blus 1986). Income breeders fuel

reproductive expenditure from food ingested immediately

before and during egg production whereas capital breeders

utilise stored energy to a much greater extent (Bonnet et al.

1998). Capital breeding females may thus accumulate

lipophilic contaminants in lipid laid down while on win-

tering areas and migration and subsequently transfer those

contaminants into eggs on the breeding area. However,

raptors are often classified as income breeders as they are

largely thought to rely on food intake rather than reserves

to service the energetic costs of breeding (Durant et al.

2000), and so egg concentrations in raptor eggs most likely

reflect exposure within breeding territories.

Eggs are particularly useful in ecotoxicological studies

as contaminant concentrations indicate the load that the

nestling is exposed to during embryonic development

(Garcı́a-Fernández et al. 2008). Analysis of egg contents

has been widely used to relate exposure to likely or

observed reproductive effects (Helander et al. 2002;

Lindberg et al. 2004; Herzke et al. 2005; Martinez-Lopez

et al. 2007; Vetter et al. 2008; Henny et al., 2009; Pereira

et al. 2009; Best et al. 2010; Harris and Elliott 2011; Crosse

et al. 2012) and egg concentrations associated with adverse

effects on hatching and chick development have been

suggested for various contaminants (Blus 2011; Elliott and

Bishop 2011; Harris and Elliott 2011; Shore et al. 2011). In

addition, eggshell morphometrics can be used to detect

shell thinning, an early warning biomarker that occurs at

exposures far below those that cause direct impacts on

reproduction (Lundholm 1997; Helander et al. 2002);

methods to calculate egg weight, length and width, and

eggshell weight are described by Espı́n et al. (2014a) and

the relative merits of different ways of calculating shell

thickness have been extensively explored (S.I. Document

2). However, it has been argued that, while monitoring of

addled eggs may be adequate for evaluating spatial and

temporal patterns in contamination, random collection of

fresh eggs is needed to best evaluate how reproductive

success in the clutch is related to contaminant concentra-

tions (Henny and Elliott, 2007). Such egg collections may

be possible for common species which lay two or more

eggs, if done over limited spatial scales and at intervals of

two or more years and without causing any significant

conservation effect. The resultant analysis can provide key

information on the ecological importance of the contami-

nation patterns that are revealed through widespread

biomonitoring of addled eggs.

Typically, whole egg contents are used for contaminant

analysis since it is not possible to separate yolk and albu-

min in addled eggs. The contents of such eggs can range

from undifferentiated material to fully developed embry-

onic tissue (Espı́n et al. 2014a). Embryo development can

deplete the lipid content of the egg contents and elevate
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associated concentrations of contaminants expressed on a

lipid weight basis (Newton and Bogan 1978; Peakall and

Gilman 1979; Helander et al. 1982) and contaminant

concentrations in eggs with different stages of embryo

development may need to be reported separately. Eggs also

lose weight post-laying through diffusive loss of water

vapour (Hoyt 1979) and failed eggs can desiccate to

varying degrees, although this loss can be estimated from

the dimensions of the egg and a species-specific or gen-

eralised weight coefficient (Stickel et al. 1973; Best et al.,

2010) (S.I. Document 3). Metal and organic contaminant

concentrations in eggs are typically expressed on a dry

weight and wet or lipid weight basis, respectively and so

may need to be corrected and/or normalized for lipid and

water content (Espı́n et al. 2014a); both factors ideally

should be reported alongside any concentration data.

In terms of the value of eggs for monitoring particular

contaminant groups, we are unaware of any studies that

have determined anticoagulant rodenticide residues in

raptor eggs (Table 2) although maternal transfer to eggs

has been reported in chickens dosed with brodifacoum

(Fisher 2009). In contrast, POPs are frequently measured in

failed raptor eggs; 60 % of the 137 studies on POPs that we

reviewed reported concentrations in eggs (Table 2). These

studies largely focussed on legacy POPs but eggs can be

used to monitor newer POPs such as poly- and perfluo-

roalkyl substances (PFASs). A 35-year study of sea eagles

detected relatively high levels of PFAS in eggs (Faxneld

et al. 2014) and, of the 11 studies reporting PFAS con-

centrations in raptors that we reviewed (Table 2), a third

used eggs. Addled and deserted eggs are also used as

indicators of exposure to toxic metals, particularly Hg

(Negro et al. 1993; Pain et al. 1999; Nygård 1999; Blanco

et al. 2003). Laying females excrete approximately 20 % of

their soft tissue methyl Hg (MeHg) into eggs (Lewis et al.

1993) and, because Hg occurs mainly as MeHg in eggs

(Ackerman et al. 2013), total Hg can be used as a surrogate

measurement for MeHg. Hg is not thought to cause sig-

nificant eggshell thinning (Spann et al. 1972; Heinz 1974;

Hill and Shaffner 1976) but MeHg is teratogenic in birds,

increasing the incidence of malformations and embryonic

mortality (Borg et al. 1969; Hoffman and Moore 1979;

Heinz and Hoffman 2003; Frederick and Jayasena 2010).

In contrast to Hg, little Pb is transferred from the female to

eggs (Scheuhammer 1987; Furness 1993), although Pb may

occur in eggshells as it acts as a calcium analogue (Pounds

1984; Lundholm and Mathson 1986; Scheuhammer 1987;

Dauwe et al. 1999). Very little Cd is transferred to eggs of

birds and often concentrations are below detection limits,

regardless of the dietary levels of Cd consumed

(Scheuhammer 1987; Furness 1996). Given this, it is per-

haps surprising that a similar proportion of the egg con-

taminant studies we reviewed reported Pb and Cd as well

as Hg (14–22 %; Table 2). This may perhaps simply reflect

the potential for simultaneous determination of all three

elements using inductively-coupled plasma mass spec-

trometry techniques, although this sometimes may be at a

cost of reduced sensitivity for some elements.

Feathers

Feathers are the sample type that are collected across more

schemes and countries than any other sample type (Table 1)

and so are potentially an important resource for contaminant

monitoring. However, only 45 of the 249 raptor studies we

reviewed (18 %) used feathers (Table 2). General attributes

that make feathers useful for monitoring contaminants are:

(i) they can be plucked in small numbers without causing

permanent damage and so are minimally invasive; (ii) it is

possible to pluck repeated samples from the same individual

to assess changes over time; (iii) samples can also be col-

lected from carcasses or as moulted feathers regardless of

season, age or gender of the bird; (iv) samples are not readily

degraded and can be transported and stored at room tem-

perature; (v) samples are often available as historic samples

frommuseum specimens, thereby providing opportunities to

measure historic temporal trends in exposure. In addition,

feathers can be used to measure biomarkers related to stress,

such as fluctuating asymmetry and corticosterone levels

(Bustnes et al. 2002; Bortolotti et al. 2008; Sillanpää et al.

2010; Strong et al. 2015).

All types of feathers can be used for contaminant

analysis and as a tool for other studies, such as genetic

studies (Speller et al. 2011; Presti et al. 2013). Choice of

feather type can depend on the moulting pattern of the

species, preening behaviour and the end point of the study.

We reviewed 45 studies that analysed raptor feathers

(Table 2) and 47 % used flight feathers, 44 % body

feathers and 38 % tail feathers; more than one feather type

was used in some studies. Both plucked and moulted

feathers were analysed. When feathers have to be plucked

(or cut close to the skin) from live birds, body feathers

rather than flight feathers are normally used so as to avoid

impairment of flight (Espı́n et al. 2014a); plucking or

cutting feathers may also require a permit. Overall, we

found that feathers plucked from live birds were used in

about half as many studies as feathers plucked from dead

birds found in the field or from museum collections (24 vs

56 % of the 45 studies we reviewed). Moulted feathers are

easier to collect in the field than plucked feathers, but have

the disadvantage that information on age, sex and body

condition of the bird from which the feather has been shed,

and the time of moult, is usually lacking; all can affect

feather pollutant concentrations (Garcı́a-Fernández et al.

2013a). Overall, use of moulted feathers (29 % of the 45

studies reviewed) appears to be similar to that of plucked
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feathers from live birds; in some studies moulted and

plucked feathers have both been analysed. In some cir-

cumstances, analysis of moulted feathers may be the only

way to monitor pollutant exposure, and feathers that fall

into or just below the nest and look new are most probably

from nesting parent birds.

Contaminants are deposited in feathers only while they

are growing and there is no ongoing homeostasis between

blood and feather concentrations, unlike between blood and

internal tissues (Burger 1993; Garcı́a-Fernández et al.

2013a). Despite this, several authors have found significant

correlations between pollutant concentrations in feathers

and in blood or internal tissues (Thompson et al. 1991;

Dauwe et al. 2002; Jaspers et al. 2007a, 2011, 2013a;

Eulaers et al. 2011a; Rajaei et al. 2011; Espı́n et al. 2014c).

Moreover, some papers have described significant corre-

lations between lead and cadmium concentrations in the

feathers of adults and in the blood of their nestlings

(Martı́nez-López et al. 2004, 2005). However, such asso-

ciations are not always manifest (Dauwe et al. 2005; Jas-

pers et al. 2006, 2007b; Eagles-Smith et al. 2008; Espı́n

et al. 2010a, 2012b), largely for two reasons. First, there

may be significant temporal displacement between feather

growth (and associated deposition of pollutant in the

feather) and collection of internal tissues, during which

time post feather-growth changes in diet and/or fat mobi-

lization may alter internal tissue contaminant concentra-

tions (Garcı́a-Fernández et al. 2013a; Eulaers et al. 2014b).

Second, there may be external contamination on the sur-

face of the feather (Dauwe et al. 2003; Jaspers et al. 2008;

Espı́n et al. 2010b; Cardiel et al. 2011), which in turn is

affected by preening behaviour and by moult strategy.

Moult is completed within one year in smaller species but

can extend over two or more years in larger species

(Hardey et al. 2006) and protracted moult can enhance

inter-feather variability in age and the associated period

over which external contamination can occur.

Analysis of recently grown feathers (such as those

plucked from nestlings) or continuously replaced feathers

reduces the issues both of temporal displacement and, to a

large extent, external contamination (Jaspers et al. 2004).

Where older feathers have to be used, variability due to

external contamination can be reduced by restricting

analysis to the shaft or rachis as external contamination

tends to be greater for the vane than the shaft and the shaft

is more easily and effectively cleaned (Jaspers et al. 2007a;

Cardiel et al. 2011; Espı́n et al. 2012a; Garcı́a-Fernández

et al. 2013a). Overall though, many studies have primarily

addressed the issue of external contamination of feathers

by washing. This indeed may be the only viable option for

museum feathers which may have been treated with

arsenic, mercuric or insecticides compounds (Espı́n et al.

2014a; Sánchez-Virosta et al. 2015) or with organic

preservatives that can change metals levels in feathers

(Hogstad et al. 2003). In general, feathers are washed prior

to analysis for metals with various combinations of deio-

nised water, acetone, Triton X-100 and nitric acid (Burger

and Gochfeld 2001; Dauwe et al. 2003; Jaspers et al. 2004;

Cardiel et al. 2011; Espı́n et al. 2012a, 2014c) while dis-

tilled water tends to be used when analysing POPs (Jaspers

et al. 2007a, b; Behrooz et al. 2009; Eulaers et al. 2011a, b,

2013, 2014a, b; Espı́n et al. 2012b). However, it has been

argued that washing techniques tested to date are not

effective in removing all external contamination (Jaspers

et al. 2004, 2008, 2011) and further studies are needed to

determine reliable methods for discriminating between

internal and external contamination (Cardiel et al. 2011).

Concentrations of pollutants in feathers are typically

expressed in ng/g feather. Bortolotti (2010) demonstrated

that variation in mass and growth rate between feathers may

affect the interpretation of contaminant concentrations.

Therefore, feather concentrations should preferably be

expressed as a function of deposition rate (Garcı́a-Fernández

et al. 2013a) in addition to a mass-based unit. The former is

only possiblewhen growth bars are visible in the feather (one

pair of growth bars, dark and light, represents a 24-h period

of growth), or when the growth rate of the feather is known

(Garcı́a-Fernández et al. 2013a); further studies are needed to

determine the growth rate of feathers in some raptor species.

Feathers have been used to measure concentrations of all

the major compounds that are monitored in raptors in Eur-

ope, except anticoagulant rodenticides (Table 2). They were

originally mainly used for monitoring metals including Cd

and Pb (Denneman and Douben 1993; Martı́nez-López et al.

2002, 2005; Dauwe et al. 2003), although there remains

uncertainty over the suitability of feathers for monitoring

environmental Cd concentrations. Some authors report that

external contamination of feathers with Cd is minimal

(Burger 1993; Ek et al. 2004) but others conclude that

external contamination cannot be neglected (Pilastro et al.

1993; Dauwe et al. 2003; Jaspers et al. 2004). Cd concen-

trations in feathers have been correlated with those in

internal tissues in some studies (Pilastro et al. 1993; Agusa

et al. 2005) but not others (Nam et al. 2005; Orlowski et al.

2007). External contamination of feathers with Pb is known

to be problematic. While feather Pb concentrations have

been shown to be correlated with concentrations in internal

tissues in juvenile birds (Golden et al. 2003), external Pb

contamination after feather formation can elevate total

feather Pb concentrations and is difficult to remove (Dauwe

et al. 2002, 2003; Pain et al. 2005; Cardiel et al. 2011). Adult

feathers subject to atmospheric Pb deposition for long peri-

ods may be strongly affected by external contamination

(Franson and Pain 2011).

Mercury has also been extensively monitored in feathers

(Lindberg and Odsjö 1983; Ortego et al. 2006; Espı́n et al.
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2014c) and, like Pb and Cd, it is transferred from blood into

feathers. MeHg binds with keratin uniformly along the

feather (Thompson and Furness 1989a, b; Hahn et al. 1993;

Dauwe et al. 2003; Misztal-Szkudlińska et al. 2012) and

concentrations reflect those in blood during the period of

feather growth (Lewis and Furness 1991). Unlike Pb, moult

is a significant elimination pathway of Hg. Tissue Hg

concentrations decline during moult and 70–93 % of the

total Hg body burden can be sequestered in plumage

(Burger et al. 1993). External contamination is typically

small relative to total feather Hg burden, causing little

spurious inter-feather variation (Lindberg and Odsjö 1983;

Dauwe et al. 2003; Jaspers et al. 2004), and feather Hg

concentrations tend to be correlated with residues in

internal tissues (Thompson et al. 1991). Body contour

feathers may be most representative of total body Hg

burden as inter-feather variation is lower than in primaries

(Furness et al. 1986). However, it has been suggested that

feathers from nestlings are the best indicators of local Hg

pollution (Solonen et al. 1999). Hg in the first down of

chicks is derived from Hg in the egg while levels in

developing non-down feathers reflect Hg concentrations in

food given to the chick. Hg in both feather types therefore

reflects Hg pollution in the diet of the provisioning adult

birds. In addition, critical feather Hg concentrations that

are associated with reproductive impairment (lower clutch

and egg size, reduced hatching rate and decreased chick

survival) have been suggested (NAS 1978).

More recently, there has been a focus onmeasuring legacy

and emerging POPs in feathers (Jaspers et al. 2006, 2007b,

2011, 2013a; Meyer et al. 2009; Eulaers et al. 2011a, b;

Herzke et al. 2011), although concentrations may be derived

to a large extent from external contamination by preen oil

(Jaspers et al. 2008).Washing techniques to remove preen oil

that have been tested thus far may affect the internal load in

the feather (Jaspers et al. 2008, 2011). However, external

contamination with preen oil may be advantageous when

using feathers for contaminant monitoring. This is because

total feather concentrations of organic pollutants are

increased by the lipid-rich preen oil and correlations between

feather and internal tissue contaminant concentrations are

enhanced (Jaspers et al. 2008; Solheim 2010; Eulaers et al.

2011b). Sampling feathers is also generally easier and less

invasive than sampling preen oil. The degree of contami-

nation of feathers with preen oil partly depends on preening

frequency which varies with species, season, environmental

conditions, and gender (van Iersel and Bol 1958; Greichus

and Greichus 1974; Caldwell et al. 2001; Pap et al. 2010).

Blood, plasma and serum

Raptors can be exposed to chemicals through inhalation,

dermal contact and ingestion, although diet is considered to

be the main exposure pathway for most major pollutants.

Irrespective of exposure pathway, contaminants, once

absorbed, are transported and distributed throughout the

body via the blood. Contaminant half-lives are typically

shorter in blood than in internal tissues (S.I. Table 2) and,

depending on the timing of sampling relative to exposure,

pollutant concentrations are generally lower and more

variable than in body tissues. For lipid soluble contami-

nants such as POPs, low concentrations in blood are pri-

marily related to relatively low lipid content compared to

other commonly sampled tissues such as eggs and tissue

(Elliott and Norstrom 1998). Overall, low contaminant

concentrations in blood mean that relatively high volumes

may be needed to achieve analytical detection limit and it

may be necessary to obtain a greater degree of replication

of samples to reduce the effects of relatively high inter-

individual variability.

Overall, blood concentrations provide a non-destructive

measure of recent exposure to compounds (Olsson et al.

2000; Martı́nez-López et al. 2009; Sonne et al. 2010;

Eulaers et al. 2011b) but, because half-lives are relatively

short, may not be indicative of medium or long-term

exposure (Morrissey et al. 2010). Despite this, correlations

between blood and internal tissue concentrations have been

found for some compounds (Garcı́a-Fernández et al. 1995,

1996, 1997; Henriksen et al. 1998; Eagles-Smith et al.

2008) but such relationships can be disrupted by remobi-

lization of contaminants from fat or other depots during

egg laying, moult, starvation and migration (Henny and

Meeker 1981; Henriksen et al. 1996; Evers et al. 2005) and

by variation in either exposure pattern or intrinsic factors

such as age, size, and body condition (Garcı́a-Fernández

et al. 1995, 1997). Blood can also be analysed for effects

biomarkers such as haematological parameters (including

measurement of clotting performance), oxidative stress,

plasma biochemistry, enzymatic activities, and gene

expression (Nyholm 1998; Martı́nez-López et al. 2004;

Fisher 2009; Cesh et al. 2010; Martinez-Haro et al. 2011a;

Rattner et al. 2011, 2014b, 2015; Espı́n et al. 2014b, d;

Maceda-Veiga et al. 2015).

Whole blood, plasma or serum can be used for con-

taminant analysis. Plasma contains fibrinogen, which

results in coagulation unless the sample is treated with an

anticoagulant (Ehresman et al. 2007), typically heparin or

ethylenediamine tetraacetic acid (EDTA). Of the studies

we reviewed, 42 measured pollutant concentrations in

blood (Table 2) and heparin was used in 71 % and EDTA

in 5 %; 24 % did not indicate which, if any, anticoagulant

was used. EDTA can be problematic as it may affect

clinical chemistry analytes and enzyme measurements

(Hochleithner 1994) while significant movement of Pb

from red cells to plasma can occur (deSilva 1981). How-

ever, heparin interferes with white blood cells and
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sometimes with PCR analysis, although heparinised plasma

or serum is the recommended matrix for the vast majority

of biochemical tests (Hochleithner 1994). Studies involv-

ing gene expression requires RNA conservation with

RNAlaterTM or similar preservatives (Maceda-Veiga et al.

2015).

Which blood compartment should be selected for anal-

ysis depends on the contaminant of interest and whether

additional end-points (lipids, proteins, hormones) are to be

measured. Advantages and disadvantages on using each

compartment are summarised in Table 3. Use of whole

blood may permit collection of smaller blood volumes

which can be important when sampling small raptors (Volz

et al. 2001). Most studies that have measured Pb in raptors

have used whole blood (Garcı́a-Fernández et al. 1995,

1997; Mateo et al. 1999; Benito et al. 1999; Pain et al.

2007; Gangoso et al. 2009; Espı́n et al. 2014b, d). Whole

blood has also been recommended for analysing OCs and

brominated flame retardants to avoid potential loss of

contaminants in the cellular fraction (Volz et al. 2001;

Leslie et al. 2013), although most lipid soluble contami-

nants are in the triglycerides present in the plasma fraction.

Serum or plasma can be used for analysis of many con-

taminants but it is notable that concentrations of some

poly- and perfluoroalkyl substances (PFASs) in whole

blood are approximately half those in serum or plasma

because of the volume displacement of cellular compo-

nents, which do not appear to function as a sorbent for

these substances (Ehresman et al. 2007). Of the 42 studies

we reviewed that measured contaminant levels in raptor

blood, whole blood was used in 79 % (to measure metals,

POPs or anticoagulant rodenticides), plasma in 17 % (to

analyse POPs, PFAS and pharmaceuticals), and serum in

5 % (analysis of POPs).

Dried blood spots (DBSs) have been proposed as an

alternative to fresh blood for monitoring chemical residues

in raptors (Shlosberg et al. 2011a, b). The possibility of

quantifying POPs, metals and PFASs in small (* 200 ll)
blood volumes could simplify sampling as this could be

done by venepuncture with microhematocrit capillaries

rather than larger syringes and so be less invasive. More-

over, DBS are likely to be easier to handle, store and

transport than blood samples. However, to date, the number

of laboratories with sufficiently sensitive methods to

analyse DBS is limited. In addition, Stove et al. (2012)

have identified several limitations to the technique, such as

the presence of variable amounts of trace metals in the

filter paper (within and between production batches) and

possible external contamination.

In terms of expression of contaminant data, blood con-

centrations are typically expressed on a wet weight basis or

by volume. Conversion factors (wet weight to volume) of

0.94 (whole blood) and 0.98 (plasma) have been suggested,

based on relative density (Coeurdassier et al. 2012),

assuming whole blood and plasma densities of 1.060 and

1.025 g ml-1, respectively (Barlow and Whitehead 1928).

Blood lipid levels in birds may change seasonally (deGraw

et al. 1979) and with body condition (Elliott et al., 1998).

Table 3 Advantages and disadvantages on the use of the different blood compartments for pollutant exposure monitoring of raptors

Blood

compartment

Advantages Disadvantages

Whole blood Small blood volumes can be collected

Allows analysis for the broadest spectrum of contaminants

Higher concentrations of some contaminants (decaBDE) are

present because of their partition to whole blood

compartments

Can be used for measurement of haematology, blood cell

counts and some biomarkers

Can be used for gene expression studies

Anticoagulants are needed

Lower concentrations of some contaminants (PFASs) because

of cellular components

RNA preservatives are needed

Plasma/

Serum

Measurement of biochemistry, antibodies and enzymatic

activities

Higher concentrations of some contaminants (PFASs)

Anticoagulants are needed (plasma)

Samples have to be centrifuged

Plasma/serum separation may produce loss of some

contaminants (decaBDE, OCs)

Red blood

cells

Measurement of antioxidant molecules and oxidative damage

on lipids, proteins and DNA

Samples have to be centrifuged

Erythrocytes may need to be washed using saline solution for

some analyses

Concentration of some compounds may be lower

Dried blood

spot

Anticoagulants are not needed

Simplify sampling

Facilitate handling, storage and transport of blood samples

Limited number of laboratories mastering sufficiently sensitive

methods

Variable amount of trace metals in the filter paper (both within

and between lots) and it is possible external contamination
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Reporting of concentrations on both wet and lipid weight

basis is recommended for lipid soluble POPs.

Overall, blood has been used to monitor concentrations

of all the main priority contaminants in raptors but, in the

studies we reviewed, analysis was mainly for POPs and

toxic metals, particularly Pb (Table 2). Blood metal con-

centrations have been widely related to effects that range

from sub-lethal (such as enzyme inhibition) through to

mortality (Czirjak et al. 2010; Franson and Pain 2011;

Shore et al. 2011; Wayland and Scheuhammer 2011; Espı́n

et al. 2015) and blood may be particularly useful for

monitoring Hg in raptors (Henny and Elliott 2007; Gui-

gueno et al. 2012). This is because, as with eggs, Hg in

blood is almost entirely present as MeHg (DesGranges

et al. 1998; Fournier et al. 2002; Rimmer et al. 2005) and

total Hg can be used as a [cheaper] surrogate measure for

MeHg (Eagles-Smith et al. 2008); Hg concentrations in

blood are highly correlated with MeHg in liver (Henny

et al. 2002).

Internal tissues

Pollutant concentrations in internal tissues are a key indi-

cator of bioaccumulation. Tissue samples are collected

across some 20 countries in Europe (Table 1, S.I. Fig. 1),

but is only possible where carcasses are found in the field

or injured birds are euthanasied for welfare reasons. Which

specific internal tissue should be analysed for contaminants

depends in part on the endpoint of the study, the toxi-

cokinetics of the compounds of interest (Garcı́a-Fernández

et al. 2008) and the target organ for toxicity. Pollutant

concentrations associated with adverse effects in target

organs, or with specific endpoints such as mortality and

reproduction, have been extensively reported (Beyer and

Meador 2011). However, tissues which accumulate the

highest contaminant concentrations and/or multiple con-

taminants that can be determined simultaneously are

sometimes analysed in preference to the target organ. In

our review of 249 European studies, 111 analysed internal

tissues and the liver was by far the most commonly anal-

ysed organ (98 studies, Table 2). In some cases, internal

tissues are collected specifically for the determination of

effect biomarkers (Mateo et al. 2003; Rainio et al. 2012)

but these are labile, must be measured or conserved

immediately after biopsy or death (Mateo et al. 2003;

Rainio et al. 2012) and cannot be measured in tissues from

carcasses found in the field some time after death.

Post-mortem decomposition and cause of death can both

potentially affect tissue contaminant concentrations.

Decomposition may lead to desiccation of tissues and

microbial post-mortem metabolism of contaminants (Fer-

ner 2008; Butzbach 2010). Although time of death can be

estimated (Payne-James et al. 2003), we are unaware of

verified methods that can be used to normalise contaminant

concentrations for extent of decomposition. Cause of death

can alter tissue contaminant concentrations in that starva-

tion can deplete adipose tissue. The associated metabolism

of fat leads to remobilisation of lipophilic compounds

which are subsequently distributed via the bloodstream to

highly metabolically active organs such as the liver (Hela

et al. 2006). This can result in elevated liver contaminant

concentrations, an effect exacerbated by starvation-induced

liver wastage (Wienburg and Shore 2004; Crosse et al.

2013). Body condition can be quantified during necropsy

(Espı́n et al. 2014a) and either included as a variable in any

statistical comparisons of contaminant data, or used as a

factor to focus sample selection so that source of variance

is minimised (for example, Elliott et al. 2015).

Pollutant concentrations in internal organs are expressed

on a wet, dry or lipid weight basis and this variability can

hamper inter-study comparisons (Henny and Elliott 2007).

In general, metal concentrations are reported on dry weight

basis to avoid spurious variation caused by differences in

water content between samples. Concentrations of lipo-

philic pollutants are often reported on a wet weight or lipid

weight basis to normalise for inter-individual and inter-

species variation in organ lipid content. Wet concentrations

can be converted to a dry weight and lipid weight basis

(S.I. Document 4) but the water and lipid content of tissues

must be known.

In terms of analysis of particular compound groups,

organic contaminants typically bioaccumulate strongly in

adipose fat depots and in those body tissues with relatively

high lipid content, such as liver, kidney, muscle and brain

(Borlakoglu et al. 1991; Buckman et al. 2004; Voorspoels

et al. 2006; Espı́n et al. 2010a). Partitioning between tissue

types varies with physico-chemical properties and com-

pounds with log Kow\ 3.3 have a higher affinity for phos-

phatidylcholine while those with log Kow[ 3.3 partition

preferentially accumulate into trioleoylglycerol (Sander-

mann 2003). This may account for why more polar OCs (for

example lindane-c-HCH) preferentially accumulate in tis-

sues like the brain which contains high concentrations of

more polar lipids such as phospholipids. Non-polar com-

pounds (for example DDTs and PCBs) are mainly accu-

mulated in organs such as liver or adipose tissue that contain

high proportion of triglycerides (Kawai et al. 1988; Noble

and Cocchi 1990; Sandermann 2003; Maervoet et al. 2005).

Overall though, the highest absolute concentrations of many

non-polar organic compounds are found in fat (Marı́a-Mo-

jica et al. 2000; Kenntner et al. 2003b; Espı́n et al. 2010a),

probably reflecting the affinity of these compounds for

triglycerides. Therefore, when carcasses are available, adi-

pose tissue can be useful for monitoring chronic exposure

(Kenntner et al. 2003b; Hela et al. 2006), although only 9 %

of 137 studies on POPs that we reviewed reported
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concentrations in fat (Table 2). This may be partly because

sampling fat can be difficult when carcasses are partially

decomposed or when body condition is poor.

Liver POP concentrations often reflect recent dietary

exposure (Newton et al. 1993; Kenntner et al. 2003b; van

Drooge et al. 2008), although concentrations of lipophilic

compounds can be elevated by redistribution of compounds

from depleting fat stores (Kenntner et al. 2003a; Wienburg

and Shore 2004; Crosse et al. 2013). Less lipophilic com-

pounds such as PFASs also accumulate in liver [and other

soft tissues] where they bind to protein albumin (Jones

et al. 2003; Yoo et al. 2009; Stahl et al. 2011). Studies in

leghorn chickens (Gallus gallus) suggest that the highest

concentrations of perfluorooctane sulfonate (PFOS) and

perfluorooctanoic acid (PFOA), two PFASs widely used in

industry (ATSDR 2009), occur in the liver and kidney,

respectively (Yoo et al. 2009). Liver concentrations for a

range of organic contaminants can be related to those

estimated to be indicative of adverse effects (Blus 2011;

Elliott and Bishop 2011; Harris and Elliott 2011), while

effects on cytochrome P450 activity and antioxidant

enzymes in individuals can be measured directly if samples

are fresh (Helgason et al. 2010). However, when the pri-

mary interest concerns the assessment of POP-induced

effects, analysis of the brain can be informative as it is a

major target organ and concentrations associated with

mortality and chronic effects have been defined for various

compounds (Blus 2011; Elliott and Bishop 2011; Harris

and Elliott 2011). However, the brain was analysed in only

about 5 % of the POPs studies that we reviewed (Table 2).

This is maybe because, in more recent years, lethal expo-

sure to POPs is rarely encountered and, furthermore,

excision of an intact brain from a bird skull is time con-

suming compared with removal of other tissues such as the

liver.

The liver and kidneys are the internal organs most

typically used for analysis of metals. Approximately

30–45 % of studies in which Pb, Cd and/or Hg were

determined involved analysis of these organs (Table 2); Pb

is also often analysed in bone (24 % of studies). The rel-

ative distribution of these metals between different body

tissues differs markedly.

Pb follows a tri-compartmental kinetic model where

bone is the principle organ of accumulation (Garcı́a-Fer-

nández et al. 1997), but there is also distribution to other

major organs, primarily liver, kidney and also brain (Custer

et al. 1984; Franson and Pain 2011). Pb concentrations tend

to be higher in the kidneys than in the liver and highest in

bone when exposure is chronic or less recent (Garcı́a-

Fernández et al. 1995) and often highest in the liver at

acute poisoning (e.g. Helander et al. 2009). Overall, bone

Pb reflects lifetime accumulation while soft tissue and

blood residues are indicative of, and can be used to

monitor, shorter-term exposure (Garcı́a-Fernández et al.

1995, 1997). Threshold concentrations in these organs for

adverse effects have been suggested for Falconiformes

(Franson and Pain 2011).

The distribution of Cd between body tissues is dose-de-

pendent (Scheuhammer 1987). The kidney is the main organ

for accumulation during chronic exposure to low concen-

trations, but accumulation is greater in liver following acute

exposure to high doses (Garcı́a-Fernández et al. 1995, 1996).

The liver:kidney Cd concentration ratio can thus be used as

an indicator of exposure pattern (Scheuhammer 1987).

Nevertheless, in contaminated areas, liver Cd may be the

better indicator of chronic exposure since kidney concen-

trations fall significantly with onset of Cd-induced tubular

dysfunction (Scheuhammer 1987) and so may not be rep-

resentative of the true levels of exposure. Normally though,

Cd concentrations in birds are at least two orders of mag-

nitude below concentrations associated with clinically-

manifest kidney damage (Wayland and Scheuhammer 2011)

and, in such habitats, the kidney may be a more useful

monitor of exposure as concentrations are likely to be higher

and more likely to exceed analytical limits of detection.

For Hg, the highest tissue concentrations are found in

the kidney and liver, followed by muscle and brain (Nor-

heim and Frøslie 1978; Holt et al. 1979; Häkkinen and

Häsänen 1980; Kalisinska et al. 2014). How Hg partitions

between internal organs depends on whether exposure is to

organic or inorganic forms of the metal, and the Hg kid-

ney:liver molar ratio has been proposed as a mean of dis-

tinguishing between chronic exposure to MeHg and

inorganic Hg (Scheuhammer 1987). Kidney:liver molar

ratios much higher than 1 reflect exposure to inorganic Hg,

whereas a ratio closer to 1 (and\ 2) is characteristic for

exposure to MeHg. In general, the liver and/or the kidney

can be used for monitoring trends in exposure. Threshold

liver and kidney concentrations associated with adverse

effects in birds generally have been suggested (Shore et al.

2011) but interpretation of internal tissue concentrations is

problematic. This is because of demethylation processes

and sequestration of selenium (Se) bound inorganic Hg

(Henny et al. 2002; Eagles-Smith et al. 2008), Se forming a

complex with Hg and protecting against Hg toxicity

(Scheuhammer 1987; Cuvin-Aralar and Furness 1991;

Scheuhammer et al. 2008). Ideally, total Hg, MeHg and Se

concentrations should be measured simultaneously and

analysis of both liver and kidney can provide information

on the nature of exposure.

Of the remaining priority compounds outlined in the

current paper, the liver is the tissue which is almost always

used for analysis of anticoagulant rodenticides (Table 2;

Rattner et al. 2014a). These, and in particular the second-

generation anticoagulant rodenticides, are sequestered by

high affinity binding sites in the liver (Huckle et al. 1989;
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Vandenbroucke et al. 2008; Fisher 2009). Liver half-lives

vary between compounds (Vandenbroucke et al. 2008; S.I.

Table 2) but, overall, liver concentrations provide a signal

of single or multiple exposures integrated over periods of

weeks and months (Shore et al. 2015). Rodenticide con-

centrations tend to be higher in liver than in other tissues

(Huckle et al. 1988, 1989) and extent of rodenticide use,

diet, resistance in rodents and physiology can all affect the

magnitude of residues accumulated by raptors (Shore et al.

2015). There is no clear diagnostic or threshold liver

concentration that is associated with mortality but higher

residues are associated with a greater probability of mor-

tality (Thomas et al. 2011).

Other sample matrices

Although less frequently used, other matrices such as crop

contents, regurgitated pellets, excrement, preen oil and

talons can be analysed for contaminants. Recommendations

on sampling methods are given by Espı́n et al. (2014a).

Crop contents can be obtained from carcasses and

regurgitated pellets from roost and nest sites. Both provide

information about spatio-temporal variation in diet which

can be important when assessing likely exposure of raptors

to contaminants (Mañosa et al. 2003; van Drooge et al.

2008). Crop (and gizzard/stomach) contents have been used

to determine exposure to anticoagulant rodenticides (Ruder

et al. 2011) and to confirm the occurrence of lethal poisoning

by organophosphate and carbamate insecticides (Elliott

et al., 1996; 1997) and compounds such as strychnine,

metaldehyde and paraquat (Berny 2007). Regurgitated pel-

lets are frequently used in dietary studies (Love et al. 2000;

Redpath et al. 2001; Terraube et al. 2011; Trierweiler and

Hegemann 2011) and are widely collected across Europe by

numerous raptor population monitoring schemes (Table 1,

S.I. Fig. 1). Pellets also have characteristics that make them

well-suited for use as non-invasive indicators of environ-

mental contaminants. These include that a large number of

samples can be obtained, samples can be collected from

species that are difficult to trap or that are rarely found as

carcasses, and pellets can be collected regardless of the age

or gender of the bird or of season. Pellets have been used to

measure exposure of raptors to toxic metals (Bostan et al.

2007; Lopes et al. 2010) including Pb from shot, the pres-

ence of which can be confirmed by X-rays (Mateo et al.

2001; Pain et al. 2007). Chemical analysis has also been used

to assess exposure of owls to second-generation anticoagu-

lant rodenticides (Gray et al. 1994; Newton et al. 1994;

Eadsforth et al. 1996) and regurgitated barn owls (Tyto alba)

pellets were estimated to contain 25–29 % of ingested dose

(Gray et al. 1992, 1994; Newton et al. 1994).

Sampling of excrement can be either minimally invasive

or non-invasive as fresh samples can be obtained by inducing

birds to defecate when they are being handled or by col-

lecting faeces from around nests and roosts. Large amounts

of sample can normally be obtained quickly, although DNA

analysis may be needed to identify the species and/or indi-

vidual that produced the sample (Cheung et al. 2009).

Excrement has been used in studies on diet composition,

hormones and genetics (Goymann and Jenni-Eiermann

2005;Waits and Paetkau 2005; Carlisle and Holberton 2006;

Reynolds et al. 2006) and when measuring effects

biomarkers such as porphyrins (Akins et al. 1993; Mateo

et al. 2006; Martinez-Haro et al. 2011b). While there have

been a number of avian contaminant studies that have anal-

ysed faecal material, they have generally not been on raptors

(Howald 1997; Beyer et al. 1998; Dauwe et al. 2000; Sun and

Xie 2001; Sun et al. 2005, 2006; Yin et al. 2008; Costa et al.

2012; Berglund et al. 2015). Contaminant concentrations in

excrement have been considered particularly useful as an

indicator of exposure to contaminants that are poorly

absorbed across the gut. Such compounds include non-

essential metals (Dauwe et al. 2000, 2004; Morrissey et al.

2005), which are typically present in higher (and more easily

detected) concentrations in excrement than in food items

(Morrissey et al. 2005; Yin et al. 2008). However, there

appears to be a lack of any direct relationship between con-

centrations in faeces and in internal tissues for themajority of

metals, suggesting that faecal measurements may not be a

suitable proxy for accumulation (Berglund et al. 2011).

In contrast to faeces, preen oil provides information

about pollutants that have been absorbed into the body. It is

an oily secretion of waxes from the uropygial gland, a

sebaceous gland at the base of the tail feathers. Birds use

this oil when preening to protect and waterproof their

feathers (Solheim 2010). Collection of preen oil can be

considered non-invasive when sampled from carcasses and

minimally invasive when collected from living birds as it is

necessary to press the gland softly to expel the oil (Espı́n

et al. 2014a). To date, preen oil is only rarely collected by

raptor monitoring schemes in Europe (Table 1, S.I. Fig. 1)

and can sometimes be difficult to sample in sufficient

quantity for analysis, particularly from nestlings (Eulaers

et al. 2011b). Uropygial secretion quantity and composition

also varies between species (Campagna et al. 2011; Garcı́a-

Fernández et al. 2013a). The oil can contain high concen-

trations of lipophilic pollutants (van Den Brink 1997;

Yamashita et al. 2007; Jaspers et al. 2008, 2011; Eulaers

et al. 2011b), which is related to its high lipid content

(87 % lipid content, Eulaers et al. 2011b), and is consid-

ered an excretion route for lipophilic compounds (Solheim

2010). Contaminant concentrations in preen oil are corre-

lated with those in internal tissues (van Den Brink 1997;

Eulaers et al. 2011b), but compound profiles can differ. For

example, preen oil is relatively richer in lower-chlorinated

PCB congeners (di-, tri-, and tetra-CB) than internal tissues
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(Larsson and Lindegren 1987; Yamashita et al. 2007; Jas-

pers et al. 2013b).

Clipped talons are keratinized tissues that, during their

formation, can accumulate certain contaminants. To our

knowledge, only Hopkins et al. (2007) have used talons to

analyse contaminant concentrations in bird species. They

found Hg concentrations in clipped talons from ospreys

(Pandion haliaetus) were correlated with concentrations in

internal tissues and the association was stronger than that

between feathers and soft tissues. This was believed to be

because talons, unlike feathers, grow continuously, and

talon Hg concentrations are more likely to be representa-

tive than feathers of the current Hg body pool. Hopkins

et al. (2007) collected a limited portion of talon (5 mm

length from digits 2 and 3 on the left foot) without dis-

turbing the talon’s blood supply but it is arguable as to

whether this could be classed as a non-invasive sample as

talons are important for catching, holding and processing

prey, and clipping the talons of live wild raptors may

adversely affect hunting performance. Collection from

carcasses is possible but may only be advantageous when

internal organs are too decomposed for analysis.

Monitoring other contaminants of current
and emerging concern

This review has focussed on the suitability of different

matrices for the compounds that are most commonly

monitored across Europe. However, there are also other

current and emerging compound groups of concern either

in terms of general environmental contamination or as a

direct threat to raptors themselves.

Pharmaceuticals and personal care products, including

human and veterinary drugs, fragrances, and cosmetics, are

produced in high volumes and are widely used (Rüdel et al.

2006;Nakata et al. 2007). Some compounds, such as synthetic

musks, are highly lipophilic and have been detected in several

aquatic organisms (Nakata et al. 2007), and pharmaceuticals

generally have been detected in the environment across the

world (Boxall et al. 2012). There is also growing concern over

the potential ecotoxicological effects of releasing veterinary

pharmaceuticals from animal feed lot operations into streams

and estuaries (Daughton and Ternes 1999; Kolpin et al. 2002).

The potential for monitoring environmental concentrations of

pharmaceuticals using raptors has recently been investigated

in ospreys (Pandion haliaetus) (Lazarus et al. 2015), and has

been more widely considered by Shore et al. (2014), but

generally data remain scarce. Two exceptions however are

non-steroidal anti-inflammatory drugs (NSAIDs) such as e.g.

diclofenac, and veterinary drugs used as antiparasitics

(organophosphate and carbamate compounds) or to euthanase

animals (e.g., barbiturates).

NSAIDs have been studied most intensively in raptors

because of their catastrophic impacts on vulture popula-

tions (Green et al. 2004, 2006, 2007; Oaks et al. 2004;

Naidoo et al. 2009; Sharma et al. 2014; Galligan et al.

2014; Cuthbert et al. 2014; Zorrilla et al. 2015). This work

has focussed largely on Asian and African populations

although, in Spain, a wild Griffon vulture (Gyps fulvus) has

been found to be exposed to and apparently killed by the

NSAID flunixin (Zorrilla et al. 2015), and other pharma-

ceuticals have been detected in other individuals (Garcı́a-

Fernández et al. 2013b). NSAIDs bind strongly to plasma

protein and are metabolised mainly in the liver, usually to

inactive compounds (Lees et al. 2004). Plasma, liver and

kidney can all be used to monitor NSAID exposure and can

also be used for effects assessment, since diclofenac-trea-

ted vultures have shown an increase in plasmatic uric acid,

alanine transferase and glutamic pyruvate transaminase,

and histopathological changes in kidneys and liver (Swan

et al. 2006; Jain et al. 2009); visceral gout has also been a

key indicator of exposure (Cuthbert et al. 2015). Data

regarding the safety of other NSAIDs and risks to other

species is currently limited (Taggart et al. 2009; Garcı́a-

Fernández 2014; Sharma et al. 2014); and further moni-

toring of NSAIDs concentrations in raptor populations and

evaluation of potential effects therefore remains a priority.

Organophosphate (OP) and carbamate (CB) compounds

are used as antiparasitics in livestock and secondary

exposure can result in raptor mortalities (Henny et al. 1985;

Mineau et al. 1999). These compounds are rapidly

metabolized in the body and so the proventriculus, gizzard

or gastrointestinal content are the samples commonly used

to determine exposure, although residues have been also

detected in liver, brain and muscle (Hamilton and Stanley

1975; Glaser 1999; Berny 2007; Shimshoni et al. 2012;

Mateo et al. 2015). The toxicity of OP and CB pesticides is

mainly due to the disruption of the nervous system by

inhibition of cholinesterase (ChE) enzymes activity (Glaser

1999; Hill 2003), and measurement of brain ChE in dead

birds and plasma/serum ChE activity in live birds is also

used as biomarker to monitor exposure (Elliott et al., 1996;

1997; Martı́nez-Haro et al. 2007; Shimshoni et al. 2012).

Among other veterinary drugs of concern, barbiturates, of

which pentobarbital is the predominant active component,

are commonly used to euthanize domestic animals (Alde-

guer et al. 2009). Secondary barbiturate poisoning has been

reported in raptors (Shore et al. 2014) and pentobarbital

and, some other euthanasia drugs, can be detected by

analysis of the liver or upper gastrointestinal contents.

Detection of residues in the liver provides more definitive

evidence that a drug has been absorbed from the ingesta, as

do blood samples from live birds (Thomas 1999).

A newer class of insecticides now in prevalent use

worldwide and which has attracted attention because of
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risk to pollinators (Rundlöf et al. 2015), aquatic organisms

(Morrissey et al. 2015) and insectivorous birds (Mineau

and Palmer 2013; Hallmann et al. 2014) are the neoni-

cotinoid pesticides. These insecticides act as agonists of the

insect nicotinic acetylcholine receptors (AChRs) (Gibbons

et al. 2014) and raptor prey species that feed on seed and

crops may be exposed to these pesticides. Experimental

studies have shown that neonicotinoid pesticides may

produce adverse effects on reproduction, behaviour,

immune system, growth and development in birds (Cox

2001; Mineau and Palmer 2013; Tokumoto et al. 2013;

Lopez-Antia et al. 2013, 2015) but little is known about the

exposure in top predators, including raptors. The liver and

crop content can be analysed to determine exposure to

neonicotinoid pesticides in dead birds (Lopez-Antia et al.

2015), and it may be possible to use blood as a non-de-

structive sample to determine exposure, as has recently

been demonstrated in humans (Mohamed et al. 2009; Yeter

and Aydın 2014; Yamamuro et al. 2014). Experimental

studies on rats have shown that the neonicotinoid imida-

cloprid inhibits d-ALAD activity in liver tissue (Sauer et al.

2014), causes changes in antioxidant enzymes in brain and

liver, and increases lipid peroxidation in plasma, brain and

liver (El-Gendy et al. 2010; Duzguner and Erdogan 2012)

while red-legged partridges (Alectoris rufa) exposed to

imidacloprid suffered sublethal effects including altered

biochemical parameters in plasma and oxidative stress in

red blood cells (Lopez-Antia et al. 2013). Therefore, blood,

liver and brain can be used for monitoring both exposure

and effects from these compounds. None of the pro-

grammes surveyed by Gómez-Ramı́rez et al. (2014) spec-

ified that they monitored exposure to neonicotinoids in

raptors but such monitoring would help determine if there

may be any significant food-chain transfer and exposure in

raptors.

Conclusions

In this paper, we have reviewed the merits of different

sample matrices for measuring environmental contami-

nants in raptors. There is no optimal all-purpose tissue. The

scientific relevance of each sample type depends on the

aims and objectives of any study and the compound(s) of

interest, but we have attempted to show the relative merits

of each matrix for major groups of contaminants. Of all the

matrices, blood and liver are probably used most exten-

sively for determining recent and longer-term exposure,

respectively. However, blood samples are less widely and

frequently collected across Europe than several other

matrices (Table 1) and volume size and storage require-

ments are likely to limit the number of analyses that can be

conducted. Internal tissue and carcass collection is

conducted by more schemes than for blood but in fewer

countries (Table 1), and we have no information on the

relative numbers of each tissue type collected or their

typical condition. Where blood and/or liver can be col-

lected, they are likely to be the most useful for monitoring

but developing techniques for a wider range of matrices is

merited so that use of limited blood and liver samples can

be focussed towards compounds where use of other

matrices is not appropriate. This may require greater use of

material that to date is widely collected but relatively little

analysed, such as food remains and regurgitated pellets

(Tables 1 and 2), and enhanced routine collection of other

samples, such as preen oil. The potential of such samples

may increase in the future as analytical sensitivity and

understanding of contaminant toxicokinetics further

improves.

Although a wide range of samples are collected across

Europe, (failed) eggs and feathers are the two matrices for

which collection effort appears to be greatest (Table 1).

These may provide the best opportunities for instigating

widescale (pan-continental) monitoring, although neither is

suitable for all contaminants. Eggs are already widely used

and critical concentrations have been suggested for various

compounds (Beyer and Meador 2011) but data need to be

reported in a harmonised way (for example, correcting for

desiccation). Recently grown feathers can be used for

determining metals, and potentially for organic contami-

nants because of the presence of preen oil on the feathers,

but methodologies to distinguish external from internal

contamination need to be employed and care taken in

interpreting resultant data. A further major challenge for

large-scale monitoring using any matrix is that samples are

unlikely to be available for the same species over a range

of habitats across large spatial areas. Approaches using

species guilds, where guilds are defined by similarity in

trophic strategy, may be needed to obtain such coverage.

Developing this concept, and the data needed to charac-

terise the within-guild read-across between species for

specific sample matrices, together with better harmonisa-

tion between analytical laboratories to ensure data com-

parability, are perhaps the next steps needed to develop

widescale contaminant monitoring using raptors.
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Tracking pan-continental trends in environmental contamination using sentinel raptors... 791

123

http://www.eurapmon.net
http://www.eurapmon.net


Jaspers V and Krone O were participants in the workshop in alpha-

betical order and collaborated in the writing of the manuscript (equal

contribution); and Duke G, Helander B, Mateo R, Movalli P, Sonne C

and van den Brink NW collaborated in the final writing of the

manuscript as well (equal contribution).

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict

of interest.

Informed consent Informed consent was obtained from all indi-

vidual participants included in the study.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Ackerman JT, Herzog MP, Schwarzbach SE (2013) Methylmercury is

the predominant form of mercury in bird eggs: a synthesis.

Environ Sci Technol 47:2052–2060. doi:10.1021/es304385y

Agusa T, Matsumoto T, Ikemoto T et al (2005) Body distribution of

trace elements in black-tailed gulls from Rishiri Island, Japan:

age-dependent accumulation and transfer to feathers and eggs.

Environ Toxicol Chem 24:2107–2120

Akins JM, Hooper MJ, Miller H, Woods JS (1993) Porphyrin profiles

in the nestling European starling (Sturnus vulgaris): a potential

biomarker of field contaminant exposure. J Toxicol Environ

Health 40:47–59. doi:10.1080/15287399309531775

Aldeguer MP, Talavera V, Marı́a-Mojica P et al (2009) Barbiturate

poisoning in carrion feeders consuming carcasses from equine

euthanized with Dolethal�. Rev Toxicol 26:58

ATSDR (2009) Toxicological profile for perfluoroalkyls. Public

Health Service, Agency for Toxic Substances and Disease

Registry, U.S

Barlow OW, Whitehead RW (1928) The relation of the blood specific

gravity to the cell count, hemoglobin level, cell volume and total

blood volume in pigeons. Am J Physiol 87:51–57

Becker PH, Sperveslage H (1989) Organochlorines and heavy metals

in Herring Gull (Larus argentatus) eggs and chicks from the

same clutch. Bull Environ Contam Toxicol 42:721–727. doi:10.

1007/BF01700394

Behrooz RD, Esmaili-Sari A, Ghasempouri SM et al (2009)

Organochlorine pesticide and polychlorinated biphenyl residues

in feathers of birds from different trophic levels of South-West

Iran. Environ Int 35:285–290. doi:10.1016/j.envint.2008.07.001
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Espı́n S, Martı́nez-López E, Gómez-Ramı́rez P et al (2012a)

Razorbills (Alca torda) as bioindicators of mercury pollution

in the southwestern Mediterranean. Mar Pollut Bull

64(11):2461–2470
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Hogstad O, Nygård T, Gätzschmann P et al (2003) Bird skins in

museum collections: are they suitable as indicators of environ-

mental metal load after conservation procedures? Environ Monit

Assess 87:47–56

Holt G, Frøslie A, Norheim G (1979) Mercury, DDE, and PCB in the

avian fauna in Norway 1965–1976. Acta Vet Scand Suppl 3–28

Hopkins WA, Hopkins LB, Unrine JM et al (2007) Mercury

concentrations in tissues of osprey from the Carolinas, USA.

J Wildl Manag 71:1819–1829. doi:10.2193/2006-016

Howald GR (1997) The risk of non-target species poisoning from

brodifacoum used to eradicate rats from Langara Island, British

Columbia. Masters thesis, Department of Animal Science,

University of British Columbia

Hoyt DF (1979) Practical methods of estimating volume and fresh

weight of bird eggs. Auk 96:73–77

Huckle KR, Hutson DH, Warburton PA (1988) Elimination and

accumulation of the rodenticide flocoumafen in rats following

repeated oral administration. Xenobiotica 18:1465–1479. doi:10.

3109/00498258809042269

Huckle KR,Warburton PA, Forbes S, Logan CJ (1989) Studies on the fate

of flocoumafen in the Japanese quail (Coturnix coturnix japonica).

Xenobiotica 19:51–62. doi:10.3109/00498258909034676

Hunt WG, Burnham W, Parish CN et al (2006) Bullet fragments in

deer remains: implications for lead exposure in avian scavengers.

Wildl Soc Bull 34:167–170. doi:10.2193/0091-7648(2006)

Jain T, Koley KM, Vadlamudi VP et al (2009) Diclofenac-induced

biochemical and histopathological changes in white leghorn

birds (Gallus domesticus). Indian J Pharmacol 41:237–241.

doi:10.4103/0253-7613.58515

Jaspers V, Dauwe T, Pinxten R et al (2004) The importance of

exogenous contamination on heavy metal levels in bird feathers.

A field experiment with free-living great tits, Parus major.

J Environ Monit 6:356–360. doi:10.1039/b314919f

Jaspers VLB, Covaci A, Maervoet J et al (2005) Brominated flame

retardants and organochlorine pollutants in eggs of little owls

(Athene noctua) from Belgium. Environ Poll 136(1):81–88

Jaspers VLB, Voorspoels S, Covaci A, Eens M (2006) Can predatory

bird feathers be used as a non-destructive biomonitoring tool of

organic pollutants? Biol Lett 2:283–285. doi:10.1098/rsbl.2006.

0450

Jaspers VLB, Covaci A, Van den Steen E, Eens M (2007a) Is external

contamination with organic pollutants important for concentra-

tions measured in bird feathers? Environ Int 33:766–772. doi:10.

1016/j.envint.2007.02.013

Jaspers VLB, Voorspoels S, Covaci A et al (2007b) Evaluation of the

usefulness of bird feathers as a non-destructive biomonitoring

tool for organic pollutants: a comparative and meta-analytical

approach. Environ Int 33:328–337. doi:10.1016/j.envint.2006.

11.011

796 S. Espı́n et al.

123

http://dx.doi.org/10.1007/s00244-005-0101-0
http://dx.doi.org/10.1007/s00244-005-0101-0
http://dx.doi.org/10.2307/3682220
http://dx.doi.org/10.1016/j.scitotenv.2009.07.027
http://dx.doi.org/10.1016/j.scitotenv.2010.08.037
http://dx.doi.org/10.2307/3801689
http://dx.doi.org/10.1007/s10646-009-0323-4
http://dx.doi.org/10.1016/S0045-6535(98)00162-3
http://dx.doi.org/10.1016/S0048-9697(01)01092-0
http://dx.doi.org/10.1016/j.chemosphere.2005.01.066
http://dx.doi.org/10.1016/j.chemosphere.2005.01.066
http://dx.doi.org/10.1007/s10336-011-0653-x
http://dx.doi.org/10.1002/tera.1420200315
http://dx.doi.org/10.2193/2006-016
http://dx.doi.org/10.3109/00498258809042269
http://dx.doi.org/10.3109/00498258809042269
http://dx.doi.org/10.3109/00498258909034676
http://dx.doi.org/10.2193/0091-7648(2006)
http://dx.doi.org/10.4103/0253-7613.58515
http://dx.doi.org/10.1039/b314919f
http://dx.doi.org/10.1098/rsbl.2006.0450
http://dx.doi.org/10.1098/rsbl.2006.0450
http://dx.doi.org/10.1016/j.envint.2007.02.013
http://dx.doi.org/10.1016/j.envint.2007.02.013
http://dx.doi.org/10.1016/j.envint.2006.11.011
http://dx.doi.org/10.1016/j.envint.2006.11.011


Jaspers VLB, Covaci A, Deleu P et al (2008) Preen oil as the main

source of external contamination with organic pollutants onto

feathers of the common magpie (Pica pica). Environ Int

34:741–748. doi:10.1016/j.envint.2007.12.002

JaspersVLB,RodriguezFS, BoertmannD et al (2011)Body feathers as a

potential new biomonitoring tool in raptors: a study on organohalo-

genated contaminants in different feather types and preen oil of

West Greenland white-tailed eagles (Haliaeetus albicilla). Environ

Int 37:1349–1356. doi:10.1016/j.envint.2011.06.004

Jaspers VLB, Herzke D, Eulaers I et al (2013a) Perfluoroalkyl

substances in soft tissues and tail feathers of Belgian barn owls

(Tyto alba) using statistical methods for left-censored data to

handle non-detects. Environ Int 52:9–16

Jaspers VLB, Sonne C, Soler-Rodriguez F et al (2013b) Persistent

organic pollutants and methoxylated polybrominated diphenyl

ethers in different tissues of white-tailed eagles (Haliaeetus

albicilla) from West Greenland. Environ Pollut 175:137–146.

doi:10.1016/j.envpol.2012.12.023

Jones PD, HuW, De CoenW et al (2003) Binding of perfluorinated fatty

acids to serum proteins. Environ Toxicol Chem 22:2639–2649

Kalisinska E, Gorecki J, Lanocha N et al (2014) Total and

methylmercury in soft tissues of white-tailed eagle (Haliaeetus

albicilla) and Osprey (Pandion haliaetus) collected in Poland.

Ambio 43:858–870. doi:10.1007/s13280-014-0533-8

Kawai S, Fukushima M, Miyazaki N, Tatsukawa R (1988) Relation-

ship between lipid composition and organochlorine levels in the

tissues of striped dolphin. Mar Pollut Bull 19:129–133. doi:10.

1016/0025-326X(88)90709-6

Kenntner N, Krone O, Altenkamp R, Tataruch F (2003a) Environ-

mental contaminants in liver and kidney of free-ranging northern

goshawks (Accipiter gentilis) from three regions of Germany.

Arch Environ Contam Toxicol 45:128–135. doi:10.1007/s00244-

002-2100-8

Kenntner N, Krone O, Oehme G et al (2003b) Organochlorine contam-

inants inbody tissue of free-rangingwhite-tailed eagles fromnorthern

regions of Germany. Environ Toxicol Chem 22:1457–1464

Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals,

hormones, and other organic wastewater contaminants in U.S.

streams, 1999–2000: a national reconnaissance. Environ Sci

Technol 36:1202–1211

Krone O, Wille F, Kenntner N et al (2004) Mortality factors,

environmental contaminants, and parasites of white-tailed sea

eagles from Greenland. Avian Dis 48:417–424

Krone O, Stjernberg T, Kenntner N et al (2006) Mortality factors,

helminth burden, and contaminant residues in white-tailed sea

eagles (Haliaeetus albicilla) from Finland. Ambio 35:98–104

KroneO,KenntnerN, TrinoggaA et al (2009) Lead poisoning inWhite-

tailed Sea Eagles: Causes and approaches to solutions inGermany.

In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion o f

Lead from Spent Ammunition: Implications for Wildlife and

Humans. The Peregrine Fund, Boise, Idaho, USA., pp 289–301

Langlier KM (1993) Barbiturate poisoning in twenty-nine bald eagles.

In: Redig PT et al (eds) Raptor biomedicine. University of

Minnesota Press, Minneapolis, pp 231–232

Larsson P, Lindegren A (1987) Animals need not be killed to reveal

their body-burdens of chlorinated hydrocarbons. Environ Pollut

45:73–78. doi:10.1016/0269-7491(87)90017-0

Lazarus RS, Rattner BA, Brooks BW et al (2015) Exposure and food

web transfer of pharmaceuticals in ospreys (Pandion haliaetus):

predictive model and empirical data. Integr Environ Assess

Manag 11:118–129. doi:10.1002/ieam.1570

Lees P, Landoni MF, Giraudel J, Toutain PL (2004) Pharmacody-

namics and pharmacokinetics of nonsteroidal anti-inflammatory

drugs in species of veterinary interest. J Vet Pharmacol Ther

27:479–490. doi:10.1111/j.1365-2885.2004.00617.x

Leslie HA, Thomsen C, Brandsma S et al (2013) Decabro-

modiphenylether in human whole blood and serum. Sixth

International Symposium On Flame Retardants, San Francisco

Lewis SA, Furness RW (1991) Mercury accumulation and excretion in

laboratory reared black-headed gull Larus ridibundus chicks. Arch

Environ Contam Toxicol 21:316–320. doi:10.1007/BF01055352

Lewis SA, Becker PH, Furness RW (1993) Mercury levels in eggs,

tissues, and feathers of herring gulls Larus argentatus from the

German Wadden Sea Coast. Environ Pollut 80:293–299. doi:10.

1016/0269-7491(93)90051-O
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Misztal-Szkudlińska M, Szefer P, Konieczka P, Namieśnik J (2012)
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