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NOTE ON THE STABILITY OF VISCOUS ROLL-WAVES

BLAKE BARKER, MATHEW A. JOHNSON, PASCAL NOBLE, L.MIGUEL RODRIGUES, AND KEVIN ZUMBRUN

Abstract. In this note, we announce a complete classification of stability of periodic roll-wave solutions
of the viscous shallow-water equations, from their onset at Froude number F ≈ 2 up to the infinite-Froude
limit. For intermediate Froude numbers, we obtain numerically a particularly simple power-law relation
between F and the boundaries of the region of stable periods, that appears potentially useful in hydraulic
engineering applications. In the asymptotic regime F → 2 (onset), we provide an analytic expression of
the stability boundaries whereas in the limit F →∞, we show that roll-waves are always unstable.

1. Introduction

In this note, we announce the classification in [1, 2, 3] of spectral stability of roll-wave solutions of the
“viscous” St. Venant equations for inclined shallow-water flow, taking into account drag and viscosity.
Written in nondimensional Eulerian form, the shallow water equations for a thin film down an incline are

(1.1) ∂th+ ∂x(hu) = 0, ∂t(hu) + ∂x

(
hu2 +

h2

2F 2

)
= h− |u|u+ ν∂x(h∂xu),

where F is the Froude number and ν = Re−1 is the inverse of the Reynolds number. Here h(x, t) denotes
the fluid height whereas u(x, t) is the fluid velocity averaged with respect to height. The terms h and |u|u
on the right hand side of the second equation model, respectively, gravitational force and turbulent friction
along the bottom. Roll-waves are well-known hydrodynamic instabilities of (1.1), arising in the region
F > 2 for which constant solutions, corresponding to parallel flow, are unstable. They are commonly
found in man-made conduits such as aqueducts and spillways, and have been reproduced in laboratory
flumes [4]. However, up until now, there has been no complete rigorous stability analysis of viscous St.
Venant roll-waves either at the linear (spectral) or nonlinear level.

Roll-waves may be modeled as periodic wave train solutions of (1.1). In [2], it was proved for a large
class of viscous conservation laws and under suitable spectral assumptions that periodic wave trains are
nonlinearly stable (in a spatially-modulated sense). In [3, 5] this nonlinear analysis has been extended to
encompass all periodic wave train solutions of the shallow water system (1.1) that satisfy those spectral
assumptions. The main issue then is the verification of such assumptions. Here, we provide a complete
description of the set of stable roll-waves of (1.1): for each Froude number F > 2, we exhibit (either
theoretically or numerically) the range of spatial periods where stable roll-waves are found. To our
knowledge, this is the first complete result of stability in the case of shallow water equations. However,
let us mention the study in [6]: there, the authors studied the modulational stability of Dressler inviscid
roll-waves. A set of modulation equations is derived by assuming that the parameters which encode the
roll-waves slowly vary in time and space: lack of hyperbolicity of the modulation equations is expected
to provide a sufficient criterion for spectral instability of roll-waves under special kinds of large scale
perturbations.

In Section 2, we introduce the spectral problem and recall the spectral assumptions that have to be
verified in order to obtain nonlinear stability of periodic waves. In Section 3, we consider the intermediate
Froude number regime 2 ≤ F ≤ 100. We find a dramatic transition around F ≈ 2.3 from the small-F
description of stability to a remarkably simple power-law description of surfaces bounding from above
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and below regions in parameter space corresponding to stable waves. These surfaces eventually intersect,
yielding instability for all sufficiently large F . In Section 4, we focus on two asymptotic regimes: F → 2
(onset) and F → ∞. As F → 2, the shallow water equations reduce to a generalized Kuramoto-
Sivashinsky equation and we obtain asymptotic analytic formula for the stability boundaries. As F →∞,
we exhibit a non-trivial regime and an asymptotic model which admits only unstable roll-waves, indicating
the instability of roll-waves for sufficiently large F .

2. Formulation of the spectral problem

As the full nonlinear theory is given in Lagrangian coordinates of mass [5, 3], for the sake of consistency
we rewrite the viscous shallow water system (1.1) as

(2.1) ∂tτ − ∂xu = 0, ∂tu+ ∂x

(
τ−2

2F 2

)
= 1− τ u2 + ν∂x(τ−2∂xu),

where τ := 1/h and x denotes now a Lagrangian marker rather than a physical location x̃, satisfying the
relations dx̃/dt = u(x̃, t) and dx/dx̃ = τ(x̃, t). There is a one-to-one correspondence between periodic
waves of the Lagrangian and Eulerian forms. It also holds for the spectral problem in its Floquet-by-
Floquet description; see [7]. Thus there is no loss of information in choosing to work with the Lagrangian
form. Now we introduce the spectral problem. Denote by (τ̄ , ū, c̄) a particular periodic traveling (roll-
wave) solution of (2.1) of period X. Linearizing (2.1) about (τ̄ , ū) in the co-moving frame (x− c̄t, t) and
seeking modes of the form (τ, u)(x, t) = eλt(τ, u)(x), one obtains

(2.2)

(u+ c̄τ)′ = λ τ,

ν(τ̄−2u′)′ = (λ+ 2ūτ̄)u−
((

τ̄−3

F 2
− 2τ̄−3ū′

)
τ ′ + c̄u′

)
+

(
ū2 −

(
τ̄−3

F 2
− 2τ̄−3ū′

)′)
τ,

where primes denote differentiation with respect to x. Setting v = (τ, u)T , the spectral problem (2.2) may
be written as Lv = λv where L is a differential operator with periodic coefficients. By Floquet theory,
one has that λ ∈ σL2(R)(L) (the spectrum of L acting on L2(R)) if and only if there are ξ ∈ [−π/X, π/X)

and w ∈ L2
per([0, X]) (a function of period X) such that Lξ w = λw, where Lξ is the corresponding Bloch

operator defined via (Lξw) (x) := e−iξxL
[
eiξ·w(·)

]
(x). Consequently, the spectrum may be decomposed

into countably many curves λ(ξ) of L2
per([0, X])-eigenvalues of the operators Lξ. Roll-waves are proved

to be nonlinearly stable under the following diffusive spectral stability conditions:

(1) (D1) σL2(R)(L) ⊂ {λ ∈ C | <(λ) < 0} ∪ {0}.
(2) (D2) There exists a θ > 0 such that for all ξ ∈ [−π/X, π/X), σL2

per([0,X])(Lξ) ⊂ {λ | <(λ) ≤ −θξ2}.
(3) (D3) λ = 0 is an eigenvalue of L0 with generalized eigenspace Σ0 ⊂ L2

per([0, X]) of dimension 2.

For a discussion of the significance of these conditions, see [2]. In order to locate the spectrum, we
introduce the Evans function ESV (λ, ξ). Write (2.2) as a first order differential system by setting Z =
(τ, u, τ̄−2u′)T : Z ′ = A(·, λ)Z. Denoting the resolvent matrix R(·, λ) associated to this system, it follows

that λ ∈ σL2
per([0,X])(Lξ) if and only if λ satisfies ESV (λ, ξ) := det

(
R(X,λ)− eiξ XIdR3

)
= 0.

3. Numerical Study: Spectral stability for intermediate F

In this section, we report on numerical investigations of (D1), (D2) and (D3) in the regime 2 ≤ F ≤ 100
(see Figure 1) that is relevant for hydraulic engineering applications [4, 8]. We exhibit a simple description
of the stability region and find that for sufficiently large Froude numbers, stable roll-waves do not exist.
Our investigation roughly consists of two steps. To determine the global picture of spectrum of a linear
X-periodic operator L, we use Hill’s method, a Galerkin based truncation procedure which is implemented
into STABLAB [9]. However, this method is not sufficient to study the spectrum near the origin and
thus to verify hypothesis (D1), (D2) and (D3). For that purpose, we used the evaluation of the Evans
function and its derivatives on contours to determine the coefficients and estimate the error terms in the
expansion of ESV .
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Figure 1. Lower and upper stability boundaries for ν = 0.1, restricted to the slice
q = 0.4F . Solid dots show numerically observed boundaries. Pale dashes indicate approx-
imating curves given by (a) (upper) F 2/X = e0.087F 2.88 and (lower) F 2/X = e−2.97F 2.83,
(b) (upper) log(F 2/X) = 2.88 log(F ) + 0.087 and (lower) log(F 2/X) = 2.83 log(F )− 2.97.
Pale dotted curves (Green in color plates) indicate theoretical boundaries as F → 2+. (c)
Small- to large-F transition.

A suitable parameterization, available for all Froude numbers, is given by (q,X), where q = −c̄τ̄ − ū
is the total outflow and X is the period. In [1] we have gathered numerous pieces of evidence leading to
the clear picture that from F near 2.5− 3 and onward, stability is determined by simple relations

c−1 logF + c−2 log q + c−3 logX + c−4 log ν ≥ d− and c+1 logF + c+2 log q + c+3 logX + c+4 log ν ≤ d+

with higher and higher accuracy as F increases, for some universal constants c#j and d#. Constants

providing the lower and upper stability boundary are given approximately by c±3 = 1 and

c−1 = 0.69, c−2 = −3.5, c−4 = 0.18, d− = −0.11,

and

c+1 = 0.79, c+2 = −1.7, c+4 = 0.76, d+ = 2.2

respectively. In Figure 1 we illustrate this simple rule by providing one slice of the stability diagram
obtained by enforcing the arbitrary constraint q = 0.4F .

4. Stability in the limits F → 2 and F →∞

We now consider the two asymptotic regimes F → 2+ and F → ∞. We provide an analytical
description of the stability region in the limit F → 2+. The limit F → ∞ is studied by a combination
of asymptotic expansion and numerical simulations on the limit problems; roll-waves are always unstable
there.

4.1. Stability of roll-waves at onset F → 2+. We focus on the onset of roll-waves at 0 < F − 2� 1.
Various weakly nonlinear models have been derived depending crucially on the scaling between time and
space and mildly on the precise form of the diffusion term and on whether or not a vanishing viscosity
regime is under consideration. In the Korteweg-de Vries regime (ξ, τ) = (δ(x − 3t/2), δ3t) and in the

small amplitude limit h = 1 + δ2 h̃(ξ, τ), one obtains the generalized Kuramoto-Sivashinsky equation [10]
(up to additional rescaling):

(4.1) ∂τ h̃+ h̃∂ξh̃+ ε∂3ξ h̃+ δ
(
∂2ξ h̃+ ∂4ξ h̃

)
= 0, ε > 0.

The spectral and nonlinear stability of periodic traveling waves of (4.1) in the limit δ → 0 is fully de-
scribed in [11] and a companion paper [12]. The classification of stable periodic wave can be extended to
the shallow water equations (1.1) as follows.
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Proposition 4.1. For δ =
√
F − 2 sufficiently small, uniformly for δX on compact sets, periodic traveling

waves of (2.1) are stable for (Lagrangian) periods X ∈ ν1/2

τ
5/4
0 δ

(Xl, Xr) and unstable for X ∈ ν1/2

τ
5/4
0 δ

[Xmin, Xr)

and X ∈ ν1/2

τ
5/4
0 δ

(Xr, Xmax] where Xmin ≈ 6.284, Xl ≈ 8.44, Xr ≈ 26.1 and Xmax ≈ 48.3.

We do not expect other stability regimes when δ is sufficiently small. Indeed, both in the regime
(ξ, τ) = (δ−1(x − 3t/2), δ−1t) and in the regime (ξ, τ) = (x − 3t/2, δt) amplitude equations have been
derived from the shallow water equations indicating that periodic waves are always unstable [13], [14].
Numerical observations support this expectation.

4.2. Infinite-Froude number limit. To consider now the infinite-Froude number limit F → ∞, we
introduce a suitable rescaling in the equations and profiles with the requirements that (i) the limiting
system (F → ∞) be nontrivial and (ii) the limit be a regular perturbation. This results in a one-

parameter family of rescalings indexed by α ≥ −2, given by τ = aFα, u = bF−α/2, c = c0F
−1−3α/2, X =

X0F
−1/2−5α/4 and q = q0F

−α/2 where a, b : R → R and c0, X0, q0 are real constants. Under this
rescaling, we find that X-periodic traveling wave solutions of (2.1) correspond to X0-periodic solutions
to the rescaled profile equation

(4.2) a′′ = (−a2/c0k20ν)
(
k0a
′F−3/2−3α/4(c20 − 1/a3)− 1 + a(q0 − c0F−1a)2 − 2c0k

2
0ν(a′)2/a3

)
,

where b = −q0−c0F−1a. Noting that the behavior of F−3/2−3α/4 as F →∞ depends on whether α = −2
or α > −2, one obtains two classes of limiting profile equations as F → ∞. An additional rescaling
Fb = b̌ and F 1/2+α/4λ = Λ yields the associated spectral problem

(4.3) Λa− c0k0a′ − k0b̌′ = 0;
Λb̌− c0k0b̌′ − k0(a/ā3)′

F 3/2+3α/4
= − 2

F
āb̄b̌− b̄2a+ νk20(b̌′ā2 + 2c0ā

′a/ā3)′,

where (a, b) denotes the perturbation of the underlying state (ā, b̄). Observe that for α > −2 the lim-
iting profile equations, selection principles, and spectral problems are independent of the specific value
of α. Noting that (4.3) is, again by design, a regular perturbation of the appropriate limiting spectral
problem as F →∞, the following sufficient instability condition is obtained using standard perturbation
techniques.

Proposition 4.2. For all α ≥ −2, the profiles of (4.2) converging as F → ∞ to solutions of the
appropriate limiting profile equation, are spectrally unstable if the appropriate limiting spectral problem
about the limiting profiles admit L2(R)-spectrum in Λ with positive real part.

We have investigated the stability of the limiting spectral problems numerically in both the cases α = −2
and α = 0; recall that the results for α = 0 in fact hold for all α > −2. This numerical study strongly
indicates that, in both cases, all periodic solutions of the appropriate limiting profile equations are
spectrally unstable and hence spectrally stable periodic traveling wave solutions of the viscous St. Venant
system (2.1) do not exist for sufficiently large Froude numbers; see Figure 2.

5. Conclusions and Perspectives

We have provided a complete stability diagram in the plane (F, q,X, ν), F being the Froude number,
q the total discharge rate, X the period and ν the Reynolds number. For various parametrizations of
the problem, we found that for each F ∈ [0, F ∗) (for some F ∗ < ∞), ν > 0 and q fixed in some (F, ν)-
dependent interval, there exist Xmin(F, q, ν) and Xmax(F, q, ν) such that X-periodic roll-waves are stable
if X ∈ (Xmin(F, q, ν), Xmax(F, q, ν)). Generically, the transition to instability for X ≈ Xmin(F, q, ν) is
due to a loss of hyperbolicity of the Whitham modulation equations. On the other hand, the transition
to instability for X ≈ Xmax(F, q, ν) is due to the crossing of a pair of eigenvalues far from the origin and
is thus undetectable by similar criteria.
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Figure 2. In (a) and (b) we plot a numerical sampling of the (unstable) spectrum cor-
responding to the F → ∞ limiting spectral problems for the cases α = −2 and α > −2,
respectively, for a representative periodic stationary solution of the appropriate limiting
profile equation.

Up to now, we have considered only viscous shallow water equations with turbulent friction terms. It
is an interesting and physically relevant problem to extend our results to more realistic turbulent shallow
water models such as (a viscous version of) the one derived in [8] which accurately reproduces Brock’s
experiments on turbulent roll-waves [4]. Another physically relevant problem is to consider laminar roll-
waves as found e.g. in [15]. In this case, we would have to take into account surface tension effects as
they play there an important role.

References

References

[1] B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, K. Zumbrun, Stability of viscous St. Venant roll-waves: from
onset to infinite-Froude number limit, submitted (2015) arXiv:1503.01154.

[2] M. A. Johnson, P. Noble, L. M. Rodrigues, K. Zumbrun, Behavior of periodic solutions of viscous conservation laws
under localized and nonlocalized perturbations. Invent. Math. 197(1) (2014) 115–213.

[3] L. M. Rodrigues, K. Zumbrun, Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in
inclined thin film flow, SIAM J. Math. Anal. 48(1) (2016) 268–280.

[4] R. R. Brock, Development of roll-wave trains in open channels. J. Hydraul. Div. 95 (1969) HY4, 1401–1427.
[5] M. A. Johnson, P. Noble, and K. Zumbrun, Nonlinear Stability of Viscous Roll Waves. SIAM J. Math. Anal. 43 (2)

(2011) 557-611.
[6] A. Boudlal, V. Yu Liapidevskii, Stabilité de trains d’ondes dans un canal découvert. C.R. Mécanique 330, (2002)
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