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Abstract-When the extended Kalman filter (EKF) is applied 
in the aircraft attitude estimation, two defects exist: one is compu­
tational complexity; the other is large linearization error. Aiming 
at these problems, central difference Kalman filter (CDKF) based 
on Stirling interpolation formulation is applied to the low-cost 
aircraft attitude estimation system which is of less accurate and 
high noisy sensors. First, the nonlinear mathematical model of 
aircraft attitude based on quaternion is established, then CDKF 
is applied to attitude estimation. Experimental results with real 
flying data show that CDKF is superior to the commonly used 
EKF method and unscented Kalman filter (UKF). The algorithm 
not only improves the attitude estimation precision and stability 
effectively, but also avoids the computing burden of Jacobian 
matrices. In addition, it is more simple and easy to implement, 
because it has only one adjustable parameter instead of three in 
the UKF circumstances. 

Index Terms-Attitude estimation; Quaternion; CDKF; UKF; 
EKF;SPKF 

I. INTRODUCTION 

Aircraft attitude can be defined as the orientation relation­
ship between the body frame and the earth frame, usually 
described by a set of Euler angles such as yaw, pitch and 
roll. It provides not only the pilot with the aircraft navigation 
information, but also a three-dimensional attitude reference 
for the autopilot, fire control system, the radar antenna and 
aerial camera and other airborne equipments. Therefore, it is 
a very important parameter for safety flying and in the above 
applications. 

Aircraft attitude is usually measured by the strapdown 
inertial navigation system [l] . First, the nonlinear math­
ematical model of aircraft attitude based on quaternion is 
established, then the appropriate filter is utilized to estimate the 
attitude. For the nonlinear aircraft attitude estimation problem, 
extended Kalman filter (EKF) is probably the most widely 
used at present. However, it is only reliable for systems 
which are almost linear and the Jacobian matrices are hard 
to obtain. In fact, these difficulties arise from its use of 
linearization [2] . To address this issue, unscented Kalman 
filter (UKF) was proposed by Julier and Uhlmann [3] . UKF 
can be applied directly to nonlinear systems, and it uses a num­
ber of deterministic sampling points to capture the posterior 
mean and covariance of the pertinent Gaussian approximate 
densities, which can be accurate up to the second order of 
any nonlinearity [4] . However, three scalar scaling parameters 
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(a, /3,�) are employed by the UKF. These parameters are 
always selected based on the nonlinearities of the system 
models [5], and the choice of the parameters' values will affect 
the filter's estimate precision. 

In this paper, Stirling interpolation in the state estimator 
is employed for aircraft attitude estimation problems. Stirling 
interpolation replaces the unscented transform in the UKF 
algorithm architecture. As proved in [5], [6], Stirling inter­
polation based central difference Kalman filter (CDKF) has 
the same or superior performance as the unscented transform 
based UKF, with one advantage over UKF: The CDKF uses 
only a single scalar scaling parameter, the central difference 
interval size h , as opposed to the three (a, /3, �) that the UKF 
uses [3]. As shown in our experiment, the CDKF algorithm 
can get better perfonnance on the estimate accuracy and error 
robustness. 

The paper is organized as follows. The attitude estimation 
algorithm based on the CDKF is given in Section II. Section III 
gives the relationship between quatemion and kinematics, the 
gyroscope model and establishes the nonlinear system model 
of aircraft attitude. Section IV presents the experimental results 
of the EKF, UKF and CDKF, and their estimate performances 
are compared. Finally, Section V summarizes this paper. 

II. CENTRAL DIFFERENCE KALMAN FILTER 

The CDKF is the core member of the sigma-point Kalman 
filters (SPKF) family of algorithms based on the sigma-point 
approach [5]. It uses a symmetric set of sigma points derived 
by Stirling interpolation to approximate nonlinear functions, 
whereas the EKF uses the Taylor series. The advantage of 
the Stirling interpolation is that the calculation of Jacobian 
matrices is not required, and can be accurate up to the second 
order of any nonlinearity. In case of Gaussian distributions 
of the system variables, the mean and covariance can be 
represented by these sigma points. More details about Stirling 
polynomial interpolation method for approximating nonlinear 
models can be found in [7]. 

Consider the nonlinear dynamic system composed of state 
equation and observation equation as follows. 

(1) 



where Xk ERn is the state vector, Yk E R7n is the observation 
vector, Wk E Rn is the state noise vector, and Vk E R7n is the 
measurement noise vector. It is assumed that Wk and Vk are 
zero-mean Gaussian noise processes with covariances given by 
Qk and Rko respectively. The flow of the central difference 
Kalman filter is formulated as follows. 

1) Initialization: 

Xo = E[xoJ, Po = E[(xo - xo)(xo - xofl (2) 

2) Calculate sigma-points for time-update: 

Xk-l = [Xk-l Xk-l + hVPk-l Xk-l - hVPk-ll (3) 

where h is the interval length, if the random variables obey a 
Gaussian distribution, the optimal value of h is V3. 

3) Time-update equations: 
These sigma points are further passed through the nonlinear 
function F(.) , such that the predicted sigma points for the 
discrete time k are derived 

(4) 

Finally, the first two moments of the predicted state vector are 
obtained by linear regression of the transformed sigma points 

n 

2n 
"" " rn * xk/k-l = L Wi Xi,k/k-l 

i=O 

Pk/k-1 = 2)W�1(x7,k/k-l - X�+i,k/k-l)(x7,k/k-l -
i=l 

(5) 

* )T + C2 ( * + * 2 * ) Xn+i,k/k-l wi Xi,k/k-l Xn+i,k/k-l - XO,k/k-l 

Fig. l. Experimental aircraft equipped with the SBG and CRR sensor 

P XkYk = J Wf' Pk/k-1 (Y�.n,k/k-l - Y�+12n,k/k-lf (11) 

Hence, the update of the estimated means and estimated error 
covariance at time k are given by: 

(12) 

Pk = Pk/k-1 - KkPy,K[ (13) 

where Kk is the Kalman gain and can be defined as: 

(14) 

III. AIRCRAFT ATTITUDE NONLINEAR MODEL 

X (X7,k/k-l + X�+i,k/k-l - 2X�,k/k-lfl + Qk-l (6) The CHR-6 dm AHRS sensor produced by the CH Robotics 
company in USA and the SBG AHRS sensor made by the 

rn _ h2-n rn _ 1 ( . _ ) Cl where Wo - �,wi - W Z - 1, . . .  , 2n ,wo 
1 C') h2-1' 4h 'Wi- = 4h4 (z=l, . . .  , n ) . 

4) Calculate sigma-points for measurement-update: 

5) Measurement-update equations: 
The predicted measurement points are obtained by transform­
ing the sigma points through H ( • ) 

French SBG System company are installed in the model 
plane which is applied for experimental flight, as shown in 
Fig, L Each of them contains a three-axis magnetometer, a 
three-axis angular rate sensor, and a three-axis accelerometer. 
The rate sensor, accelerometer and magnetometer measure 
angular rates, the gravity vector and local magnetic field vector 
respectively. The accelerometer and magnetometer are used for 
the rate gyro drift correction in order to improve the precision 
and stability of attitude estimation. 

(8) A. Quaternion and Kinematics 

Furthermore, the mean, covariance and cross-covariance are 
derived by 

n 

2n 
" rn * Yk/k-l = L Wi Yi,k/k-l 
i=O 

PYk = L[W�l (y7,k/k-l - Y�+i,k/k-l)(Y7,k/k-l -
i=l 

(9) 

* )T + C') ( * + * 2 * ) Yn+i,k/k-l Wi- Yi,k/k-l Yn+i,k/k-l - YO,k/k-l 

x (ytk/k-l + Y�+i,k/k-l - 2y�,k/k_l)Tl + Rk (10) 

Quaternion [8] is widely used to describe the attitude of an 
aircraft, because it provides nonsingular attitude descriptions 
and expresses arbitrary and large rotations of the aircraft[9]. 
The quaternion is a four-dimensional vector defined as follows 
qu = [a b c dV. Note that the quatemion has the constraint 

The quaternion kinematic differential equation [10] can be 
derived as follows. 

(16) 



where 

Fig. 2. Process Model for Angular Rates and Quatemion 
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w = [p q r]T ,and p,q and r are aircraft angular rate around x 

axis, y axis and z axis respectively in body frame. 
To solve the equations of kinematic, we can get quaternion, 

then make use of the relationship between quatemion and 
attitude angle, we can obtain the yaw, pitch and roll angles 
as follows 

{ I.(J = atan2(2( ab + cd), 1 - 2(b2 + c2)) 
e = arcsin(2( ac - bd)) 
1j; = atan2(2(ad + bc), 1 - 2(c2 + d2)) 

where I.(J , e and 1j; are yaw,pitch and roll respectively. 

B. Sensor Modeling 

(17) 

In this study, a gyroscope is used as the attitude sensor of the 
aircraft. The gyroscope is a sensor that measures the angular 
rate of the aircraft. The gyroscope system can be expressed 
mathematically by modeling the measured angular velocity as 
the true angular velocity with an additive bias [11]. The bias 
dynamics are considered to be driven by a Gaussian white­
noise process. The gyroscope model can be represented as 

(18) 

where W 9 = [pg qg r g] T is the measured angular velocity, 
W = [p q r]T is the true angular velocity, b is the drift and 
b = [bp bq br] T, nb = [nbp nbq nbr] Tis a zero-mean Gaussian 
white-noise process . 

C. State Equations 

We choose the quaternion, angular rates and gyro biases as 
state vector, that is 

The relationship among state vector is shown in Fig. 2. 
We can get the nonlinear state equation from Fig. 2 as 

follows 

p = Pg - bp 
q = qg - bq 
r = rg - br 

bp = nbp 

bq = nbq 

br = nbr 
. 1 
qu = 20(w)qu 

D. Measurement Equation 

(20) 

We can get nine measurements which can be chosen as a 
measurement vector directly from the rate sensor, accelerome­
ter and magnetometer. Therefore the measurement vector can 
be defined as 

y = [Accx Accy Accz Magx Magy Magz Pg qg rg] (21) 

where Accx,Accy and Accz are the gravity vector in the body 
frame, and ]\;1 agx,lvi agy and ]\;1 agz are the local magnetic 
field vector in the body frame. 

According to the basic principle of strapdown inertial navi­
gation, the relationship between what is measured in the body 
frame and the known values in the earth frame is: 

Accx 
Accy 
Accz 
lvIagx C; lviagy 
lvIagz 
Pg 
qg 
rg 

where 

b (a2 + b2 - c2 - d2 
Re = 2bc - 2ad 

2bd + 2ac 

Rb 
e "J 

2bc + 2ad 
a2 

_ b2 + c2 
_ d2 

2cd - 2ab 

Gx 
Gy 
Gz 
Mx 
My + n (22) 
Mz 
Pg 
qg 
rg 

2bd - 2ac ) 
2cd + 2ab 
a 2 - b2 - c2 + d2 

[Gx Gy Gz land [Mx My Mz l are the gravity vector and the magnetic 
field vector respectively whose values are known, b x 3 is a 3 order 
unit matrix , n is the measurement noise vector which is a zero-mean 
Gaussian white-noise process. 

IV. EXPERIMENT RESULTS 

In the experiment, the EKF algorithm which is internally integrated 
in the CHR-6 dm sensor and the SBG AHRS sensor combines 
data from onboard accelerometer, rate gyros, andmagnetic sensors 
to produce yaw, pitch, and roll angle estimates, the untreated angular 
rates, gravity vector and magnetic field vector data. The performance, 
reliability and ease of use of the SBG AHRS sensor have been 
kept to the highest levels, but it is more expensive compared with 
CHR system. The price of CHR system is about 89 dollars [12], 
while SBG system is more than 2400 dollars. In order to verify 
CDKF algorithm's estimated effect, we utilize the CDKF method 
to treat the angular rates, gravity vector and magnetic field vector 
data obtained from the the CHR-6 dm sensor to get attitude esti­
mation compared with the output of the SBG AHRS sensor. The 
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system parameters are as follows: The sampling frequency is 100 
Hz, the initial state estimate and covariance matrix are chosen as 
Xo = [0; 0; 0; 1; 0; 0; 0; 0; 0; of, Po = 104 X IlQXlO, IlQXlO is a 10 
order unit matrix, the interval length h = y'3, The initial stage of 
the plane is in the ground starting state. We make use of the data 
collected this period to calculate the observation noise covariance 
matrix Rk and process noise covariance matrix Qk, In order to 
compare the CDKF method with widely used attitude algorithms, 
we select the standard EKF algorithm and the UKF algorithm Then 
the experimental results are given by Fig, 3 to Fig, S, 

In order to observe the estimated effect of CDKF, UKF and EKF 
method conveniently, we partially enlarge the attitude estimation 
results in Fig, 3 to Fig, S, as shown in Fig, 6 to Fig, 8, 

In Fig, 3 to Fig. 5, we regard the output of the SBG AHRS 
sensor as the benchmark, then calculate the difference between the 
estimation of each method and the output of the SBG AHRS sensor 
in order to obtain three attitude angle estimation errors. 

The experimental results show the performance of the CDKF algo­
rithm is better than EKE The estimated attitude of CDKF coincides 
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Fig. 6. Partial enlarged drawing of yaw 

very well with the output of the SBG AHRS sensor, Since the 
statistics of nonlinearly transformed Gaussian approximate random 
variables in CDKF are calculated by the deterministic sampling based 
sigma-point approach without using the Jacobian matrices and the 
linearization of the nonlinear model, the uncertainties are propagated 
well and the accuracy of the state estimation has been improved 
over the EKF approach. The same advantages also exits in UKF, 
however, it has only one adjustable parameter in contrast to three 
in the UKF circumstances, which affect the accuracy of the state 
estimation. Hence, the performance of CDKF is better than that of 
UKE 

V CONCLUSION 

Aiming at the problem that low quality of the data collected 
from less accurate and high noisy sensors lead to the poor attitude 
estimation based on EKF, this paper presents an aircraft attitude 
estimation algorithm by introducing the CDKF method based on 
Stirling interpolation formulation, Experimental results show that the 
CDKF algorithm can get better performance on the estimate accuracy 
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and error robustness than that of EKF and UKF. Moreover, it it does 
not employ the calculation of the Jacobian matrices and the linear 
approximations to the nonlinear models. So it provides a new way 
to improve the precision of attitude estimation. 
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