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Abstract

We study one-dimensional discrete as well as continuous time random walks, either with a fixed

number of steps (for discrete time) n or on a fixed time interval T (for continuous time). In

both cases, we focus on symmetric probability distribution functions (PDF) of jumps with a finite

support [−gmax, gmax]. For continuous time random walks (CTRWs), the waiting time τ between

two consecutive jumps is a random variable whose probability distribution (PDF) has a power law

tail Ψ(τ) ∝ τ−1−γ , with 0 < γ < 1. We obtain exact results for the joint statistics of the gap

between the first two maximal positions of the random walk and the time elapsed between them.

We show that for large n (or large time T for CTRW), this joint PDF reaches a stationary joint

distribution which exhibits an interesting concentration effect in the sense that a gap close to its

maximum possible value, g ≈ gmax, is much more likely to be achieved by two successive jumps

rather than by a long walk between the first two maxima. Our numerical simulations confirm this

concentration effect.
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I. INTRODUCTION AND SUMMARY OF MAIN RESULTS

Extreme value statistics (EVS) of random walks (RWs) – and their continuous counter-

part, Brownian motion – has recently attracted much attention (for recent short reviews see

[1, 2]). On the one hand, it has indeed been realized that RWs provide a very interesting

laboratory to test and characterize the effects of strong correlations between the walker po-

sitions at different times on EVS quantitatively, about which very little is known (unlike the

uncorrelated case of independent and identically distributed (i.i.d.) random variables [3]).

On the other hand, it was shown that EVS of RWs have several interesting applications in

statistical physics (e.g. to disordered systems [4], fluctuating interfaces [5–7] or 1/fα noise

[8]), finance (e.g. in optimal portfolio strategy [9]), computer science (e.g. in data storage

analysis [10] or in the statistics of tree structures [11]) or even in random geometry in two-

dimensions (e.g. for the convex hull of two-dimensional stochastic processes [12–14] or in

random convex geometry [15]). Although in many cases the considered RWs consist of un-

bounded random jumps (e.g. Gaussian or α-stable distributed jumps), RWs with bounded

jumps have also interesting applications like, for instance, in a well studied packing problem

in two dimensions where n rectangles of variable sizes are packed in a semi-infinite strip of

width one. In this case, it can be shown that the fluctuations of the height of the optimal

packing are given by the maximum of a RW whose random jumps are bounded and uniformly

distributed over the interval [−1,+1] (see Refs. [16–18]). More generally, lots of real world

random walks are expected to have bounded jumps because of natural limitations inherent

in the underlying physics and, in this respect, it is useful to get a good understanding of

this case.

Although these applications concern the global maximum of the RW, one may also wonder

about the statistics of the second, third, · · · , more generally of the k-th maximum Mk of

a RW (M1 being just the global maximum). This is known under the name of ‘order

statistics’ which was recently studied for RWs [19] as well as for more general stochastic

processes, like branching Brownian motion [20–22], or 1/fα noise [23]. Interestingly, these

works demonstrated that the order statistics of strongly correlated variables have a very

rich structure, much richer than their i.i.d. counterpart. More recently, we investigated the

statistics of the first gap g = M1 −M2 as well as the time elapsed between the first two

maxima, both for discrete time RWs [24, 25] and continuous time random walks (CTRWs)
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[26]. Quite remarkably, we found that the behavior of the joint probability distribution

function (PDF) of the gap and the time is very sensitive to the distribution of the jumps

defining the RW. Our previous investigations covered a wide range of jumps distributions

but ignored the important case of bounded distributions, which is the subject of the present

work completing our earlier ones on the complementary case of unbounded jumps [24–26].

This paper deals with the statistics of the gap and time interval between the first two

maxima of long random walks with bounded jumps. One of the motivations for this work

has been to investigate the ‘concentration’ phenomenon observed and studied in [25, 26] for

unbounded jumps with distributions going to zero fast enough at infinity (what we called

‘fast decreasing jump distribution’). For such fast decreasing distributions a large gap is

more likely to be achieved over two successive jumps instead of over a longer walk between

the first two maxima. As we will see in the following, (i) the conjecture made in [25, 26]

that a similar concentration should exist for jump distributions with a bounded support was

correct, and (ii) there are interesting, non trivial, differences between the bounded jump

problem and the fast decreasing jump distribution problem of [25, 26].

In this paper, we consider a random walk starting at the origin, x0 = 0, and evolving

according to

xi = xi−1 + ηi, (1)

where xi denotes the walker position between the i-th and the (i + 1)-th jumps. The

jumps ηi’s are i.i.d. random variables distributed following a symmetric, bounded and

piecewise continuous distribution f(η) with a bounded support −gmax ≤ η ≤ gmax (with

fixed gmax > 0), the Fourier transform of which, f̂(k) =
∫ gmax
−gmax f(η) exp(ikη) dη, has the

small k behavior

f̂(k) = 1− |ak|2 + o(|k|2), (2)

with a = σ/
√

2, where σ2 =
∫ gmax
−gmax η

2f(η) dη is the variance of the jump distribution. Let

τi denote the time interval between the (i − 1)-th and the i-th jumps (τi > 0). In the case

of discrete time random walks one simply has τi = 1, while for continuous time random

walks the τi’s are i.i.d. continuous random variables, independent of ηi, with PDF Ψ(τ) the

Laplace transform of which, Ψ̂(q) =
∫ +∞
0

Ψ(τ) exp(−qτ) dτ , has the small q behavior

Ψ̂(q) = 1− (τcq)
γ + o(|q|γ), (3)

where 0 < γ ≤ 1 and τc > 0 is the characteristic time scale of the jumps. For γ = 1, the
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mean time between two successive jumps, 〈τ〉 ≡
∫ +∞
0

τΨ(τ) dτ < +∞, exists and τc = 〈τ〉.

For 0 < γ < 1, the mean time between two successive jumps does not exist.

Our approach to the problem for long random walks is based on the result, proved in

[24, 25], that the joint PDF pn(g, l) of the gap g and the number of jumps l between the

first two maxima of the sequence {x0, x1, x2, · · · , xn} (i.e. a random walk of n jumps) has a

well defined limiting PDF as n→ +∞. More specifically, one has

lim
n→+∞

pn(g, l) = p(g, l), (4)

where p(g, l) is given by its generating function with respect to l,

p̃(g, s) =
∑
l>0

p(g, l)sl = I1(g, s)I2(g), (5)

with

I1(g, s) = s
∫ gmax−g
0

u(x, s)f(g + x) dx,

I2(g) =
∫ gmax−g
0

h(x, 1)f(g + x) dx,
(6)

where the upper bound at x = gmax− g results from the bounded support of f(η), −gmax ≤

η ≤ gmax (with fixed gmax > 0). In Eq. (6) the functions u(x, s) and h(x, s) are defined by

their Laplace transforms with respect to x,∫ +∞
0

u(x, s)e−λxdx = φ(λ, s),∫ +∞
0

h(x, s)e−λxdx = φ(λ, s)/λ,
(7)

with

φ(λ, s) = exp

(
−λ
π

∫ +∞

0

ln[1− sf̂(k)]

k2 + λ2
dk

)
. (8)

A limit similar to (4) holds for continuous time random walks as well [26]. Namely, replacing

pn(g, l) with pn(g, t), the joint PDF of the gap g and the time interval t between the first

two maxima of the sequence {x0, x1, x2, · · · , xn}, it is not difficult to show that pn(g, t) has

a well defined limiting PDF too as n→ +∞. One finds (see [26] for details),

lim
n→+∞

pn(g, t) = p(g, t), (9)

where p(g, t) is given by its Laplace transform with respect to t in terms of p̃ and Ψ̂,

p̂(g, q) =

∫ +∞

0

p(g, t) exp(−qt) dt = p̃(g, Ψ̂(q)). (10)
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Equations (5) and (10) are the starting points of our study in the cases of discrete and

continuous time, respectively.

Before entering the details of the calculations, it is useful to summarize our main results.

We first show that for a discrete time random walk, l concentrates onto l = ±1 as g → gmax,

the largest possible gap, in the sense that for all l 6= ±1, p(g,±1)/p(g, l)→ +∞ as g → gmax.

In the very wide class of jump distributions f(η) behaving algebraically as η → gmax (or

discontinuous to zero at η = gmax, see the remark below Eq. (23)), we find the universal

behavior p(g,±1)/p(g, l) ∼ (gmax − g)−1 as g → gmax. This result is clearly confirmed by

our numerical simulations (see Fig. 2). In the case of continuous time random walks, we

perform a detailed analysis of the different asymptotic behaviors of the joint PDF p(g, t) in

the plane (g, t). (Since p(g,−t) = p(g, t), we take t > 0 without loss of generality). The

main result of this study is the existence of a scaling form for p(g, t) when 0 < γ < 1 and

for algebraic f(η) near η = gmax. More specifically, we show that there is a scaling regime

(gmax − g)−1, t� 1 with fixed (gmax − g)tγ/2, in which p(g, t) takes the scaling form

p(g, t) ∼ ac2

τc

(gmax − g)3+2(α+1/γ)

[a(α + 1)]3+2/γ
K

(
gmax − g
a(α + 1)

(
t

τc

)γ/2)
(g

f.b.−→ gmax and t→ +∞), (11)

where

K(y) =
1

y1+2/γ

(
DI

y
+DII

)
, (12)

with the asymptotic behaviors

K(y) ∼

 DI y
−2(1+1/γ) (y → 0),

DII y
−1−2/γ (y → +∞).

(13)

The amplitudes DI and DII are given in Eqs. (39) and (36), respectively. Physically, the

switch from the first to the second behavior (13) around (t/τc)
γ/2 ∼ a(gmax−g)−1 corresponds

to the cross-over from a ‘concentration’ – or ‘one-jump’ – regime (for (t/τc)
γ/2 < a(gmax −

g)−1) where the walker gets stuck for a long time t at the second maximum and then jumps

directly to the first maximum, to a ‘many-jumps’ regime (for (t/τc)
γ/2 > a(gmax − g)−1)

where she/he travels a long walk of total duration t (with many steps) between the second

and the first maxima. For γ = 1, or non algebraic f(η) near η = gmax, there is no scaling

form and (11) is replaced with the uniform expression (35) from which it is possible to
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determine the domains in the (t, g) plane corresponding to ‘one-jump’ – and ‘many-jumps’

regimes in this case too.

The outline of the paper is as follows. Section II deals with the concentration of l onto

l = ±1 in the case of discrete time random walks. The effects of this concentration on

continuous time random walks, especially the ‘concentration’ and ‘many-jumps’ asymptotic

regimes of p(g, t) for large t and small gmax − g, are studied in Section III. Finally, Section

IV is devoted to the comparison of our analytical results with numerical simulations.

II. DISCRETE TIME RANDOM WALKS

A. Concentration of l onto l = ±1 as g→ gmax

As mentioned at the end of Sec. 4.3 in Ref. [25], if the jump distribution f(η) has a

bounded support, −gmax ≤ η ≤ gmax (with fixed gmax > 0), a concentration of l onto l = ±1

is expected to occur in the limit g → gmax, the largest possible value of the gap. Practically,

this means that a large gap, close to its largest possible value, is expected to be mainly

due to configurations with adjacent first and second maxima. To prove that this is actually

the case we must determine the behavior of p(g, l) for g < gmax close to gmax. To this end

we need the small x behavior of the functions u(x, s) and h(x, s) defined in (7), which is

obtained from the large λ behavior of φ(λ, s) given in (8). One has

φ(λ, s) ∼ 1− 1

πλ

∫ +∞

0

ln[1− sf̂(k)] dk (λ→ +∞), (14)

from which it follows

u(x, s) =
1

2iπ

∫
L
φ(λ, s) eλxdλ

∼ δ(x− 0+)− 1

π

∫ +∞

0

ln[1− sf̂(k)] dk (x→ 0), (15)

and

h(x, s) =
1

2iπ

∫
L
φ(λ, s) eλx

dλ

λ
∼ 1 (x→ 0). (16)

Thus, by injecting (15) and (16) into the definition (6) of I1(g, s) and I2(g) one gets

I1(g, s) = s

∫ gmax−g

0

u(x, s)f(g + x) dx (17)

∼ sf(g)−
∫ gmax−g

0

f(g + x) dx
s

π

∫ +∞

0

ln[1− sf̂(k)] dk (g
f.b.−→ gmax),
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and

I2(g) =

∫ gmax−g

0

h(x, 1)f(g + x) dx

∼
∫ gmax−g

0

f(g + x) dx (g
f.b.−→ gmax), (18)

where
f.b.−→ means ‘tends to, from below’. Equations (5), (17), and (18) give

p̃(g, s) = I1(g, s)I2(g) ∼ s

∫ gmax

g

f(x) dx (19)

×
(
f(g)− 1

π

∫ gmax

g

f(x) dx

∫ +∞

0

ln[1− sf̂(k)] dk

)
(g

f.b.−→ gmax),

where we have made the change of variable g + x → x in the integrals over x in (17) and

(18).The joint PDF p(g, l) is then readily obtained by expanding the logarithm in power

series of s. One finds

p(g, l) ∼

 f(g)
∫ gmax
g

f(x) dx l = ±1,

p(0,|l|−1|0,0)
|l|−1

(∫ gmax
g

f(x) dx
)2
|l| ≥ 2,

(g
f.b.−→ gmax), (20)

where we have rewritten the integrals over k as

1

π

∫ +∞

0

f̂(k)ndk =
1

2π

∫ +∞

−∞
f̂(k)ndk = p(0, n|0, 0). (21)

From (20) it follows immediately that, for all l with |l| ≥ 2,

p(g,±1)

p(g, l)
∼ |l| − 1

p(0, |l| − 1|0, 0)
f(g)

(∫ gmax

g

f(x) dx

)−1
(g

f.b.−→ gmax). (22)

According to Eq. (22), it is easily seen that for all l 6= ±1, p(g,±1)/p(g, l) → +∞ as

g → gmax, which proves the concentration of l onto l = ±1 in this limit, as expected.

Now, it can be interesting to compute the asymptotic behavior (22) explicitly for different

classes of jump distributions f(η). In the following we will do it for f(η) algebraic near

η = gmax and f(η) with an essential singularity at η = gmax.

B. Algebraic f(η) near η = gmax

Consider f(η) such that

f(η) ∼ c(gmax − η)α (η
f.b.−→ gmax), (23)
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with c > 0 and α > −1. Note that Eq. (23) also includes all the discontinuous f(η) at

η = gmax, which corresponds to the case α = 0 with f(g−max) = c and f(g+max) = 0. (For

−1 < α < 0 one has lim
η
f.b.−→gmax

f(η) = +∞ and f(g+max) = 0 with integrable singularities at

η = ±gmax). From (22) and (23) one immediately gets

p(g,±1)

p(g, l)
∼ (α + 1)(|l| − 1)

p(0, |l| − 1|0, 0)

1

gmax − g
(g

f.b.−→ gmax). (24)

The divergence ∼ (gmax − g)−1 does not depend on f(η) and is therefore universal

in this class of jump distributions. It holds in particular for a ‘top-hat’ distribution

f(η) = (2gmax)
−11{−gmax≤η≤gmax}, which corresponds to α = 0 and c = (2gmax)

−1 in (23).

Numerical simulations displayed in Sec. IV (see Fig. 2) clearly show a good agreement with

our predictions (24).

C. f(η) with an essential singularity at η = gmax

Consider f(η) such that

f(η) ∼ c exp

[
− 1

(gmax − η)α

]
(η

f.b.−→ gmax), (25)

with c > 0 and α > 0. For g close to gmax one has∫ gmax

g

f(x) dx ∼ c

α

∫ +∞

(gmax−g)−α
u−1/α−1e−udu (26)

∼ c

α
(gmax − g)α+1 exp

[
− 1

(gmax − g)α

]
(g

f.b.−→ gmax),

where we have used (25) and made the change of variable u = (gmax − x)−α. From (22),

(25), and (26) one gets

p(g,±1)

p(g, l)
∼ α(|l| − 1)

p(0, |l| − 1|0, 0)

1

(gmax − g)α+1
(g

f.b.−→ gmax). (27)

The divergence ∼ (gmax − g)−α−1 now depends on α and is faster than in the previous case

(α > 0), albeit still algebraic.

III. CONTINUOUS TIME RANDOM WALKS

Let p(g, t) denote the joint PDF of the gap g and the time interval t between the first

two maxima of the infinite sequence {x0, x1, x2, · · · } [see Eq. (9)]. From the concentration
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of p(g, l) onto l = ±1 and p(g, t) =
∑

0<l≤n p(t|l) p(g, l), one readily has

p(g, t) ∼ p(t|l = 1)p(g, l = 1) (g
f.b.−→ gmax), (28)

at fixed t, which reads, using p(t|l = 1) = Ψ(t) and the first Eq. (20),

p(g, t) ∼ Ψ(t) f(g)

∫ gmax

g

f(x) dx (g
f.b.−→ gmax). (29)

This asymptotic behavior corresponds to the contribution of realizations where the walker

gets stuck for a given time t at the second maximum and then jumps directly to the first

maximum, [this is the very meaning of Eq. (28)]. On the other hand, the probability for

the walker to stay frozen for a time t decreases to zero as t gets arbitrarily large and the

contribution of other realizations, with several jumps between the first two maxima, may

become significant or even dominant if t increases fast enough to +∞ (relative to the speed at

which gmax−g decreases to 0). Thus, the asymptotic behavior of p(g, t) for both g
f.b.−→ gmax

and t→ +∞ requires a more careful analysis.

We follow the same line as in Sec. V.C.1 of Ref. [26]. Writing ln[1− sf̂(k)] on the right-

hand side of (8) as ln[1− f̂(k)] + ln[1 + (1− s)F̂ (k)] with F̂ (k) = f̂(k)/(1− f̂(k)), one finds

that the asymptotic behavior of φ(λ, s) for both λ→ +∞ and s→ 1 reads

φ(λ, s) ∼ 1− 1

πλ

∫ +∞

0

ln[1− f̂(k)] dk

−
√

1− s
aπλ

∫ +∞

0

ln

(
1 +

1

k
2

)
dk (λ→ +∞ and s→ 1), (30)

where we have made the change of variable k = (1 − s)1/2k/a. Injecting (30) into the first

line of (15) and using the fact that the integral over k is equal to π, one has

u(x, s) ∼ δ(x− 0+)− 1

π

∫ +∞

0

ln[1− f̂(k)] dk

−
√

1− s
a

(x→ 0 and s→ 1), (31)

leading to

I1(g, s) ∼ s

[
f(g)− 1

π

∫ gmax

g

f(x) dx

∫ +∞

0

ln[1− f̂(k)] dk

]
−
√

1− s
a

∫ gmax

g

f(x) dx (g
f.b.−→ gmax and s→ 1), (32)

9



which reduces to

I1(g, s) ∼ sf(g)−
√

1− s
a

∫ gmax

g

f(x) dx (g
f.b.−→ gmax and s→ 1), (33)

since in the limit g
f.b.−→ gmax the second term on the first line of (32) is negligible compared

to the first one. From Eqs. (5), (18), (33) and (3) one gets

p̃(g, Ψ̂(q)) ∼
∫ gmax

g

f(x) dx (34)

×
[
Ψ̂(q)f(g)− (τcq)

γ/2

a

∫ gmax

g

f(x) dx

]
(g

f.b.−→ gmax and q → 0).

Inverse Laplace transforming (34) with respect to q yields

p(g, t) ∼
∫ gmax

g

f(x) dx (35)

×
[
Ψ(t)f(g) +

DII

aτc(t/τc)1+γ/2

∫ gmax

g

f(x) dx

]
(g

f.b.−→ gmax and t→ +∞),

with

DII =
sin(πγ/2)Γ(1 + γ/2)

π
. (36)

Equation (35) is the counterpart of Eq. (84) in Ref. [26] for jump distributions with a

bounded support. It gives a uniform expression of p(g, t) for f(η) with a bounded support

when both g
f.b.−→ gmax and t → +∞, and it reduces to the ‘one-jump’ contribution (29) in

the limits g
f.b.−→ gmax then t→ +∞, as it should be.

For 0 < γ < 1, Ψ(t) has an algebraic tail at large t, Ψ(t) ∼ [−Γ(−γ)]−1τ γc t
−1−γ, which

follows from the small q behavior of Ψ̂(q), Eq. (3), and for an algebraic f(η) near η = gmax,

this large t behavior of Ψ(t) together with Eqs. (23) and (35) yield the scaling form

p(g, t) ∼ ac2

τc

(gmax − g)3+2(α+1/γ)

[a(α + 1)]3+2/γ
K

(
gmax − g
a(α + 1)

(
t

τc

)γ/2)
(g

f.b.−→ gmax and t→ +∞), (37)

where K(y) is the same scaling function as in Eq. (85) of Ref. [26]. Namely,

K(y) =
1

y1+2/γ

(
DI

y
+DII

)
, (38)

with

DI =
sin(πγ)Γ(1 + γ)

π
, (39)
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and where we have used the reflection formula Γ(−z)Γ(z + 1) = −π/ sin(πz). It is readily

seen that K(y) has the following large and small argument behaviors

K(y) ∼

 DI y
−2(1+1/γ) (y → 0),

DII y
−1−2/γ (y → +∞).

(40)

In the plane (t, g) with g < gmax, the curve g ∼ gmax − a(α+ 1)(τc/t)
γ/2 corresponds to the

cross-over from a ‘concentration’ – or ‘one-jump’ – regime (for gmax−a(α+1)(τc/t)
γ/2 < g <

gmax) where the walker gets stuck for a long time t at the second maximum and then jumps

directly to the first maximum, to a ‘many-jumps’ regime (for g < gmax − a(α + 1)(τc/t)
γ/2)

where she/he travels a long walk of total duration t (with many jumps) between the second

and the first maxima.

For γ = 1, there is no scaling form such as (37) but the uniform expression (35) makes

it possible to determine the domains in the (t, g) plane corresponding to the ‘concentration’

– or ‘one-jump’ – regime and to the ‘many-jumps’ regime, respectively. Taking for instance

Ψ(t) = τ−1c exp(−t/τc), an algebraic f(η) near η = gmax, and comparing the two terms on

the right-hand side of (35), one finds that the ‘one-jump’ regime corresponds to the domain

gmax − 2
√
π a(t/τc)

3/2 exp(−t/τc) < g < gmax, (41)

and the ‘many-jumps’ regime to the complementary domain

g < gmax − 2
√
π a(t/τc)

3/2 exp(−t/τc). (42)

Finally, the large t behavior of p(g, t) at fixed g < gmax is dominated by the contribution

of realizations with several jumps between the first two maxima (‘many-jumps’ regime) and

one has [26]

p(g, t) ∼ sin(πγ/2)Γ(1 + γ/2)

πaτc

I2(g)2

(t/τc)1+γ/2
(t→ +∞), (43)

with I2(g) given by Eq. (18). It can be checked that Eq. (35) coincides with Eq. (43) in the

limits t→ +∞ then g
f.b.−→ gmax, as it should be.

Figure 1 gives a schematic representation of the different asymptotic behaviors of p(g, t)

in the plane [(t/τc)
γ/2, g/(gmax − g)] (with g < gmax) for a jump distribution f(η) algebraic

near η = gmax and 0 < γ < 1. The ‘one-jump’ (resp. ‘many-jumps’) regime is on the left

(resp. right) of the diagonal.
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1 ψ
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FIG. 1: Schematic representation of the asymptotic behaviors of p(g, t) for an algebraic jump

distribution near η = gmax and 0 < γ < 1 (amplitudes are given in the text and we assume that

a(α + 1)/gmax = O(1)). For t � τc and g/(gmax − g) . O(1), p(g, t) is given by Eq. (43). For

both t � τc and g/(gmax − g) ∼ gmax/(gmax − g) � 1, one has the scaling form (37) with K(y)

respectively given by the first line of (40) if (gmax − g)tγ/2 � gmaxτ
γ/2
c and by the second line of

(40) if (gmax − g)tγ/2 � gmaxτ
γ/2
c . For t . τc and gmax/(gmax − g) � 1, p(g, t) is given by Eq.

(29) with f(η) of the form (23). The one-jump (or concentration) regime corresponds to the region

on the left of the diagonal.

IV. NUMERICAL SIMULATIONS

We have performed numerical simulations to test some of our analytical predictions. For

discrete time random walks, we have characterized the effect of concentration, as predicted

in Eq. (24), numerically. To this purpose, we have numerically simulated RW of n steps as

defined in Eq. (1) where the jumps ηi’s are i.i.d. random variables with jump distribution

f(η) = 2α(α + 1)(1/2− |η|)α , −1/2 ≤ η ≤ 1/2 , (44)

which corresponds to the case studied in section II B, see Eq. (23) with gmax = 1/2 and c =

2α(α+ 1). Instead of computing the joint PDF pn(g, l), it is more convenient (numerically)

12



to compute the cumulative distribution function (CDF) p>n (g, l) defined by

p>n (g, l) =
n∑
`=l

pn(g, `) . (45)

The prediction in Eq. (24) for pn(g, l) implies that, for fixed l ≥ 2,

lim
n→∞

p>n (g, 1)

p>n (g, l)
∼ A(α, l)

gmax − g
, (η

f.b.−→ gmax), (46)

where only the amplitude A(α, l) depends on α and l (see Eq. (24)), the divergence ∝

(gmax − g)−1 being independent of these parameters. In Fig. 2 we show a plot of the ratio

10
0

10
1

10
2

10
-2

10
-1

10
0

p
>
(g

,1
)/

p
>
(g

,2
)

gmax-g

α = 0.0
α = 0.5

a/x

FIG. 2: Plot of p>n (g, 1)/p>n (g, 2), as defined in Eq. (45), as a function of gmax − g for two jump

distributions f(η) as given in Eq. (44), for which gmax = 1/2, for RWs of n = 100 steps. The

different symbols correspond to two different values of α: α = 0, i.e. the uniform distribution over

[−1/2, 1/2] (top curve) and α = 1/2. The statistics were performed over 108 samples. The solid

line is a guide to the eyes, confirming our prediction in Eq. (46) of the effect of concentration.

p>n (g, l = 1)/p>n (g, l = 2) with n = 100, as a function of gmax − g for two different values of

α. These numerical simulations show a good agreement with our predictions (46).

For CTRW, it is much more difficult to observe the effect of concentration on l = ±1

numerically, as this was already noticed in Ref. [26] in the case of jump distributions defined

on the full real line but with a fast decay (typically super-exponential). In the present case,

13



the observation of this regime, corresponding to the first line of Eq. (40), requires to sample

jumps extremely close to gmax accurately, which is very hard to achieve for long random

walks. On the other hand, our numerical simulations in Fig. 3 show a reasonably good

agreement with the scaling form predicted in Eq. (37) in the complementary ‘many-jumps’

regime corresponding to the second line of Eq. (40).
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100 101 102

p> (g
,t)

*(
t/o

c)
3a

/2
 (g

m
ax

-g
)-2

_
/(a
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2 )

y = (gmax-g)(t/oc)
a/2/(a(_ + 1))

t=2.104

t=4.104

t=8.104
H(y)

10-5
10-4
10-3
10-2
10-1
100

10-2 10-1 100

p>
(g
,t)

gmax-g

t=2.104
t=4.104
t=8.104

FIG. 3: Scaled plot, in a log-log scale, of p>(g, t)(t/τc)
3γ/2(gmax − g)2α/(a c2) as a function of

y = (t/τc)
γ/2(gmax − g)/[a(α + 1)], according to the predicted scaling form in Eq. (50), for α = 0

(and gmax = 1/2) and γ = 0.7. The different symbols correspond to different time t = 2.104, 4.104

and t = 8.104. The statistics were performed over 2.107 samples. In agreement with our prediction

in Eq. (50), this scaled plot indicates that the data for different times t collapse on a single master

curve, in the limit gmax− g � 10 and t� 1, which is the solid line, H(y) given in Eq. (51). Note

that there is not fitting parameter here. Inset: Same data but without any rescaling.

In our simulations, the jumps η were drawn from the distribution in Eq. (44) while the

waiting times τ ’s were drawn from a Pareto distribution of index γ, as in Ref. [26]:

Ψ(τ) =

 0 , τ < 1

γ τ−γ−1 , τ > 1 .
(47)
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For such Pareto distribution (47), the characteristic time τc is given by

τc = [Γ(1− γ)]1/γ . (48)

Here also, instead of the joint PDF p(g, t), we have computed the CDF p>(g, t) defined as

p>(g, t) =

∫ ∞
t

p(g, t′) dt′ . (49)

Our theoretical prediction for the joint PDF in Eq. (37) yields the following scaling form

for p>(g, t):

p>(g, t) ∼ a c2
(
t

τc

)−3γ/2
(gmax − g)2αH

(
gmax − g
a(α + 1)

(
t

τc

)γ/2)
(50)

for g
f.b.−→ gmax and t→ +∞,

where the function H(y) is obtained from the function K(y) in Eq. (38) and is given by

H(y) =
DI

γ
y + 2

DII

γ
y2 . (51)

In Fig. 3, we show the results of our numerical simulations where we plot

p>(g, t)(t/τc)
3γ/2(gmax − g)2α/(a c2) as a function of y = (t/τc)

γ/2(gmax − g)/[a(α + 1)] [see

Eq. (50)] for α = 0 and γ = 0.7. This scaled plot suggest a good collapse of the data for

different times t in the regime gmax − g → 0 and t→∞ in agreement with the scaling form

predicted in Eq. (50). As discussed above, the small y part of the plot, which corresponds

to the concentration (single step) regime, is too rarely sampled to be observed numerically.

V. SUMMARY

In this paper, we have studied the statistics of the gap g and the time interval between

the first two maxima of a RW with bounded jumps, −gmax ≤ η ≤ gmax. We have considered

discrete as well as continuous time RWs in the limit where the number of steps in the walk

goes to infinity. In both cases the statistics exhibit an interesting concentration effect by

which a gap close to its maximum possible value, g ≈ gmax, is much more likely to be

achieved by two successive jumps rather than by a long walk between the first two maxima.

More specifically, for a discrete time random walk, the number of jumps l between the first

two maxima is found to concentrate onto l = ±1 as g → gmax in the sense that for all l 6= ±1,
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p(g,±1)/p(g, l) → +∞ as g → gmax. Furthermore, for all jump distributions of practical

interest which behave algebraically as η → gmax (or are discontinuous to zero at η = gmax),

this divergence turns out to follow a universal behavior p(g,±1)/p(g, l) ∼ (gmax − g)−1 as

g → gmax. This result is clearly confirmed by our numerical simulations.

In the case of continuous time random walks, we have performed a thorough analysis of

the different asymptotic behaviors of the joint PDF p(g, t) in the plane (g, t), where t is

the time between the first two maxima. (Note that by p(g,−t) = p(g, t), we can restrict

ourselves to t > 0 without loss of generality). The main result of this study is the existence

of a scaling form for p(g, t) when 0 < γ < 1 [see Eq. (3)] and for algebraic (or discontinuous

to zero) jump distribution near η = gmax. Namely, we have shown in this case that there is

a scaling regime a(gmax − g)−1, t/τc � 1 with fixed a−1(gmax − g)(t/τc)
γ/2, in which p(g, t)

takes the scaling form given in Eqs. (37)-(40). For (t/τc)
γ/2 < a(gmax−g)−1, the statistics is

in the ‘concentration’ – or ‘one-jump’ – regime where the walker get stuck for a long time t at

the second maximum and then jumps directly to the first maximum. In the complementary

domain, (t/τc)
γ/2 > a(gmax − g)−1, the statistics is in a ‘many-jumps’ regime where she/he

travels a long walk of total duration t (with many jumps) between the second and the first

maxima. For γ = 1, or non algebraic jump distribution near η = gmax, there is no scaling

form and (37) is replaced with the uniform expression (35) from which it is also possible to

determine the domains in the (t, g) plane corresponding to ‘one-jump’ – and ‘many-jumps’

regimes. Our numerical simulations show a reasonably good agreement with our prediction

(37) despite the lack of a good sampling of the concentration regime in this case, which

prevented us from reaching an accuracy as good as in the discrete time setting.

The present work completes our previous results [24, 25] and [26] on the joint PDF of

the gap between the first two maxima and the time elapsed between them, for discrete and

continuous time random walks. In particular, all our results show a very rich behavior of

this joint PDF depending on the distribution of the jumps of the random walk. On the other

hand, recent works on the statistics of higher order gaps showed that the (marginal) PDF

of the k-th gap, between the k-th and (k + 1)-th maxima, becomes universal in the limit of

large k for jump distributions with a well defined second moment [19]. In view of this, it

would now be quite interesting to study the joint PDF of the k-th gap and the time elapsed

between the corresponding two maxima, and investigate the question of large k universality

of this joint PDF (with respect to the jump distribution, with or without second moment).
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This remains a challenging issue.
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