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On the number of perfect lattices

Roland Bacher∗

August 29, 2017

Abstract1: We show that the number pd of non-similar perfect d-dimensional

lattices satisfies eventually the inequalities ed
1−ǫ

< pd < ed
3+ǫ

for arbitrary

small strictly positive ǫ.

1 Main result

We denote by Λmin the set of vectors having minimal non-zero length in an
Euclidean lattice (discrete subgroup of an Euclidean vector space). An Eu-
clidean lattice Λ of rank d = dim (Λ⊗Z R) is perfect if the set {v⊗ v}v∈Λmin

spans the full
(d+1

2

)
-dimensional vector space of all symmetric elements in

(Λ⊗Z R) ⊗R (Λ⊗Z R). In the sequel, a lattice will always denote an Eu-
clidean lattice of finite rank (henceforth called the dimension of the lattice).
Every perfect lattice is similar to an integral lattice and the number of sim-
ilarity classes of perfect lattices of given dimension is finite, cf. for example
[8]. Similarity classes of perfect lattices are in one-to-one correspondence
with isomorphism classes of primitive integral perfect lattices. (A lattice is
primitive integral if the set of all possible scalar-products is a coprime set
of integers.) For general information on lattices, the reader can consult [4].

The main result of this paper can be resumed as follows:

Theorem 1.1. For every strictly positive ǫ, the number pd of isomorphism
classes of perfect d-dimensional primitive integral lattices satisfies eventually
the inequalities

ed
1−ǫ

< pd < ed
3+ǫ

.

Otherwise stated, there exist a largest real number α ∈ [1, 3] and a
smallest real number β ∈ [α, 3] such that we have eventually ed

α−ǫ
< pd <

ed
β+ǫ

. I suspect that 1 < α = β ≤ 2. The inequality 1 < α is suggested by
the large number of known perfect forms in dimension 8 and 9 (where we
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lack a complete classification). I present a few non-rigorous arguments for
β ≤ 2 in Section 18.

The two inequalities of Theorem 1.1 are proved by completely differ-
ent methods which give actually explicit lower and upper bounds for the
numbers pd.

Lower bounds are obtained by describing an explicit family of non-
isomorphic primitive integral perfect lattices of minimum 4. (The minimum
of a lattice is the squared Euclidean norm of a shortest non-zero element.)
Proving perfection of the family is easy. Showing that it consists only of
non-isomorphic elements is somewhat tedious. Our proof is based on the
fact that “error correction” is possible for a symmetric and reflexive relation
obtained by adding a few “errors” to an equivalence relation on a finite set.
Finally, we compute the number of lattices of dimension d in the family and
show that this number grows exponentially fast with d. This first part is
essentially a refined sequel of [1]. Similar methods and constructions have
been used in [2] and [3].

Constructions used in this paper and in [1] yield scores of perfect integral
lattices with minimum 4. A complete understanding or classification of such
lattices is probably a task doomed to failure. Integral perfect lattices of
minimum 2 are root lattices of type A,D or E. They are thus rare and very
well understood. Perfect integral lattices of minimum 3 sit between these
two worlds. Is there some hope for a (at least partial) classification or are
there already too many of them?

The upper bound for pd is also explicit, see Theorem 10.1. We prove it
by elementary geometric and combinatorial arguments. Somewhat weaker
bounds (amounting to the eventual inequality pd < ed

4+ǫ
) were obtained by

C. Soulé in Section 1 of [11].
A slight modification of the proof of Theorem 10.1 gives an upper bound

for the number of GLd(Z)-orbits of d-dimensional symmetric lattice poly-
topes containing no non-zero lattice points in their interior, see Section 11.

We have tried to make this paper as elementary and self-contained as
possible. We apologise for the resulting redundancies with the existing lit-
erature.

2 Perfection

A subset P of a vector space V of finite dimension d over a field K of
characteristic 6= 2 is perfect if the set {v ⊗ v}v∈P spans the full

(d+1
2

)
-

dimensional vector space
∑

v,w∈V v ⊗ w + w ⊗ v of all symmetric tensor-
products in V ⊗K V . Perfection belongs to the realm of linear algebra:
every perfect set P contains a perfect subset S of

(
d+1
2

)
elements giving rise

to a basis {v⊗ v}v∈S of symmetric tensor products. Moreover, every subset
of d linearly independent elements in a perfect set P can be extended to a
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perfect subset of
(
d+1
2

)
elements in P.

An example of a perfect set is given by b1, . . . , bd, bi + bj, 1 ≤ i < j ≤ d
where b1, . . . , bd is a basis of V .

Other interesting examples over subfields of real numbers are given by
4-designs. (We recall that a t-design is a finite subset S of the Euclidean
1−sphere Sd−1 such that the mean value over S of any polynomial of degree
at most t equals the mean value of the polynomial over the unit sphere).
See [10] for a survey of B. Venkov’s work who discovered relations between
4-designs and perfect lattices.

Given a perfect set P with
(
d+1
2

)
elements in a d-dimensional vector

space over a field K of characteristic 6= 2, any map ν : P −→ K corresponds
to a unique bilinear product 〈 , 〉 on V × V such that ν(v) = 〈v, v〉 for
all v ∈ P. Such a bilinear product is in general not positively defined over
a real field. Equivalently, a homogeneous quadratic form q : V 7−→ K is
completely defined by its restriction to a perfect set.

Perfect lattices are lattices whose set of minimal vectors (shortest non-
zero elements) determines the Euclidean structure completely, up to simi-
larity. Examples of perfect lattices are given e.g. by lattices whose mini-
mal vectors form a 4-design. This shows perfection of root lattices of type
A,D,E, of the Leech lattice and of many other interesting lattices with large
automorphism groups.

A useful tool for proving perfection of a set is the following easy Lemma
(see Proposition 3.5.5 in [8] or Proposition 1.1 in [1] for a proof):

Lemma 2.1. Suppose that a set S of a vector space V intersects a hyper-
plane H (linear subspace of codimension 1) in a perfect subset S ′ = S ∩ H
of H and that S \ S ′ spans V . Then S is perfect in V .

The condition on the span of S \ S ′ in Lemma 2.1 is necessary as shown
by the following easy result whose proof is left to the reader:

Lemma 2.2. Given a linear hyperplane H of a vector space V , any perfect
set of V contains a basis of V not intersecting H.

Proposition 2.3. Let S be a subset of a vector space V intersecting two
distinct hyperplanes H′, H′′ in two perfect subsets S ′ = S∩H′, S ′′ = S∩H′′,
of H′, respectively H′′. Suppose moreover that S \ (S ′ ∪ S ′′) is non-empty.
Then S is perfect in V .

Proposition 2.3 implies immediately the following result for lattices:

Corollary 2.4. Let Λ be a lattice of minimum m and rank d containing two
distinct perfect sublattices Λ′ and Λ′′ which are both of minimum m and rank
d− 1. Suppose moreover that Λ′+Λ′′ is of rank d (or, equivalently, of finite
index in Λ) and that Λ contains a minimal vector v such that Qv ∩ Λ′ =
Qv ∩ Λ′′ = {0}. Then Λ is perfect.
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Proof of Proposition 2.3. Let d+ 1 be the dimension of V . Lemma 2.2 and
perfection of S ′′ in H′′ imply that S ′′ \ S ′ contains a basis b1, . . . , bd of
H′′. Adding an element b0 ∈ S \ {S ′ ∪ S ′′} to such a basis, we get a basis
b0, . . . , bd ⊂ S \ S ′. Lemma 2.1 implies perfection of S in V .

3 The lattices Ld(h1, h2, . . . ): Construction and Re-

sults

Given a strictly increasing sequence 1 ≤ h1 < h2 < . . . of integers, we denote
by Ld(h1, h2, . . . ) the lattice of all integral vectors in Zd+2 which are orthog-
onal to c = (1, 1, 1, . . . , 1, 1) ∈ Zd+2 and to the vector h = (1, 2, . . . , h1 −
1, ĥ1, h1+1, . . . , ĥ2, . . . ) ∈ Zd+2 with strictly increasing coordinates given by
the (d+2) smallest elements of {1, 2, 3, 4, . . . }\{h1, h2, h3, . . . }. We think of
the missing coefficients h1, h2, . . . as “holes” or “forbidden indices”. Indeed,
the lattice Ld = Ld(h1, . . . ) is also the set of all vectors (x1, x2, . . . ) with
finite support and zero coordinate-sum

∑
i=1,2,... xi = 0 (defining the enu-

merably infinite-dimensional root lattice A∞ of type A) such that
∑

ixi = 0
and non-zero coordinates have indices among the first d + 2 elements of
{1, 2, . . . } \ {h1, h2, . . . } = {1, 2, . . . , ĥ1, . . . }. Equivalently, Ld is the sublat-
tice of Z{1,2,...} supported by the d + 2 smallest possible indices such that
Ld is orthogonal to c = (1, 1, 1, 1, . . . ) and h = (1, 2, 3, 4, . . . ) (the elements
c and h belong of course only to the “dual lattice” Z{1,2,... } of the “infi-
nite dimensional lattice” Z∞ generated by an enumerable orthogonal basis)
and Ld is also orthogonal to bh1

, bh2
, . . . with bi denoting the i-th element

(0, 0, . . . , 0, 1, 0, . . . ) of the standard basis of Z∞.
In the sequel, we will often use the notation

∑
i αibi with indices i ∈

{1, 2, . . . } \ {i1, i2, . . . } corresponding to coefficients of h = (1, 2, . . . , h1 −
1, ĥ1, h1 + 1, . . . ) ∈ Zd+2 when working with elements of Ld(h1, . . . ).

The lattice Ld(h1, h2, . . . ) is even integral of dimension d with no ele-
ments of (squared euclidean) norm 2. It is the sublattice of Zd+2 orthog-
onal to Zc + Zh which is a full two-dimensional sublattice of Zd+2 except
if {1, 2, . . . } \ {h1, h2, . . . } is an arithmetic progression (a case which will
henceforth always be excluded). The squared volume vol((Ld(h1, . . . ) ⊗Z

R)/Ld(h1, . . . )
2) of a fundamental domain, also called the determinant of

Ld(h1, h2, . . . ), equals thus 〈c, c〉〈h, h〉 − 〈c, h〉2.
Theorem 3.1. Ld(h1, h2, . . . ) is perfect of minimum 4 if d ≥ 10 and hi+1−
hi ≥ 6 for all i.

Given a lattice Ld(h1, h2, . . . ) ⊂ Zd+2 orthogonal to Zc+ Zh (with c =

(1, 1, . . . , 1) and h = (1, 2, 3, . . . , ĥ1, . . . , ω− 2, ω− 1, ω)) we get an isometric
lattice of the same form by considering Ld(h

′
1, h

′
2) where {h′1, h′2, . . . } =

{ω + 1 − h1, ω + 1 − h2, . . . } ∩ {1, 2, 3, . . . }. Indeed, we have h′ = (ω +

1)(1, 1, 1, . . . , 1)−h = (1, 2, . . . , ĥ′1, . . . ), up to a permutation of coordinates.
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We call two such lattices essentially isomorphic. Essentially isomorphic
lattices are related by a suitable affine reflection of their holes. An example
of two essentially isomorphic lattices is given by

L6(2, 5, 6, 9) = Z8 ∩
(
Z(1, 1, 1, 1, 1, 1, 1, 1) + Z(1, 3, 4, 7, 8, 10, 11, 12)

)⊥

and

L6(4, 7, 8, 11) = Z8 ∩
(
Z(1, 1, 1, 1, 1, 1, 1, 1) + Z(1, 2, 3, 5, 6, 9, 10, 12)

)⊥
.

The following result yields a large family of non-isomorphic lattices:

Theorem 3.2. If two lattices Ld(h1, . . . , hk = d+k+1) and Ld(h
′
1, . . . , h

′
k′ =

d + k′ + 1) of the same dimension d ≥ 46 satisfy the conditions h1, h
′
1 ≥

7, hk = d + k + 1, h′k′ = d + k′ + 1 and hi+1 − hi, h
′
i+1 − h′i ≥ 4 for all i,

then they are isomorphic if and only if k′ = k and h′i = hi for all i.

4 Proof of Theorem 3.1

The proof for perfection is an induction. The induction step is the following
special case of Corollary 2.4:

Proposition 4.1. Let h1, h2, · · · ⊂ {2, 3, 4, . . . } be a strictly increasing se-
quence of natural integers ≥ 2 such that Ld(h1, h2, . . . ) and Ld(h1 − 1, h2 −
1, h3−1, . . . ) are perfect lattices of minimum 4 and such that Ld+1(h1, h2, . . . )
contains a minimal vector (1, x2, . . . , xd+1, 1) starting and ending with a co-
efficient 1. Then Ld+1(h1, h2, . . . ) is perfect.

Proof of Theorem 3.1. We assume perfection of every d-dimensional lattice
Ld(h1, h2, . . . ) with hi+1 − hi ≥ 6 for all i.

We consider a (d + 1)-dimensional lattice Ld+1(h1, h2, . . . ) with h1 > 1
(otherwise we remove h1 and shift all holes h2, . . . by 1, i.e. we consider
Ld+1(h2 − 1, h3 − 1, . . . )).

By induction, the two d-dimensional sublattices Ld(h1, h2, . . . ) (consist-
ing of all elements in Ld+1(h1, h2, . . . ) with last coordinate 0) and Ld(h1 −
1, h2−1, . . . ) (consisting of all elements in Ld+1(h1, h2, . . . ) with first coordi-
nate 0) are perfect. In order to apply Proposition 4.1, we have only to show
that Ld+1(h1, . . . ) contains a minimal vector of the form (1, . . . , 1), i.e. start-
ing and ending with a coordinate 1. We denote by h = (1, a, b, c, . . . , w, x, y, z)

the (d+ 3)-dimensional vector (1, 2, . . . , h1 − 1, ĥ1, h1 + 1, . . . , ). The condi-
tion hi+1−hi ≥ 6 ≥ 3 ensures that both sets {2, 3, 4} and {z−1, z−2, z−3}
contain at most one element in the set {h1, . . . } of holes. There exist thus
s ∈ {a, b, c} and t ∈ {w, x, y} such that s + t = 1 + z ensuring existence of
a minimal vector b1 − bs − bt + bz of the form (1, . . . , 1) in Ld+1(h1, h2, . . . ).
Proposition 4.1 implies now perfection of Ld+1(h1, . . . ).
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We have yet to check the initial conditions. It turns out that Theo-
rem 3.1 holds almost in dimension 9. Indeed, all lattices L9(h1, . . . ) with
hj+1 − hj ≥ 6 for all j are perfect (as can be checked by a machine compu-
tation) except the lattice L9(4, 10) (given by all elements of Z11 orthogonal
to (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13)). Fortunately,
the two essentially isomorphic lattices L10(4, 10) = L10(5, 11) (which are the
two only possible ways to extend L9(4, 10) into a 10 dimensional lattice of the
form L10(h1, . . . ) with hi+1 − hi ≥ 6) are perfect. All other 10-dimensional
lattices L10(h1, h2, . . . ) satisfying the conditions of Theorem 3.1 are associ-
ated to two lattices L9(h1, h2, . . . ) and L9(h1−1, h2−1, . . . ) which are both
non-isomorphic to L9(4, 10). They are thus perfect by Proposition 4.1.

We display below the list of all 9-dimensional lattices L9(h1, . . . ) with
hi+1 − hi ≥ 6, up to essential isomorphism. The last entry is devoted to the
10-dimensional lattice L10(4, 10). Columns have hopefully understandable
meanings (the last column, labelled d2, gives the rank of the vector space
of symmetric tensors spanned by all vectors v⊗ v for v belonging to the set
Λmin of minimal vectors):

dim hj coordinates of h det |Λmin|/2 d2
9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1210 70 45
9 2 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1330 66 45
9 3 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 1426 63 45
9 4 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 1498 61 45
9 5 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 1546 60 45
9 6 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 1570 60 45
9 2, 8 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 1700 56 45
9 2, 9 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 1674 57 45
9 2, 10 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 1624 57 45
9 2, 11 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 1550 60 45
9 2, 12 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13 1452 62 45
9 3, 9 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13 1778 55 45
9 3, 10 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13 1726 56 45
9 3, 11 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13 1650 58 45
9 4, 10 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13 1804 54 44

10 4, 10 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14 2507 75 55

5 Isomorphic lattices

The proof of Theorem 3.2 is based on the fact that metric properties of
minimal vectors in a suitable lattice Ld(h1, h2, . . . ) determine the sequence
h1, h2, . . . up to the essential isomorphism.

Our main tool for proving this assertion is a graph-theoretical result of
independent interest described in the next Section. It gives lower bounds on
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the amount of “tampering” which does not destroy large equivalence classes
of an equivalence relation on a finite set.

5.1 α-quasi-equivalence classes

Consider an equivalence relation on some finite set which has been slightly
“tampered with” and transformed into a symmetric and reflexive relation
which is in general no longer transitive. This section describes sufficient
(but not necessarily optimal) conditions on the amount of tampering which
allow the recovery of suitable equivalence classes.

Symmetric and reflexive relations on a set V are in one-to-one corre-
spondence with simple graphs with V as their set of vertices. (Recall that
a simple graph has only undirected edges without multiplicities joining dis-
tinct vertices.) Given a symmetric and reflexive relation R, two distinct
elements u, v of V are adjacent (joined by an undirected edge) if and only
if u and v are related by R. Equivalence relations correspond to disjoint
unions of complete graphs. We use this graph-theoretical framework until
the end of this Section.

We denote by NΓ(v) the set of neighbours (adjacent vertices) of a vertex
v in a simple graph Γ and we denote by A∆B = (A ∪ B) \ (A ∩ B) the
symmetric difference of two sets A,B.

Given a real positive number α in [0, 1/3), a subset C of vertices of a
finite simple graph Γ is an α-quasi-equivalence class of Γ if

|(NΓ(v) ∪ {v})∆C| ≤ α|C|

for every vertex v of C and

|NΓ(v) ∩ C| < (1− 3α)|C|

for every vertex v which is not in C.
Example 5.1. Let C be a set of at least 29 vertices of a simple graph Γ.
Suppose that |(NΓ(v)∪{v})∆C| ≤ 8 for v ∈ C and |NΓ(v)∩C| ≤ 4 for v 6∈ C.
Then C is a 2

7-quasi-equivalence class.

0-quasi-equivalence classes in Γ are (vertex-sets of) maximal complete
subgraphs (also called maximal cliques) of Γ. Given a small strictly positive
real ǫ, a large ǫ-quasi-equivalence class C induces almost a maximal complete
subgraph: only very few edges (a proportion of at most ǫ) between a fixed
vertex v ∈ C and the remaining vertices of C can be missing and v can
only be adjacent to at most ⌊ǫ|C|⌋ vertices outside C. Notice however that
a vertex w 6∈ C can be adjacent to a very large proportion (strictly smaller
than (1− 3ǫ)) of vertices in C.

On the other hand, given α = 1
3 − ǫ (for small ǫ > 0), an α-quasi-

equivalence class C can have many missing edges between elements of C and
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it can have a rather large amount of edges joining an element of C with
elements in the complement of C. An element w 6∈ C is however connected
only to a very small proportion (of at most 3ǫ) of vertices in C. Such a class
corresponds to a secret organisation whose existence is difficult to discover
for non-members. It displays also some aspects of a connected component.

Proposition 5.2. Distinct α-quasi-equivalence classes of a finite graph are
disjoint.

Proof. A common vertex v of two intersecting α-quasi-equivalence classes
C1 and C2 with |C1| ≥ |C2| gives rise to the inequalities

α|C1| ≥ |(NΓ(v) ∪ {v})∆C1|
≥ |(C1 \ C2) \ NΓ(v)|

and

α|C1| ≥ α|C2|
≥ |(NΓ(v) ∪ {v})∆C2|
≥ |(C1 \ C2) ∩ NΓ(v)|.

Thus we get

2α|C1| ≥ |C1 \ C2|.
The trivial inequality

|C1 \ C2| ≤ |C1| − |C1 ∩ C2|
equivalent to

|C1 ∩ C2| ≤ |C1| − |C1 \ C2|
implies now

|C1 ∩ C2| ≥ |C1| − 2α|C1| = (1− 2α)|C1|. (1)

Assuming C1 6= C2 (and |C1| ≥ |C2|) we can choose an element w ∈ C1\C2.
We have

α|C1| ≥ |(NΓ(w) ∪ {w})∆C1|
≥ |(C1 ∩ C2) \ NΓ(w)|

and

(1− 3α)|C1| ≥ (1− 3α)|C2|
> |NΓ(w) ∩ C2|
≥ |(C1 ∩ C2) ∩ NΓ(w)|

which imply

(1− 2α)|C1| > |C1 ∩ C2|
in contradiction with inequality (1).
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5.2 Error-graphs

The error-graph E(∪iCi ⊂ Γ) of a simple graph Γ with a vertex partition
V = ∪iCi into disjoint subsets Ci is defined as follows: V = ∪iCi is also the
vertex set of E = E(∪iCi ⊂ Γ). Two vertices uE , vE of E are adjacent in E
if there exists either an index i such that the corresponding vertices uΓ and
vΓ are non-adjacent (in Γ) and belong to a common subset Ci, or uΓ and vΓ
are adjacent in Γ and belong to two different subsets Ci, Cj .

Otherwise stated, E is obtained from Γ by exchanging adjacency and
non-adjacency in every induced subgraph with vertices Ci.

Edges of the error-graph E(∪iCi ⊂ Γ) are thus “errors” of the symmet-
ric relation on V encoded by (edges of) Γ with respect to the equivalence
relation with equivalence classes Ci.

5.3 Neighbourhoods

We consider the set Λmin of all minimal vectors in a fixed lattice Λ =
Ld(h1, h2, . . . ) with minimum 4. Two minimal vectors v,w ∈ Λmin are
neighbours if 〈v,w〉 = 2. The set N (v) of neighbours of a given element
v ∈ Λmin can be partitioned into six disjoint subsets

N (v) = F∗∗00(v) ∪ F∗0∗0(v) ∪ F∗00∗(v) ∪ F0∗∗0(v) ∪ F0∗0∗(v) ∪ F00∗∗(v)

with stars, respectively zeros, indicating coordinates ±1, respectively 0, in
the support {i, i+k, j−k, j}, i < i+k < j−k < j of v = bi−bi+k−bj−k+bk.

The involution ι : w −→ v − w induces a one-to-one correspondence
between the two subsets of the three pairs

{F∗∗00(v),F00∗∗(v)}, {F∗0∗0(v),F0∗0∗(v)}, {F∗00∗(v),F0∗∗0(v)} .

We call such pairs complementary and denote them using the hopefully self-
explanatory notations

Faabb(v) = F∗∗00(v) ∪ F00∗∗(v),

Fabab(v) = F∗0∗0(v) ∪ F0∗0∗(v),

Fabba(v) = F∗00∗(v) ∪ F0∗∗0(v).

We write Faabb(v),Fabab(v),Fabba(v) for the orbits under ι of the three sets
Faabb(v),Fabab(v),Fabba(v). Either F∗∗00(v) or F00∗∗ represent all elements
of Faabb(v). The same statement holds for Fabab(v),Fabba(v). Henceforth,
we identify often a vector w ∈ N (v) with its class in N (v).

The following table lists all 6 elements of the set N (0, 1, 0,−1,−1, 0, 1)
in L5(∅) = (Z(1, 1, 1, 1, 1, 1, 1) + Z(1, 2, 3, 4, 5, 6, 7))⊥ ⊂ Z7 together with
the sets F∗∗00,F∗0∗0,F∗00∗,F0∗∗0,F0∗0∗,F00∗∗ and Faabb,Fabab,Fabba (with
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dropped common argument v = (0, 1, 0,−1,−1, 0, 1) ∈ Λmin) containing
them:

0 1 0 −1 −1 0 1

−1 1 1 −1 0 0 0 ∈ F∗∗00 ⊂ Faabb

1 0 −1 0 −1 0 1 ∈ F00∗∗ ⊂ Faabb

0 1 −1 0 −1 1 0 ∈ F∗0∗0 ⊂ Fabab

0 0 1 −1 0 −1 1 ∈ F0∗0∗ ⊂ Fabab

0 1 −1 0 0 −1 1 ∈ F∗00∗ ⊂ Fabba

0 0 1 −1 −1 1 0 ∈ F0∗∗0 ⊂ Fabba

Since 〈u, v − w〉 = 2 − 〈u,w〉, the parity of the scalar product is well-
defined on N (v). We get thus a map N (v)×N (v) −→ Z/2Z where N (v) =
Faabb(v) ∪ Fabab(v) ∪ Fabba(v). We say that two classes represented by u,w
have a generic scalar product if 〈u, v〉 ≡ 0 (mod 2) if and only if u, v belong
both to the same subset Faabb(v),Fabab(v),Fabba(v) of N (v). Generic values
are given by the table

Faabb Fabab Fabba

Faabb 0 1 1

Fabab 1 0 1

Fabba 1 1 0

Non-generic values, often called errors in the sequel, occur at most 8 times
with a given first element in N (v). More precisely, the table

Faabb Fabab Fabba

Faabb ≤ 2 ≤ 4 ≤ 2

Fabab ≤ 4 ≤ 2 ≤ 2

Fabba ≤ 2 ≤ 2 0

displays upper bounds for the number of errors (of the map N (v)×N (v) −→
Z/2Z) occurring with a fixed element of N (v).

We illustrate the first line by considering v = (0, 0, 0, 0, 1,−1, 1,−1, 0, 0, . . . ) ∈
Ld≥12(h1 ≥ 15, . . . ). Vectors e1, . . . , e8 representing all errors within F(v)
occurring with the class of w = (0, 0, 0, 0, 1,−1, 0, 0, 0, 0,−1, 1, 0, . . . ) in
Faabb(v) are given by

v 0 0 0 0 + − − + 0 0 0 0 0 0 〈w, ej〉
w = e0 + − − + 4

e1 + − − + 1
e2 + − − + 1

e3 + − − + 0
e4 + − − + 2
e5 + − − + 2
e6 + − − + 0

e7 − + + − 2
e8 − + + − 0

10



where we keep only the signs of non-zero coefficients. The elements e1, e2
realise the maximal number of two errors occurring within Faabb(v), the
vectors e3, . . . , e6 realise the maximal number of 4 errors occurring between
the class of w in Faabb(v) and Fabab(v) and e7, e8 realise the maximal number
of 2 errors between the class of w and Fabba(v).

We consider N (v) as the vertex-set of a graph with edges given by pairs
of different vertices with an even scalar product among representatives.

Proposition 5.3. If at least two of the three classes Faabb(v),Fabab(v),Fabba(v)
contain at least 29 elements then all three classes are uniquely defined in
terms of the graph-structure on N (v).

Proof. Example 5.1 and the above bounds for the maximal number of errors
(non-generic values of scalar products) show that two such classes with at
least 29 elements define 2

7 -quasi-equivalence relations in N (v). They are thus
well-defined by Proposition 5.2. The third class is given by the remaining
elements.

5.4 The path P associated to (1,−1,−1, 1, 0, . . . , 0)

Proposition 5.4. Let v denote the minimal vector b1 − b2 − b3 + b4 =
(1,−1,−1, 1, 0, 0, . . . , 0) of a fixed lattice Ld(h1, . . . , hk = d+1+k) satisfying
the conditions of Theorem 3.2.

The set h1, . . . , hk of holes is uniquely determined by the graph-structure
on the set of equivalence classes N (v) of neighbours of v.

Proof. We keep the notations of Section 5.3 except for dropping the argu-
ment v = (1,−1,−1, 1, 0, . . . ) for subsets of the sets N = N (v) or N =
N (v).

The set Fabba is empty and the conditions h1 ≥ 7, hk = d + k + 1 and
hi+1−hi ≥ 4 imply that A = Faabb and B = Fabab have both exactly d−3−k
elements. Indeed, among the k+d−3 vectors b1−b2−bi−1+bi, i = 6, . . . , k+
d+2, exactly 2k vectors of the form b1− b2− bhi−1+ bhi

, b1− b2− bhi
+ bhi+1

are not orthogonal to all elements bh1
, . . . , bhk

. A similar argument works
for B.

We construct an oriented path P as follows: We start with the error-
graph E = E(A∪B ⊂ N ) of N . We denote by E ′ the subgraph of E obtained
by removing all vertices of B = Fabab which are involved in a triangle with
the two remaining vertices in A = Faabb. Such triangles are given by three
vectors b1−b3, bl−2+bl ∈ B, b1−b2−bl−2+bl−1, b1−b2−bl−1+bl ∈ A with
{l − 2, l − 1, l} ⊂ {5, . . . , d + k} not intersecting {h1, . . . , hk}.) We denote
by H the remaining set of k vertices of B. Elements of H are of the form
b1 − b3 − bhi−1 + bhi+1 and correspond to the k holes h1, h2, . . . . The graph
E ′ is a path-graph (or segment, or Dynkin graph of type A) having one leaf
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(vertex of degree one) in A and one leaf in H ⊂ B. We orient its edges in
order to get an oriented path

b1 − b2 − b5 + b6, b1 − b2 − b6 + b7, . . . , b1 − b2 − bh1−2 + bh1−1,
b1 − b3 − bh1−1 + bh1+1, b1 − b2 − bh1+1 + bh1+2, . . . , b1 − b2 − bh2−2 + bh2−1,

...
b1 − b3 − bhk−1−1 + bhk−1+1, b1 − b2 − bhk−1+1 + bhk−1+2, . . . ,

, . . . , b1 − b2 − bd+k−1 + bd+k, b1 − b3 − bd+k + bd+k+2

starting at the vertex b1 − b2 − b5 + b6 of A and ending at the vertex b1 −
b3 − bd+k + bd+k+2 of H ⊂ B.

The final path P is obtained from E ′ as follows: We add k additional
vertices to the vertex-set A by considering the midpoints of the k oriented
edges (b1 − b2 − bhi−2 + bhi−1, b1 − b3 − bhi−1 + bhi+1) which start in A and
end in H. These oriented edges are well-defined since two distinct vertices
b1 − b3 − bhi−1 + bhi+1, b1 − b3 − bhj−1 + bhj+1 of H are never adjacent in E ′

(they are always separated by at least two vertices b1−b2−bhi+1+bhi+2, b1−
b2 − bhi+2 + bhi+3 ∈ A if i < j) and since the initial vertex of E ′ does not
belong to H. We label now the d− 3+ k = (d− k− 3 + k) + k vertices of P
increasingly by 5, 6, . . . , d + k + 1. The set of labels of the k vertices in H
defines now the sequence h1, . . . , hk = d+ k + 1.

5.5 Admissible vectors

Lemma 5.5. Both sets A = Faabb(v) and B = Fabab(v) have errors for v =
b1− b2− b3+ b4 = (1,−1,−1, 1, 0, . . . ) in a lattice Ld(h1, . . . , hk = d+1+k)
satisfying the conditions of Theorem 3.2.

Recall that an error in A (respectively B) is given by two minimal vectors
s, t in A (respectively in B) having an odd scalar product 〈s, t〉 ≡ 1 (mod 2).

Proof of Lemma 5.5. An error inA is realised by b1−b2−bd+k−2+bd+k−1, b1−
b2 − bd+k−1 + bd+k.

An error in B is realised by b1 − b3 − bd+k−2 + bd+k, b1 − b3 − bd+k +
bd+k+2.

Lemma 5.6. We have the inequality k ≤ ⌊(d − 2)/3⌋ for the number k of
holes in a d-dimensional lattice Ld(h1, . . . , hk = d + k + 1) satisfying the
conditions of Theorem 3.2.

Equality is achieved for hi = 3 + 4i for i = 1, 2, . . . .
We leave the easy proof (based on the pigeon-hole principle) to the

reader.
A minimal vector u of a lattice Ld(h1, . . . , hk = d + k + 1) satisfying

the conditions of Theorem 3.2 is called admissible if the following conditions
hold:
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1. N(u) has an even number of at least 2⌈(2d − 7)/3⌉ elements defining
two 2

7 -quasi-equivalence classes A,B of equal size.

2. Both classes A,B contain errors (i.e. do not define complete subgraphs
of N (u)).

3. The error graph E(A∪B ⊂ N (u)) contains a triangle with two vertices
in A and one vertex in B.

4. The construction of the oriented path P explained in the proof of
Proposition 5.4 works and yields an oriented path with 2d − 6 −
|N (u)|/2 vertices.

The proof of Theorem 3.2 follows now from the following result:

Proposition 5.7. A lattice Ld(h1, . . . , hk = d + k + 1) satisfying the con-
ditions of Theorem 3.2 contains a unique pair ±v of admissible minimal
vectors.

Proof. We show first that v = vc = b1−b2−b3+b4 = (1,−1,−1, 1, 0, 0, . . . , 0)
is admissible. The sets A = Faabb(v) and B = Fabab(v) contain both d−3−k
elements. Lemma 5.6 yields d− 3− k ≥ ⌈(2d − 7)/3⌉ ≥ 29 for d ≥ 46. The
sets A and B are thus 2

7 -quasi equivalence classes by Example 5.1. (See also
the proof of Proposition 5.3.)

Lemma 5.5 shows that both classes A and B contain errors.
A triangle in the error graph E(A ∪ B ⊂ N (v)) with two vertices in A

and a last vertex in B is defined by b1 − b2 − bd+k−2 + bd+k−1, b1 − b2 −
bd+k−1 + bd+k, b1 − b3 − bd+k−2 + bd+k.

The last condition is fulfilled as shown by the proof of Proposition 5.4
and yields the path P with d+ k − 3 = 2d− 6− (d− k − 3) vertices.

We consider now an admissible minimal vector u of Ld(h1, . . . , hk =
d+ k + 1). Condition (1) for admissibility shows that N (u) consists of two
2
7 -quasi-equivalence classes A,B containing both at least ⌈(2d − 7)/3⌉ ≥
⌈(2 · 46 − 7)/3⌉ = 29 elements. By Proposition 5.3, they define thus two of
the three classes Faabb,Fabab,Fabba.

Since Fabba does not contain internal errors, these classes are Faabb and
Fabab.

Condition (3) for admissibility implies that A = Faabb, B = Fabab and
that u is of the form ba−ba+p−ba+2p+ba+3p for some strictly positive integers
a and p. We can exclude p ≥ 3: Indeed, both sets {a+p−2, a+p−1, a+p+1}
and {a + 2p − 1, a + 2p + 1, a + 2p + 2} intersect {h1, . . . , hk = d + k + 1}
in at most a single element. For p ≥ 3, there exists thus ǫ ∈ {2, 1,−1}
such that the lattice Ld(h1, . . . ) contains the minimal vector ba − ba+p−ǫ −
ba+2p+ǫ+ba+3p in contradiction with Fabba = ∅. In order to exclude p = 2 we
use condition (4): Suppose indeed that p = 2. If there exists two elements
wi = ba− ba+2− bai−2+ bai , i = 1, 2 in Faabb with a1 6≡ a2 (mod 2), then the
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construction of the oriented path of Proposition 5.4 fails since w1 and w2

define vertices in two different connected components of the intermediary
graph E ′. Two such elements w1, w2 do not necessarily exist if the sequence
of holes consist of at most two arithmetic progressions of step 4. In this case,
there exist two elements ti = ba − ba+4 − bci−4 + bci , i = 1, 2 in Fabab with
c1 6≡ c2 (mod 4), also leading to a disconnected graph E ′. (The case p = 2
can also be excluded by showing that it cannot lead to a path P having the
correct length.)

We have thus p = 1 and u is of the form u = ba − ba+1 − ba+2 + ba+3.
The intermediary graph E ′ constructed in the proof of Proposition 5.4 is
connected if an only if a ∈ {1, 2, d + k − 3}. The case a = 2 and h1 = 7
leads to a graph E ′ with both leaves in H ⊂ Fabab and is thus excluded.
The case a = 2 and h > 7 leads to a sequence of holes defining the lattice
Ld−1(h1 − 1, h2 − 1, . . . , hk + d) which is only (d − 1)-dimensional. The
case a = d + k − 3 leads to a graph E ′ having both leaves in A except if
hk−1 = d + k − 5. This last case leads also to a sequence defining a lattice
of dimension d− 1 as follows: The corresponding sets Faabb and Fabab have
both d−3−k elements. They lead to a path of length d−3−k+2(k−1) =
(d − 1) + (k − 1) − 3 defining a set h1, . . . , hk−1 of k − 1 holes for a lattice
of dimension d− 1.

5.6 Proof of Theorem 3.2

Proof of Theorem 3.2. We construct the set of minimal vectors (of a lattice
as in Theorem 3.2) and use it for determining all minimal admissible vectors.
They form a unique pair by Proposition 5.7. This pair corresponds thus to
the vectors ±(1,−1,−1, 1, 0, . . . ) which determine the set h1, . . . of holes
uniquely by Proposition 5.4.

6 A linear recursion

We denote by α(n) the number of strictly increasing integer-sequences of
length n which start with 1 and which have no missing integers at distance
strictly smaller than 6. A sequence s1 = 1, s2, . . . , sn contributes thus 1 to
αn if and only if si+1 − si ∈ {1, 2} for i = 1, . . . , n − 1 and si+1 − si =
2, sj+1 − sj = 2 for 1 ≤ i < j ≤ n− 1 implies sj − si ≥ 5.

Proposition 6.1. We have α(i) = i for i = 1, . . . , 6. For n ≥ 6 we have
the recursion

α(n) = α(n − 1) + α(n− 5).

In particular, the sequence α(1), α(2), . . . grows exponentially fast.

The first few terms of α(1), . . . are given by

1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, . . . .
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Proof of Proposition 6.1. The sequence 1, 2, 3, 4, . . . , n is the unique contri-
bution to α(n) without holes (missing integers in the set {1 = s1, s2, . . . , sn})
and there are n− 1 sequences (contributing 1 to α(n)) with exactly 1 hole.
Since contributions to α(n) for n ≤ 6 have at most one hole, we get the
formula α(i) = i for i = 1, . . . , 6.

For n ≥ 6, a contribution of 1 to α(n) is either given by 1, . . . , sn−1 =
ω − 1, sn = ω for some integer ω ≥ n and such contributions are in one-to-
one correspondence with contributions to α(n − 1) (erase the last term) or
it is of the form

1, . . . , sn−5 = ω − 6, ω − 5, ω − 4, sn−2 = ω − 3, sn−1 = ω − 2, sn = ω

with s1 = 1, . . . , sn−5 = ω − 6 an arbitrary contribution to α(n− 5).
The sequence α(1), . . . satisfies the linear recursion α(n) = α(n − 1) +

α(n− 5) with characteristic polynomial P = z5 − z4 − 1 = (z2 − z+1)(z3 −
z − 1). Straightforward (but tedious) computations show

α(n) =
1

7
π(n) +

1

161

∑

ρ,ρ3−ρ=1

(45ρn + 61ρn+1 + 36ρn+2)

where π(n) = (−1−2/
√
−3)einπ/3+(−1+2/

√
−3)e−inπ/3 is 6-periodic given

by
n = 6k 6k + 1 6k + 2 6k + 3 6k + 4 6k + 5

π(n) = −2 −3 −1 2 3 1

and where the sum is over the three roots of the polynomial z3 − z− 1. The

sequence αn satisfies thus limn→∞
α(n)
ρn = 45+61ρ+36ρ2

161 where ρ ∼ 1.324718 is

the unique real root of z3 − z − 1.

Remark 6.2. (i) Setting α̃(i) = 1+(i−1)t for i = 1, . . . , 6 and α̃(n) = α̃(n−
1) + tα̃(n − 5), n ≥ 6 we get a sequence α̃(1), α̃(2), . . . specialising to α(n)
at t = 1 with coefficients counting contributions to α(n) according to their
number of holes (i.e. the coefficient of tk in α̃(n) is the number of sequences
contributing to α(n) which are of the form s1 = 1, s2, . . . , sn = n+ k).

(ii) A trivial exponential lower bound on α(n) can be obtained as follows:
Remove either the 6-th or the 7-th element in every set {7l+1, 7l+2, . . . , 7l+
6, 7l + 7}. This shows α(n) ≥ 2⌊n/6⌋.

7 An exponentially large family of perfect lattices

Proposition 7.1. The number of d-dimensional lattices satisfying the con-
ditions of Theorem 3.1 and of Theorem 3.2 equals α(d−8) for d ≥ 46 where
α(1), . . . is the sequence of Section 6 recursively defined by α(n) = n for
n = 1, . . . , 5 and by α(n) = α(n − 1) + α(n− 5) for n ≥ 6.
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Proof. Such a lattice Ld(h1, . . . ) corresponds to a vector

h = (1, 2, 3, 4, 5, s1+5, s2+5, . . . , ω−6 = sd−8+5, ω−5, ω−4, ω−3, ω−2, ω)

where s1 = 1, s2, . . . , sd−8 = ω − 11 is a sequence contributing to α(d − 8).
This construction is one-to-one for d ≥ 46: every sequence s1, . . . , sd−8

contributing to α(d− 8) corresponds to a lattice satisfying the conditions of
Theorem 3.1 and of Theorem 3.2.

8 Maximal indices for pairs of well-rounded lat-

tices with the same minimum

A lattice Λ is well-rounded if its minimal vectors span the ambient vector
space Λ⊗Z R.

We denote by Id the smallest integer such that every well-rounded d-
dimensional sublattice Λ′ with minimal vectors contained in the set of min-
imal vectors of a d-dimensional lattice Λ has index at most Id in Λ. The
integers Id (and refinements describing all possible group-structures of the
quotient group Λ/Λ′ in small dimensions) have been studied by several au-
thors, see for example [6].

The maximal index Id is of course realised by a sublattice generated by
d suitable minimal vectors of a suitable well-rounded d-dimensional lattice.

Since perfect lattices are well-rounded, the definition of Id implies im-
mediately:

Proposition 8.1. A sublattice
∑d

i=1 Zvd generated by d linearly independent
minimal elements of a perfect d-dimensional lattice Λ is of index at most Id
in Λ.

We give now upper bounds for Id.

8.1 An upper bound for Id from Minkowski’s inequality

Proposition 8.2. We have

Id ≤
⌊(

4

π

)d/2 (d

2

)
!

⌋
. (2)

The proof of Proposition 8.2 uses Minkowski’s inequality (see Chapter 3
of [9]) stating that a centrally symmetric convex subset C = −C of Rd has
volume at most 2d if it contains no non-zero elements of Zd in its interior.

Proof of Proposition 8.2. Without loss of generality, we can consider a sub-
lattice Λ′ =

∑d
i=1 Zbi generated by d linearly independent minimal vectors

b1, . . . , bd of norm 1 of a d-dimensional well-rounded lattice Λ with minimum
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1. We have the inequality V ′ ≤ 1 for the volume V ′ = vol(Rd/Λ′) of a fun-
damental domain for Λ′. (The equality V ′ = 1 holds if and only if b1, . . . , bd
is an orthonormal basis. The lattice Λ′ is then the standard lattice Zd.)

Applying Minkowski’s inequality vol(Bd) ≤ 2dV where V = vol(Rd/Λ)

to the d-dimensional Euclidean unit ball Bd of volume πd/2

(d/2)! (see for example

[4], Formula (17) of Chapter 1) we get the inequality

V ′ ≤ 1 =
(d/2)!

πd/2
vol(Bd) ≤ (d/2)!

πd/2
2dV

showing V ′

V ≤
(
4
π

)d/2 (d
2

)
! for the index V ′/V ∈ N of the lattice Λ′ in Λ.

8.2 Upper bounds for Id in terms of Hermite’s constants

I thank Jacques Martinet for drawing my attention to the ideas of this
section which is essentially identical with Section 2 of [6]. The scope of the
following lines is to provide the lazy reader with an armchair.

We denote by min(Λ) = minv∈Λ\{0}〈v, v〉 the (squared Euclidean) norm
of a shortest non-zero element in a d-dimensional Euclidean lattice Λ. The
determinant det(Λ) of Λ is the determinant of a Gram matrix (with co-
efficients 〈bi, bj〉 for a basis b1, . . . , bd of Λ =

∑d
i=1 Zbi) for Λ. It equals

the squared volume Vol(Rd/Λ)2 of the flat d-dimensional torus Rd/Λ. The

Hermite invariant of Λ is given by γ(Λ) = min(Λ)

det(Λ)1/d
. It is invariant under

rescalings and its d/2-th power is proportional to the packing-density of
Λ. Hermite’s constant γd = maxΛ,dim(Λ)=d γ(Λ) is the Hermite constant of
a densest d-dimensional lattice-packing. Equivalently, γd is equal to four
times the squared maximal injectivity radius of a suitable flat d-dimensional
torus with volume 1.

We have now (see Proposition 2.1 of [6]):

Proposition 8.3. We have

Id ≤ ⌊γd/2d ⌋ .

Proof. We consider a sublattice Λ′ =
∑d

i=1 Zbi generated by d linearly in-
dependent minimal vectors b1, . . . , bd of minimum 1 in a d-dimensional well-
rounded lattice Λ with minimum 1. We have thus [Λ : Λ′]2 det(Λ) = det(Λ′).
Since Λ′ is generated by vectors of norm 1 we have det(Λ′) ≤ 1 showing
[Λ : Λ′]2 det(Λ) ≤ 1. Since Λ has minimum 1 we have γ(Λ) = 1

det(Λ)1/d
≤ γd

implying det(Λ) ≥ γ−d
d . We have thus [Λ : Λ′] ≤ γ

d/2
d and we get the in-

equality for Id by considering a suitable pair Λ′ ⊂ Λ achieving the natural
integer Id.

The upper bound γd ≤ (4/3)(d−1)/2 (see for example page 36 of [7]) gives
the very bad upper bound Id ≤ (4/3)d(d−1)/4 .
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Blichfeldt’s upper bound

γd ≤ 2

π
Γ(2 + d/2)2/d (3)

(see for example page 42 of [7]) is more interesting and leads to

Id ≤
(
2

π

)d/2

Γ(2 + d/2) (4)

which is roughly 21+d/2/d times better than (2). The proof of (2) is however
much more elementary than the proof of (4).

The first few values of the upper bounds (2) and (4) are

d 1 2 3 4 5 6 7 8 9 10

(2) 1 1 1 3 6 12 27 63 155 401
(4) 1 1 1 2 3 6 10 19 37 75
Id 1 1 1 2 2 4 8 16 16 ?

.

The last row contains the correct values I1, . . . , I9 which follow from Theo-
rem 1.1 in [6].

9 Enumerating pairs of lattices

We denote by σd(N) the number of distinct lattices Λ containing Zd as a
sublattice of index N . Considering dual lattices, we see that the number
σd(N) is also equal to the number of distinct sublattices of index N in Zd.

Lemma 9.1. We have
σd(N) ≤ Nd

for the number σd(N) of lattices containing Zd as a sublattice of index N .

Proof. Every such lattice Λ contains sublattices Λ0 = Zd ⊂ Λ1 ⊂ · · · ⊂ Λk =
Λ with Λi/Λi−1 cyclic of prime order pi such that p1 ≤ p2 ≤ · · · ≤ pk are all
prime-divisors of N =

∏k
i=1 pi, with multiplicities taken into account. Since

Zd is contained with prime index p in exactly (pd − 1)/(p − 1) overlattices,

we have σd(N) ≤ ∏k
i=1

pdi−1
pi−1 ≤ ∏k

i=1 p
d
i = Nd.

Remark 9.2. A nice exact formula for the number σd(N) of subgroups of
index N in Zd is given for example in [12] or [5] and equals

σd(N) =
∏

p|N

(
ep + d− 1

d− 1

)

p

(5)
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where
∏

p|N pep = N is the factorization of N into prime-powers and where

(
ep + d− 1

d− 1

)

p

=

d−1∏

j=1

pep+j − 1

pj − 1

is the evaluation of the q-binomial
[
ep + d− 1

d− 1

]

q

=
[ep + d− 1]q!

[ep]q! [d− 1]q!

(with [k]q! =
∏k

j=1
qj−1
q−1 ) at the prime-divisor p of N .

Lemma 9.1 follows of course also from (5) and from the inequality
(

k + d− 1
d− 1

)

q

≤ qkd

which holds by induction on k ∈ N for d ≥ 1, q ≥ 2 (and which is asymp-

totically exact for k = 1 since

(
d

d− 1

)

2

= 2d−1
2−1 ).

Proposition 9.3. A d-dimensional lattice Λ is contained with index ≤ h in
at most hd+1 different d-dimensional overlattices.

Proof. Lemma 9.1 implies that the number of such overlattices equals at
most

∑h
n=1 σd(n) ≤

∑h
n=1 n

d ≤ h · hd.

10 An upper bound for the number of perfect lat-

tices

Theorem 10.1. Up to similarities, there exist at most

Id+1
d

(
3dId(d
2

)
)

d-dimensional perfect lattices where Id is as in Section 8.

Theorem 10.1 becomes effective after replacing Id for example with the
upper bound (2) or (4).

The main ingredient for proving Theorem 10.1 is the following easy ob-
servation which is of independent interest:

Lemma 10.2. Let v1, . . . , vd ∈ Λmin be d linearly independent minimal el-
ements in a d-dimensional perfect lattice Λ such that the index I of the
sublattice Λ′ =

∑d
i=1 Zvi in Λ is maximal.

If C = {w ∈ Λ⊗Z R | w =
∑d

i=1 xivi, xi ∈ [−1, 1]} denotes the centrally
symmetric d-dimensional parallelogram of all elements having coordinates
in [−1, 1] with respect to the basis v1, . . . , vd, then all minimal vectors of Λ
belong to C.

19



Observe that the convex set C of Lemma 10.2 is simply the 1-ball of the
‖ ‖∞-norm ‖ ∑d

i=1 xivi ‖∞= maxi |xi| with respect to the basis v1, . . . , vd.

Proof of of Lemma 10.2. Otherwise there exists w ∈ Λmin such that w =∑d
i=1 βivi with |βj | > 1 for some index j ∈ {1, . . . , d}. Exchanging vj with w

leads then to a sublattice (generated by the d linearly independent minimal
vectors v1, . . . , v̂j , . . . , vd, w) of index strictly larger than I in Λ.

Proof of Theorem 10.1. Given a perfect d-dimensional lattice Λ, we choose
a set v1, . . . , vd of d linearly independent minimal elements satisfying the
condition of Lemma 10.2. We denote by I the index of the sublattice Λ′ =∑d

i=1 Zvi of maximal index I in Λ. We consider the convex set C = {w ∈
Λ⊗Z R | w =

∑d
i=1 xivi, xi ∈ [−1, 1]} containing Λmin according to Lemma

10.2.
We can now extend v1, . . . , vd to a perfect subset v1, . . . , vd, vd+1, . . . , v(d+1

2 )
of Λmin∩C. Since every element of Λ has at most 3d representatives modulo
Λ′ in C, the

(d
2

)
elements vd+1, . . . , v(d+1

2 ) belong to the finite subset C ∩ Λ

containing at most 3dI elements. There are thus at most
(3dI
(d2)

)
possibilities

for the euclidean structure of Λ (which is determined up to a scalar by the(d+1
2

)
minimal vectors of the perfect set v1, . . . , v(d+1

2 )).

Proposition 9.3 gives the upper bound Id+1
d for the number of all over-

lattices Λ containing
∑d

i=1 Zvi as a sublattice of index at most Id.

This yields the upper bound Id+1
d

(3dId
(d2)

)
for the number of different perfect

d-dimensional lattices (up to similarity).

Remark 10.3. Minimal vectors of a perfect lattice Λ do in general generate
a perfect sublattice of Λ. This does not invalidate Theorem 10.1. The aim
of the vectors v1, . . . , v(d+1

2 ) is only to pin down the Euclidean metric. The

lattice Λ is determined by one of the Id+1
d possible choices of a suitable

overlattice of
∑d

i=1 Zvi.
The reader should also be aware that C does in general not contain the

Euclidean unit ball defined by the perfect set v1, . . . , v(d+1

2 ) of Λ.

The bound of Theorem 10.1 can be improved to

Id+1
d

(⌊(3dId − (2d+ 1))/2⌋(d
2

)
)

.

It is indeed enough to choose
(d
2

)
suitable pairs of opposite elements in (C ∩

Λ) \ {0,±v1, . . . ,±vd} which contains at most ⌊(3dId − (2d + 1))/2⌋ such
pairs.
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11 Digression: Symmetric lattice polytopes

A lattice polytope is the convex hull of a finite number of lattice-points in
Zd. Its dimension is the dimension of its interior. We call such a polytope P
symmetric if P = −P . The group GLd(Z) acts on the set of d-dimensional
symmetric lattice polytopes. A slight variation of the proof of Theorem 10.1
shows the following result:

Theorem 11.1. There are at most

(d!)d+123
dd!

different GLd(Z)-orbits of d-dimensional symmetric lattice polytopes con-
taining no non-zero elements of Zd in their interior.

Theorem 11.1 gives also an upper bound on the number of perfect lat-
tices since convex hulls of minimal vectors of perfect lattices are obviously
symmetric lattice polytopes containing no interior non-zero lattice points
(non-similar perfect d-dimensional lattices give obviously rise to polytopes
in different GLd(Z)-orbits). The bound of Theorem 11.1 is of course much
worse than the bound given by Theorem 10.1.

11.1 The maximal index of hollow sublattices

A sublattice Λ′ of a d-dimensional lattice Λ is called hollow if Λ′ is generated
by d linearly independent elements v1, . . . , vd of Λ such that the interior of
the convex hull spanned by ±v1, . . . ,±vd contains no non-zero elements of
Λ.

Hollowness is defined only in terms of convexity and is independent of
metric properties.

We denoteHd the maximal index of a hollow sublattice of a d-dimensional
lattice.

Proposition 11.2. We have Hd ≤ d!.

Proof of Proposition 11.2. We can work without loss of generality with Λ =
Zd ⊂ Rd. We denote by C the convex hull of generators ±v1, . . . ,±vd (sat-
isfying the condition of hollowness) of a hollow sublattice Λ′ =

∑d
i=1 Zvi of

Zd. The volume vol(C) of C equals 2d

d! I where I is the index of Λ′ in Zd.
Minkowski’s inequality vol(C) ≤ 2d implies the result.

Remark 11.3. Since sublattices generated by d linearly independent min-
imal vectors of a d-dimensional well-rounded lattice are always hollow, we
have Id ≤ Hd giving the bad upper bound Id ≤ d! for the integers Id intro-
duced in Section 8.
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11.2 Proof of Theorem 11.1

Proof. We consider such a lattice polytope P with vertices in Zd. We choose
a set v1, . . . , vd of d linearly independent vertices of P generating a sublattice
Λ′ =

∑d
i=1 Zvi of maximal index I in Zd. An obvious analogue of Lemma

10.2 holds and shows that all vertices of P are contained in C = {w ∈
Rd | w =

∑d
i=1 xivi, xi ∈ [−1, 1]}. Since C intersects Zd in at most 3dI

elements there are at most 23
dI possibilities for choosing the vertices of

P . Since I ≤ Hd ≤ d! by Proposition 11.2 and since there at at most
Hd+1

d ≤ (d!)d+1 possibilities (see Lemma 9.1) for superlattices containing Λ′

with index at most Hd ≤ d!, we get the result.

Remark 11.4. The upper bound in Theorem 11.1 can easily be improved to
(d!)d+12⌊(3

dd!−(2d+1))/2⌋, see Remark 10.3.

11.3 Lattice-polytopes defined by short vectors

d-dimensional polytopes defined as convex hulls of minimal vectors in Eu-
clidean lattices define of course symmetric lattice polytopes with no non-zero
lattice-points in their interior. The following result is a slight generalization
of this construction:

Proposition 11.5. (i) Let Λ be a d-dimensional lattice of minimum 1. We
have P̊ ∩Λ = {0} if P̊ is the interior of a d-dimensional polytope P defined
as the convex hull of a set V = −V ⊂ Λ \ {0} of pairs of opposite non-zero
elements of squared Euclidean length ≤ 2 in Λ.

(ii) We have moreover P ∩Λ = V ∪{0} and V is the set of vertices of P
if the inequality is strict (ie. if all elements of V are of squared Euclidean
length strictly smaller than 2).

Taking V = {±bi,±bi ± bj} for b1, . . . , bd an orthogonal basis of the
standard lattice Zd shows that the bound 2 is sharp in part (ii).

Proof. Suppose that u 6∈ V belongs to P ∩ Λ. There exists thus d elements
v1, . . . , vd ∈ V such that u is contained in the simplex Σ spanned by the
origin 0 and by v1, . . . , vd. Since Λ has minimum 1, the element u belongs
to the subset σ ⊂ Σ of all elements of Σ which are at distance ≥ 1 from
v1, . . . , vd. The norm of u is thus at most equal to an element w of maximal
norm in σ. For such an element w there exists an index i such that w is at
distance exactly 1 from vi and such that 〈w, vi − w〉 ≥ 0. This implies that
w is of norm at most 1 with equality if and only if w is on the boundary ∂P
of P .

Remark 11.6. The constant 2 in part (i) of Proposition 11.5 is perhaps
not optimal. The sequence c1 = 4, c2, . . . of upper bounds cd on the set of
all possible constants for assertion (i) of Proposition 11.5) is decreasing to
a limit ≥ 2.
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12 Proof of Theorem 1.1

Proof. Proposition 7.1 counts the number α(d− 8) of d-dimensional lattices
Ld(h1, . . . ) satisfying the conditions of Theorems 3.1 and 3.2. All these
lattices are perfect by Theorem 3.1 and non-isomorphic (and thus also non-
similar since they have the same minimum) by Theorem 3.2. Their number
α(d−8) grows exponentially fast by Proposition 6.1. This implies eventually

pd > ee
d−ǫ

.
The eventual upper bound on pd follows from Theorem 10.1.

13 Upper bounds for cells

Similarity classes of d-dimension perfect lattices correspond to cells of max-
imal dimension of the Voronöı complex, a finite

(d+1
2

)
-dimensional cellular

complex encoding information on GLd(Z).
The proof of Theorem 10.1 can easily be modified to show that this

complex has at most

Id+1
d

(
3dId
k + 1

)

(with Id replaced by the upper bound (2) or (4)) different cells of dimension
k. (Cells are in general defined by affine subspaces. This explains the
necessity of choosing k + 1 elements.) Slight improvements of this result
are possible by choosing carefully the initial d linearly independent minimal
elements v1, . . . , vd.

Without error on my behalf, these bounds are somewhat smaller than
the bounds given in Proposition 2 of [11].

14 Algorithmic aspects

The proof of Theorem 10.1 can be made into a naive algorithm as follows:
For a fixed dimension d, consider the list L of all overlattices Λ of Zd

such that Λ/Zd has at most Id elements.
Given a lattice Λ ∈ L, construct the finite set C = Λ ∩ [−1, 1]d. For

every subset S of
(d
2

)
elements in C, check if S ∪{b1, . . . , bd} (with b1, . . . , bd

denoting the standard basis of Zd) is perfect. If this is the case, check if the
quadratic form q defined by q(vi) = 1 for i = 1, . . . ,

(d+1
2

)
is positive definite.

Check finally that the lattice Λ (endowed with this quadratic form) has
no non-zero elements of length shorter than 1 and add the resulting perfect
lattice to your list P of perfect d-dimensional lattices if this is the case and
if P does lack it (up to similarity).

This algorithm can be accelerated using the following facts:
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1. It is enough to consider overlattices Λ containing b1, . . . , bd as a hol-
low set. We can reduce the list L of overlattices by taking only one
overlattice in each orbit of the group Sd ⋉ {±1}d acting linearly (by
coordinate permutations and sign changes) on the set ±b1, . . . ,±bd.

2. The list C can be made smaller: First of all, its size can be divided
by 2 by considering only elements with strictly positive first non-
zero coordinate. Secondly, an element v can only lead to a perfect
set if the convex hull of ±b1, . . . ,±bd,±v intersects Λ \ {0} only in
its vertices. This idea can be refined since the same property holds
for the convex hull of ±b1, . . . , bd,±vd+1, . . . ,±vd+k for the subset
b1, . . . , bd, vd+1, . . . , vd+k of the first d + k elements of the perfect set
{b1, . . . , bd} ∪ {vd+1, . . . , v(d+1

2 )}.

3. Writing vi =
∑i

j=1 αi,jbj we get a
(d+1

2

)
× d matrix whose minors are

all in [−1, 1] (otherwise we get a contradiction with maximality of the
index I of the sublattice Zd generated by v1 = b1, . . . , vd = bd).

15 Improving Id?

The upper bounds (2) and (4) for Id are not tight. They can however not
be improved too much as shown below.

First of all, let us observe that the maximal index I (of sublattices gen-
erated by d linearly independent minimal vectors of a perfect lattice) can be
as small as 1:

Proposition 15.1. Every set of d linearly independent roots of the root
lattice Ad generates Ad.

I ignore if there exist other perfect lattices generated by any maximal
set of linearly independent minimal vectors.

Proof of Proposition 15.1. We consider the usual realisation of Ad as the
sublattice of all elements in Zd+1 with coordinate sum 0. Roots are given
by bi − bj where b1, . . . , bd+1 is the standard orthogonal basis of Zd+1. Let
B = {f1, . . . , fd} be a set of d linearly independent roots of Ad. We associate
to B a graph with vertices 1, . . . , d + 1. An element bi − bj ∈ B yields an
edge joining the vertices i, j. The resulting graph has d edges and it has to
be connected (otherwise we get a sublattice of rank d+1− k in Zd where k
denotes the number of connected components). It is thus a tree TB. Roots
of Ad correspond to the

(d+1
2

)
shortest paths joining two distinct vertices of

TB. It follows that B generates the root lattice Ad.

The corresponding situation is fairly different for root lattice D2d of even
dimension:
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Proposition 15.2. The maximal index of a sublattice generated by 2d lin-
early independent roots of D2d equals 2d−1.

Proof of Proposition 15.2. We consider f1 = b1 + b2, f2 = b1 − b2, f3 =
b3 + b4, f4 = b3 − b4, . . . , f2d−1 = b2d−1 + b2d, f2d = b2d−1 − b2d. These
elements generate a sublattice of index 2d−1. Since they are orthogonal, this
index is maximal.

Proposition 15.2 dashes hope for big improvements on the upper bound
Id: Any such improvement has necessarily exponential growth. We have
however no candidate (of a sublattice generated by d linearly minimal ele-
ments of a d-dimensional perfect lattice) such that the quotient group has
elements of very large order.

Remark 15.3. An analogue of Proposition 15.2 holds also for root lattices
D2d+1 but the proof is slightly more involved. Indeed, such a lattice contains
a sublattice generated by roots of index 2d−1 corresponding to the root system
A2d−2

1 A3. For proving that the index 2d−1 is maximal, show first that Dn

cannot contain a root system of type E. It follows that 2d + 1 linearly in-
dependent roots of D2d+1 generate a root system with connected components
of type A and D whose ranks sum up to 2d + 1. Each such root system
is possible and easy computations show that A2d−2

1 A3 maximises the index
among all possibilities.

16 Perfect lattices of small dimensions

Since I2 = I3 = 1, the classification of perfect lattices of dimension 2 and 3
can easily be done by hand.

16.1 Dimension 2

There is essentially (i.e. up to action of the dihedral group of isometries
of the square with vertices ±b1,±b2) only one way to extend v1 = b1 =
(1, 0), v2 = b2 = (0, 1) to a perfect set. It is given by choosing v3 = b1+ b2 =
(1, 1) and leads to the root lattice A2.

16.2 Dimension 3

There are only three essentially different ways (up to the obvious action of
the group S3⋉ {±1}3) for enlarging v1 = b1, v2 = b2, v3 = b3 to a perfect set
in {0,±1}3.

The first one, given by v4 = b1 + b2 + b3 = (1, 1, 1), v5 = b1 + b2 =

(1, 1, 0), v6 = b2 + b3 = (0, 1, 1) (with Gram matrix 1
2




2 −1 0
−1 2 −1
0 −1 2


)
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leads to the root lattice A3 in its standard realisation.
The second one, given by v4 = b1 + b2, v5 = b2 + b3, v6 = b1 + b3 leads to

the degenerate quadratic form 1
2




2 −1 −1
−1 2 −1
−1 −1 2


.

The third one, v4 = b1 + b2, v5 = b2 + b3, v6 = b1 − b3 defines also A3. It

leads to the quadratic form 1
2




2 −1 1
−1 2 −1
1 −1 2


 and corresponds to

v1 = (1 −1 0 0)
v2 = (0 1 −1 0)
v3 = (0 −1 0 1)
v4 = (1 0 −1 0)
v5 = (0 0 −1 1)
v6 = (1 0 0 −1)

with respect to the standard realisation

A3 = {(x1, x2, x3, x4) ∈ Z4 | x1 + x2 + x3 + x4 = 0}
of the root lattice A3.

16.3 Dimension 4

We give no complete classification in dimension 4 but we describe briefly
how the two 4-dimensional perfect lattices fit into our framework.

In dimension 4 we have to consider overlattices containing Z4 with index
1 or 2. The known classification shows that the root lattices A4 and D4 are
(up to similarities) the only perfect lattices in dimension 4. Every linearly
independent set of 4 roots of A4 generates A4 by Proposition 15.1. The root
lattice A4 is thus obtained by considering (for example) the 10 =

(
5
2

)
vectors

of {0, 1}4 with consecutive coefficients 1. The first 4 vectors can be chosen
as the standard basis v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 =
(0, 0, 0, 1). The remaining six vectors are

(1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1) .

Proposition 15.2 shows that four linearly independent roots of D4 gener-
ate a sublattice of index at most 2 in D4. The index is exactly 2 if and only
if the four roots are pairwise orthogonal. Given four such orthogonal roots
v1, . . . , v4, the remaining eight pairs of roots are given by±1

2(v1±v2±v3±v4).

17 Bases of small height for perfect lattices

Theorem 17.1. A d-dimensional perfect lattice has a Z-basis f1, . . . , fd such
that the coordinates αi ∈ Z (with respect to the basis f1, . . . , fd) of a minimal
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element v =
∑d

i=1 βifi satisfy the inequalities |βi| ≤ 2i−1Id, i = 1, . . . , d with
Id as in Section 8.

The main ingredient of the proof is the following result:

Lemma 17.2. Let v1, . . . , vd be d linearly independent elements generating
a sublattice

∑d
i=1 Zvi of index I in a d-dimensional lattice Λ. There exist a

Z-basis f1, . . . , fd of Λ =
∑d

i=1 Zfi such that we have vi =
∑d

j=i αi,jfj and

|αi,j| ≤ 2max(0,j−i−1)I for all i and all j ≥ i.

The proof of Lemma 17.2 shows in fact slightly more since it constructs
such a basis f1, . . . , fd of Λ in the fundamental domain

∑d
i=1[0, 1]vi of the

lattice
∑d

i=1 Zvi.

Proof of Theorem 17.1. We choose minimal elements v1, . . . , vd generating
a sublattice

∑d
i=1 Zvi of maximal index I ≤ Id in a perfect d-dimensional

lattice Λ. Lemma 10.2 shows that we have v =
∑d

i=1 λivi with λi ∈ [−1, 1]
for every minimal vector v of Λ. With respect to a basis f1, . . . , fd of Λ as
in Lemma 17.2 we get

v =

d∑

i=1

λivi =

d∑

i=1

λi

d∑

j=i

αi,jfj.

We have thus v =
∑d

j=1 βjfj with βj =
∑j

i=1 λiαi,j . Since λi ∈ [−1, 1] and

since |αi,j| ≤ 2max(0,j−i−1)I by Lemma 17.2, we get βj ≤ I
∑j

i=1 2
max(0,j−i−1) =

2j−1I. We apply now the inequality I ≤ Id of Proposition 8.1.

Proof of Lemma 17.2. The result clearly holds for d = 1.
Consider d+1 linearly independent elements v0, . . . , vd generating a sub-

lattice of index I in a (d + 1)-dimensional lattice Λ. We denote by π the
linear form defined by π(v0) = 1 and π(v1) = · · · = π(vd) = 0. The set
π(Λ) is of the form 1

aZ with a dividing I such that Λ′ = ker(π)∩Λ contains∑d
i=1 Zvi as a sublattice of index I/a. By induction, there exists a basis

f1, . . . , fd of Λ′ such that every element v1, . . . , vi =
∑d

j=i αi,jfj, . . . , vd in-

volves only coordinates αi,j of absolute value at most 2max(0,j−i−1)I/a. We
choose now an element f0 ∈ Λ with π(f0) =

1
a in the fundamental domain∑d

i=0[0, 1]vi of R
d+1/

∑d
i=0 Zvi. We have thus f0 =

∑d
i=0 λivi with λ0 = 1

a
and λ1, . . . , λd ∈ [0, 1]. We get thus

af0 = v0 + a

d∑

i=1

λivi

= v0 + a

d∑

i=1

d∑

j=i

λiαi,jfj.
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This shows that v0 =
∑d

j=0 βjfj has coordinates βj given by β0 = a and by

βj = −a

j∑

i=1

λiαi,j

for j = 1, . . . , d. We have obviously |β0| = |a| ≤ I. Since λi ∈ [0, 1] and since
|αi,j| ≤ 2max(0,j−i−1)I/a we get |βj | ≤ I

∑j
i=1 2

max(0,j−i−1) = 2max(0,j−1)I =
2max(0,j−0−1)I for j = 1, . . . , d.

18 Heuristic arguments for an improved upper bound

We present a few non-rigorous thoughts suggesting an eventual upper bound
of ed

2+ǫ
(for arbitrarily small strictly positive ǫ) for the numbers p(d) of d-

dimensional perfect lattices, up to similarities.
Consider an increasing function α : N → N such that limd→∞

log logα(d)
log d =

0 (e.g. α(d) = ⌈dk(1+log(d))⌉ for some positive constant k). We denote by
pα(d) the set of all similarity classes of d-dimensional integral perfect lattices
having a basis involving only elements of (squared euclidean) norm at most
α(d). For any ǫ > 0, we have clearly pα(d) < ed

2+ǫ
for almost all d ∈ N

since such lattices have Gram matrices in the set of all (1 + 2α(d))(
d+1

2 )

symmetric matrices with coefficients in {−α(d), . . . , α(d)}. In order to have
p(d) < ed

2+ǫ
for any ǫ > 0 and for any d > N(ǫ), it is now sufficient to have

lim
d→∞

pα(d)

p(d)
ed

2+ǫ
= ∞ (6)

for all ǫ > 0.
In other terms, p(d) = o

(
ed

2+ǫ
)

would imply that the proportion of

similarity classes of integral perfect lattices of dimension d generated by,
say, vectors shorter than d100 log d (with respect to all p(d) perfect lattices)
decays extremely fast.

Equivalently, we can consider the set p̃α(d) of all similarity classes of d-
dimensional integral perfect lattices having d linearly independent minimal
elements generating a sublattice of index at most α. The proof of Theorem
10.1 shows that (6) with p̃α(d) replacing pα(d) implies also the eventual
inequalities pd < ed

2+ǫ
.
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