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Abstract 
This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine 
from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic-
ity. The basics of biochemistry, the mechanisms of action and resistance and pharmacokinetics are 
presented. Then an overview of available veterinary products, their efficacy and their toxicity 
against target species, human and environment is provided. 
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1. Introduction 
Enrofloxacin (Figure 1(c)), or 1-Cyclopropyl-6-fluoro-7-(4-ethyl-1-piperazinyl)-1,4-dihydro-4-oxo-3-quinoli- 
necarboxylic acid, belongs to fluoroquinolone family which is a subfamily of quinolone. The first quinolone is 
the Nalidixic acid (Figure 1(a)) used in animal at the beginning of 1980s, enrofloxacin is the first fluoroquino-
lone patented in 1984 [1]. The huge evolution in the quinolone family is the addition of a fluor atom on the 6th 
position which improves quinolones’ antibacterial spectrum [2] and creates the fluoroquinolone subfamily. 
Quinolones have an action on bacterial topoisomerase. The marketing authorization reports a large antimicrobial 
spectrum for enrofloxacin, which is efficient on most gram-negative and gram-positive bacteria but not efficient 
on anaerobic bacteria [3]. But with 3.6 tons sold per year in France for animal use [4], fluroroquinolones are an 
important family in veterinary medicine that increases the probability of selecting resisting bacteria. 

2. Action Mechanism of Enrofloxacin 
2.1. Important Physicochemical Properties of Enrofloxacin 
Enrofloxacin is a zwitterionic molecule with a pKa1 = [5.88 - 6.06] and a pKa2 = [7.70 - 7.74] [5]. The lowest  
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Figure 1. Structure of (a) Nalidixic Acid; (b) Ciprofloxacin and (c) Enrofloxacin.                            

 
pKa is due to the carboxyl acid group and the second to the basic tertiary amine. So enrofloxacin doesn’t bear 
charge between this two pH. Moreover it is a lipophilic molecule with a logP of 4.70 at a pH of 7 [6], but 1.88 ± 
1.43 with ACDLabs. 

The Active metabolite of enrofloxacin, ciprofloxacin (Figure 1(b)) or 1-Cyclopropyl-6-fluoro-1, 4-dihydro-7- 
(1-piperazinyl)-4-oxo-3-quinoline carboxylic acid, which is available as a drug product on veterinary and human 
market, is a multiple acid with pKa1 = 5.15 and pKa2 = 8.25 [7]. Ciprofloxacin is less lipophilic than enroflox-
acin with a logP of −1.11 at a pH of 7.4 [8]. 

2.2. Targets’ Mechanism of Action 
Enrofloxacin, like the other quinolones, has two mains targets of the topoisomerase family. Although these pro-
teins exist in eukaryotes cells, quinolones have less affinity for eukaryotes’ topoisomerases than for the DNA 
Topoisomerase II (Gyrase) and the DNA Topoisomerase IV (Topo IV) two major bacterial topoisomerase [9]. 
The Gyrase and the Topo IV are two tetramers (Figure 2(a)) formed respectively of two GyrA and two GyrB 
and of two ParC and two ParE. Moreover GyrA and GyrB are homologous respectively with ParC and ParE 
[10]. 

The Gyrase has an important role in bacteria’s life by modifying the topology of the spiral DNA. Indeed, the 
positive supercoiling stabilizes the DNA and the strands’ separation becomes more difficult [11]. Moreover 
transcription generates a positive supercoiling accumulation that can stop transcription. This positive supercoil-
ing can be released by the Gyrase, which enhances transcription [12]. To do this, the Gyrase binds and wraps 
around itself a strand of DNA (Figure 2(b)) with the help of the C-terminal domain [13] and cleaves it (Figure 
2(c)) with mediating of the catalytic tyrosine Tyr 122 [14] of each GyrA. Tyrosines form covalent phosphotyro-
syls with each 5’ phosphoryl terminus of both strands, which remain binding during the reaction [15]. This reac-
tion forms a gap in sequence (called G-DNA). The GyrB part catches the other DNA sequence (called trans-
ported DNA or T-DNA). The T-DNA is passed through the opened G-DNA (Figure 2(d)) [16]. The G-DNA is 
closed in an ATP-dependent reaction (Figure 2(e)) [17]. Of this reaction results an adding of negative coiling. 

The Gyrase is able to do an intermolecular strand passage at the end of the replication like the Topo IV but  
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Figure 2. Mechanism of action of Gyrase, with intervention of Gyrase part A (GyrA) and B 
(GyrB), gap DNA sequence (G-DNA), transported DNA sequence (T-DNA), ATP and GDP. (a) 
Gyrase with GyrA dimer and GyrB dimer; (b) Interaction of Gyrase with two DNA sequences; (c) 
Fixation of an ATP molecule and cleavage of the G-DNA strand; (d) Passage of the T-DNA 
strand through G-DNA; (e) Closing of the G-DNA strand with ATP degradation.                  

 
without wrapping the DNA as the Topo IV, this is the major difference between reactions of both enzymes [18]. 
Topo IV catalyzes the segregation of the two daughter DNA molecules after the replication [19] more efficiently 
than Gyrase [20]. 

2.3. Interactions between Fluoroquinolones, DNA and Its Target 
The penetration in the bacteria differs between Gram-positives and Gram-negatives bacteria. For Gram-negative 
bacteria, fluoroquinolones pass the outer membrane mainly through porins [21] [22]. The trimeric OmpF porin 
is mainly used by fluoroquinolone, this pathway can be modulated by Mg2+ [23]. But it seems that some qui-
nolones can promote a pathway by interacting with the Lipopolysaccharide (LPS) and create a lipophilic passage 
[24]. For Gram-positive bacteria the diffusion process is the main uptake pathway [25]. 

In the case of mycobacteria the high lipid level of the membrane allows fluoroquinolones to diffuse through 
membrane [26].  

After the entrance in the bacteria, quinolones have two effects on the bacteria: bacteriostatic at low concentra-
tion level or bactericide at high concentration level. Rapidly after the Gyrase has formed a complex with the 
DNA strand, two quinolones bind with this complex, before the DNA’s cleavage [27]. This binding is reversible 
and induces a conformation modification in Gyrase [28]. This modification induces a cleavage of DNA in a par-
ticular location and forms a cleaved complex [29] [30]. At this step the action is still reversible, but reduces rap-
idly the activity of replication and has a bacteriostatic effect [31].  

The next two pathways are possible one for bacteriostatic concentration and the other for bactericide concen-
tration. For bacteriostatic concentrations, quinolones induce the SOS regulon controlled by the repressor lexA 
[32] [33]. Activation of the regulon induces the sfiA gene which codes for an inhibitor of cell division and bac-
teria form a long filamentous structure. This effect is still reversible [34]. This filamentous structure contributes 
to the death of bacteria [35]. 
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For bactericide concentration quinolones induce a chromosome fragmentation by creation of a suicide factor 
or by destabilization of a GyrA dimer [35]. The fragmentation can induce a rapid death or, by reassociation of 
the GyrA dimer, genomic mutation in bacteria [36]. 

2.4. Resistance Mechanism 
The resistance to fluoroquinolones in general, is today a main subject for the use of antibiotic substances in vet-
erinary medicine and was the subject of an EMA report [4]. Many studies show an augmentation in the devel-
opment of resistances to enrofloxacin [37] [38]. Moreover, another study shows the increase of resistance of 
Escherichia coli to quinolones and fluoroquinolones after using of enrofloxacin in calves [39].  

The mechanism of resistance to fluoroquinolones is based on many pathways: the change of targets, the pro-
tection of target, the lower expression of target, the improvement of the efflux pumps, and inactivation of 
fluoroquinolones. These mechanisms can be chromosomal or plasmide-mediated (Table 1) [40]. 

The most common mechanism is the mutation of Gyrase. In the subpart GyrA the mutation is mainly between 
Ala67 and Gln 106 for E.coli and other bacteria [41] [42]. The mutation is near the GyrA active site which is 
called Quinolone Resistance-Determining Region (QRDR). For GyrB two mutation are reported at Asp426 and 
Lys447 [43]. Only one Gyrase mutation is able to increase the Minimum Inhibitory Concentration (MIC) up to 
64 times [41], but the GyrB mutation seems to be less effective in resistance against nalidixic acid than the 
GyrA mutation [44]. 

The mutation of Topo IV is also described but, until today, always with at least one Gyrase mutation. There-
fore, these mutations seem to be developed in a second time to increase the resistance more than only Gyrase’s 
mutations. A QRDR can be also characterized in the parC of topoisomerase IV between Tyr 57 and Glu84 [45]. 

The protection of target can be attributed to a qnr gene often present on a Plasmide-Mediated Quinolone Re-
sistance (PMQR) or in the chromosomal DNA. The Qnr protein is a dimere which binds with Gyrase and de-
creases the binding of quinolones with DNA-Gyrase-Qnr complex. But it seems that the Qnr protein reduces the 
interaction between DNA and Gyrase [46]. Another theory is that the Qnr protein destabilizes the DNA-Gyrase- 
quinolone complex and promotes the DNA repair after cleavage [47]. 

An hypothesis of resistance is the slow growth of cell, bacteria growing slowly seem to resist better, but this 
mechanism is not known today [40] [48]. 

Although resistances are often attributed to the Gyrase or Topo IV mutations, decrease of influx and increase of 
efflux mechanisms are important pathways of resistance common to a large number of unrelated antibiotics [49]. 
This defines a Multiple Antimicrobial Resistance (MAR) phenotype. E. coli bearing a MAR operon has higher 
resistance for the quick death by fluoroquinolones [50]. This operon can induce a decrease of OmpF pumps [51] 
and an increase of efflux with AcrAB protein [52]. The decrease of porins can also be attributed to PMQR [53].  

2.5. Recommendations to Prevent Resistance 
Given the rapidity of development of resistance, we have to consider with the MIC, the Mutant Prevention Con-
centration (MPC). MPC is a recent indicator which is not well standardized. Commonly MPC50 is the concen-
tration where 50% of the colonies doesn’t contain resistant mutant after 72 hours of incubation. To count the 
mutants, a Polymerase Chain Reaction (PCR) is used but only known resistant mutation is tested [54]. Between 
MIC and MPC there is a window where enrofloxacin is effective but also where mutants are selected.  

The data recorded in Table 2 show that the window between the MIC and the MPC can be very important 
with a MPC/MIC between 1.6 and 64. This high difference can explain the explosion of resistance against 
enrofloxacin and might be a base to define new guidelines and dosage for enrofloxacin. 

 
Table 1. Possible origins of resistances to fluoroquinolones.                                                     

Chromosomal resistance Plasmide-mediated resistance 

Mutation of target Lower expression of target 

Lower expression of target Protection of target Improvement of efflux pumps 

Protection of target Improvement of efflux pumps Inactivation of fluoroquinolones 
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Table 2. MIC and MPC of enrofloxacin for some bacteria.                                                       

Bacteria MIC (µg/mL) MPC (µg/mL) (MPC/MIC) References 

Escherichia coli [0.022 - 0.03] [0.17 - 0.5] [7.8 - 16] [67] [107] 

Staphylococcus pseudintermedius 0.13 0.27 2 [108] 

Rhodococcus equi [0.5 - 1] [8 - 64] [16 - 64] [109] 

Mannheimia haemolytica 0.16 0.25 1.6 [110] 

Salmonella Typhimurium [0.06 - 0.125] [1 - 2] 16 [67] 

Pseudomonas aeruginosa 2 [16 - 32] [8 - 16] [67] 

3. Pharmacokinetic of Enrofloxacin 
3.1. Absorption 
There is high variation of bioavailability after oral administration of enrofloxacin between polygastric and 
monogastric animals from 10% to 80% [55] [56]. This has a direct consequences on the galenic, oral presenta-
tions are reserved for pigs, poultry, calves, and carnivores and only injectable solutions are available for cattle. 
Moreover, bioavailability depends on whether the animals are fed or fasted [55] [57], and of the presence of ion 
[58]. These interferences can be explained by the formation of a complex between cation and fluoroquinolone 
which cannot permeate through the digestive barrier [59]. Another consequence of this complex is the influence 
of the hardness of water notably in poultry farming where the dilution in water is used [60]. But lipophilic com-
pounds in food can enhance oral bioavailability of fluoroquinolone [61]. 

In addition to passive diffusion allowed by enrofloxacin lipophilicity, active transporters have also an impor-
tant role in intestinal absorption [62]. But these transporters are also important to eliminate fluoroquinolones 
[62]. 

The intramuscular bioavailability is 96% with a maximum concentration 3 hours after administration [3]. In-
tramuscular bioavailability can be enhanced by solid lipophilic nanoparticles, this technic enhances the duration 
of enrofloxacin in plasma [3]. 

3.2. Metabolism 
After administration a high part of enrofloxacin is metabolized into ciprofloxacin in most of species (Table 3). 
Enrofloxacin has an active metabolite, ciprofloxacin [63], obtained by deethylation of the ethyl on the piperazin 
ring. Other metabolites are obtained but they don’t have antimicrobial effects [64]. 

Only poultry does not have a huge part of enrofloxacin metabolized in ciprofloxacin. The first hepatic pass 
doesn’t have a lot of effect, only 7% of enrofloxacin is metabolized [65]. Moreover ciprofloxacin seems a more 
potent drug than enrofloxacin [66] [67]. These elements are in favor to grant a more important place to ciprof-
loxacin in the effects of enrofloxacin-based drugs. 

3.3. Distribution 
Distribution of enrofloxacin and ciprofloxacin to tissues depends on drug’s free concentration, which depends 
itself on the concentration of protein and the strength of this biding.  

The difference between ciprofloxacin and enrofloxacin protein binding (Table 4) are in favor of the theory of 
enrofloxacin’s role of prodrug. Indeed, in some species ciprofloxacin is less bound with proteins, so it is able to 
be more available to be effective. Moreover, enrofloxacin can interact with other protein-binding drugs for in-
stance it increases the clearance of flunixin meglubine [68]. 

As described in Table 5, the volumes of distribution of enrofloxacin and ciprofloxacin in different species are 
all higher than 1. So enrofloxacin and its metabolite diffuse strongly in tissues, and molecules can be present in 
cells, so being inactive. Contrary to what we might expect considering its protein binding, ciprofloxacin doesn’t 
diffuse in tissues more than enrofloxacin. Data of Table 6 suggest a high affinity of drugs for lung and kidney, 
even if data confirm enrofloxacin’s and ciprofloxacin’s good diffusion. 
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Table 3. Percent of ciprofloxacin after enrofloxacin given.                                                       

Species Ciprofloxacin percent of enrofloxacin plasma concentration References 

Dogs 40 [65] 

Dairy cows 59 [75] 

Steers 64 [75] 

Chickens <10 [111] 

Pigs 51 [112] 

Goats 34 [71] 

 
Table 4. Protein binding of enrofloxacin and ciprofloxacin.                                                      

Species Percent of bond enrofloxacin (%) Percent of bond ciprofloxacin (%) References 

Dogs 34 18 [113] 

Dairy cows 59.4 33.7 [75] 

Steers 60.8 49.6 [75] 

Chickens 23 ND [114] 

Pigs [31.1 - 37.1] 35 [115] 

 
Table 5. Pharmacokinetics parameters of enrofloxacin and its metabolite ciprofloxacin.                                     

Species 
t1/2 (h) * Cl (mL/min/kg) ** Vss (L/kg) *** 

References 
Enro Cipro Enro Cipro Enro Cipro 

Dogs 2.3 2.8 12.16 7.8 2.45 1.92 [65] 

Dairy cows 3.69 2.96 24.16 ND 1.56 ND [75] 

Steers 5.5 7.60 11.6 ND 1.59 ND [75] 

Chickens 6.99 3.11 3.30 15.45 1.98 4.04 [111] 

Pigs 26.6 2.60 3.0 17.30 6.40 3.80 [69] 

Goats 1.39 [1.82-2.72] 22.18 19.59 1.27 3.33 [71] [116] 

*elimination half-live, **clearance, ***volume of distribution at the steady state. Enro: enrofloxacine, Cipro: ciprofloxacine. 
 

Table 6. Maximal concentration (C) and area under the curve (AUC) of enrofloxacin (ENR) and ciprofloxacin (CIP) after an 
intravenous injection of 5 mg/kg of enrofloxacin [117].                                                             

 Plasma† Muscle‡ Liver‡ Spleen‡ Lung‡ Kidney‡ 

 ENR CIP ENR CIP ENR CIP ENR CIP ENR CIP ENR CIP 

C 4.44 0.18 3.48 0.19 3.67 2.95 11.04 0.25 3.82 0.86 8.98 2.78 

AUC 3.52 0.61 5.61 0.62 5.76 2.02 10.44 2.08 9.44 4.79 9.03 4.91 
†Unit of C is µg/mL and unit of AUC is µg.h/mL; ‡Unit of C is µg/g and unit of AUC is µg.h/g. 

3.4. Elimination 
Elimination parameters show great difference between species (Table 5), especially for pigs where the elimina-
tion half-life is high with 26 h [69]. Moreover, for chickens and pigs, clearance of ciprofloxacin is five times 
higher than enrofloxacin’s clearance and their enrofloxacin clearances are lower than other species. This differ-
ences might be attributed to a difference of elimination way. 
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Enrofloxacin’s elimination way is mainly renal. This has been proved in rat by nephrecotomizing and com-
paring with CCl4 hepatic impairment [70] and in goat with probenecid [71]. Probenecid has been shown to re-
duce the renal clearance of fluoroquinolones [72]. On the other hand, ciprofloxacin’s elimination is both hepatic 
and renal [73]. For both molecules there is an intestinal recirculation via the bile excretion, moreover, two hour 
after given, there is no significant difference in the concentration of enrofloxacin in the intestinal content be-
tween oral and intramuscular administration of enrofloxacin [74]. Lactation can influence significantly enrof-
loxacin’s and ciprofloxacin’s elimination by increasing two folds clearance in dairy cows comparative to steers 
[75]. It might be explained by an ionic trap. 

4. Veterinary Medicinal Products 
4.1. Available Veterinary Medicines 
The first veterinary product based on enrofloxacin was launched by the laboratory Bayer in 1991 (marketing 
authorisation in 1991) under the trade name Baytril® and it was an oral form for poultry [3]. Now, many veteri-
nary products on the basis of enrofloxacin are available on the market with at least thirty four veterinary medi-
cines under different forms including oral and injectable forms, tablets or bolus [3]. There are many target spe-
cies including domestic carnivores (dogs and cats), farm animals (cattle, pigs, poultry) and even exotic pets 
since 2010 [3].  

4.2. Therapeutic Indications and Uses in the Field Conditions 
Enrofloxacin is indicated in the treatment of local and systemic diseases caused by a wide range of 
Gram-negative and Gram-positive bacteria [4] [76]. The most important indication of enrofloxacin in all of the 
species is the treatment of respiratory infections but it is also indicated in the treatment of digestive, urinary, 
joint, genital, mammary and dermal infections [3] [77]. 

However, enrofloxacin is a third generation fluoroquinolone with a very large spectrum of activity so it has to 
be reserved to second intention. Indeed, in order to avoid fluoroquinolone resistances, it is important to reserve 
the use of enrofloxacin to infections resistant to over antibacterial agents and if possible under a susceptibility 
study [4]. 

In the field conditions, enrofloxacin is often off-label used empirically to prevent uterine infections in sus-
ceptible embryo-transfer mares. In fact, a conventional dose (5 mg/kg body weight) given pre-breeding followed 
by two further doses at 36 - 48 h post breeding are supposed to prevent bacterial adherence and provide effective 
bactericidal concentrations in utero [78]. 

Enrofloxacin is often used in aquaculture in Indonesia, Thailand and Vietnam. Indeed, because of the 
non-hygienic and stressful conditions in aquaculture facilities, the risk of bacterial infections is high and moti-
vates the widely use of antibiotics in fish feed for prophylactic and therapeutic purpose [79]. 

5. Therapeutic Efficacy 
Enrofloxacin is a powerful antimicrobial which have shown efficacy against a lot of bacterial diseases [4] [80]. 
The effectiveness of enrofloxacin against some bacterial infections in cattle, poultry, domestic carnivores (dogs 
and cats), rodents, lagomorphs and crustaceans has been assessed in many published studies, as well during 
natural infections as during experimental infections (Table 7). Among these studies, some relate to classical in-
fections contained in the Summary of Product Characteristics (SPC) of veterinary products but some evaluate 
the efficacy of enrofloxacin in species for which there is no marketing authorisation or against specific bacteria 
such as Anaplasma marginale in cattle, Ehrlichia canis and Brucella canis in dogs, Bartonella henselae or Bar-
tonella clarridgeiae and Chlamydophila felis in cats, Toxoplasma gondii in Calomys callosus or even Vibrio 
harveyi in Artemia franciscana (Table 7). 

6. Adverse Effects 
Overall, the fluoroquinolones are well tolerated with fewer adverse effects that are not very serious, especially 
when compared to their benefits [80] [81]. The most common side effects of enrofloxacin are digestive disorders 
including nausea, abdominal discomfort, vomiting and diarrhoea [81] [82] and inflammatory reaction at the site  
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Table 7. Twenty published studies examining the efficacy of enrofloxacin.                                          

Target  
specie(s) 

Disease(s) and/or  
bacterial agent(s) 

Type of 
infection 

Regimen of  
enrofloxacin 

Purpose  
of the study 

Number  
of animals Result(s) References 

CATTLE       

Dairy 
cows 

Acute  
clinical mastitis 

(Escherichia coli) 
N 

5 mg/kg IV  
then SC  

24 h later 

Comparative  
efficacy of a ENR + 
KET treatment and  

a KET treatment 

132  
(64 ENR + KET,  

no controls) 

Inefficacy of  
ENR to treat  
acute clinical  

E. coli mastitis 

[118] 

Sahiwal  
cattle 

Anaplasma  
marginale N 5 mg/kg IV  

SID for 5 days 

Comparative  
efficacy of ENR,  

OXY and IMI 

60 
(15 per group  
+ 15 controls) 

Inefficacy of  
ENR to clear  

persistent 
infection 

[119] 

Holstein 
calves 

Anaplasma  
marginale E 

7.5 mg/kg in a  
single dose  

or twice every  
3 days 

Comparative  
efficacy of ENR  
(2 regimens) and 

LA-OXY 

24  
(6 per group  
+ 6 controls) 

Superiority  
of ENR [120] 

Calves 

Pneumonic  
pasteurellosis  
(Pasteurella  

haemolytica A1) 

E 2.5 mg/kg SC 
SID for 3 days Efficacy of ENR 

36  
(12 ENR + 12 

positive controls  
+ 12 negative 

controls) 

Inefficacy  
of ENR to treat  
experimentally 

induced  
pneumonic  

pasteurellosis 

[121] 

Feeder  
calves 

Bovine  
respiratory disease  
(Mh, Pam, Hs, Mb) 

N 
12.5 mg/kg  

SC in a  
single injection 

Comparative  
efficacy of ENR  
and TUL in two  

different  
states of USA 

500  
(125 per  

group per site) 

Superiority  
of TUL [122] 

POULTRY       

Chickens 

Escherichia coli  
(Ec) and  

Pasteurella  
multocida (Pam) 

E 
10 mg/kg BID  

in drinking water  
for 5 days 

Efficacy of ENR  
(given  

immediately  
or 6 hours after  

infection) 

Ec: 30  
(10 per group  
+ 10 controls)  

Pam: 20  
(7 per group  
+ 6 controls) 

Efficacy  
of ENR against  

Ec and Pam 
[123] 

Broilers 
Mycoplasma  
gallisepticum  

(Mg) 
N 

5 mg/kg in  
drinking water  
at 1 - 10 and  

22 - 32 days of 
age 

Efficacy of ENR  
in a treatment  

program against  
Mg in offspring of 

Mg-infected  
chicken-broiler  

breeders 

45,000  
(22,500 ENR  

+  
22,500 controls) 

Efficacy  
of ENR [124] 

Chicks 
(White  

Leghorn) 

Salmonella  
enterica  
Serovar  

Typhimurium  
DT104 

E 

10 mg/kg for 5  
days (1) or 25 

mg/kg for 2 days 
(2)  

or 50 mg/kg for  
1 day (3)  

(continuously  
or pulsed in  

water or gavage) 

Efficacy of ENR 
(comparative  

efficacy of high  
dose short duration 

treatments  
and conventional 

treatment) 

481 (151 in (1)  
+ 141 in (2)  
+ 89 in (3)  

+ 100 controls) 

Efficacy and  
best compromise 

for the 2-day  
2.5 dosing  
treatment 

[125] 

Broilers 
(male  

chicks) 

Colibacillosis 
(Escherichia coli) E 

50 ppm in drink-
ing water for 7 

days 

Comparative  
efficacy of  

ENR and bacterio-
phage (individually 
and in combination) 

320 (40 for  
each one of the  
8 treatments) 

Superiority of  
ENR but synergy 

between ENR  
and bacteriophage 

[126] 

Turkeys 
(poults) 

Respiratory  
infections due to 
Ornithobacterium 

rhinotracheale  
(associated with  

avian  
metapneumovirus) 

E 

10 mg/kg in  
drinking water  
during 20 hours  

for 5 days or  
50 mg/kg during  
5, 10 or 20 hours  

in a single day 

Efficacy of ENR 
(comparative  
efficacy of  
4 regimens) 

80 (16 per  
group +  

16 controls) 

Superiority  
of the 10 mg/kg 

5-day ENR  
treatment 

[127] 
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Continued 

DOMESTIC CARNIVORES     

Dogs Ehrlichiosis  
(Ehrlichia canis) E 

5 or 10 mg/kg  
PO BID  

for 21 days 

Comparative  
efficacy of ENR  

(2 regimens)  
and DOX 

13 

Inefficacy of  
ENR to clear  

Ehrlichia  
canis infection 

[128] 

Dogs 

Recurrent  
superficial (S) and 

deep (D)  
pyoderma 

N 

5 mg/kg PO SID 
continued up to  
1 (S) or 2 (D)  
weeks after  

clinical recovery 

Efficacy of ENR 9 (S) + 3 (D) 

Efficacy,  
safety  
and  

convenience  
of ENR 

[129] 

Dogs Uncomplicated uri-
nary tract infections N 

18 - 20 mg/kg  
PO SID  

for 3 days 

Comparative  
efficacy of ENR  
(high dose short  

duration treatment)  
and AMO-CLA 

68 (35 ENR + 33 
AMO-CLA) 

Non-inferiority  
of a high dose  
short duration  
ENR treatment 

[82] 

Dogs Brucellosis  
(Brucella canis) N 

5 mg/kg  
PO BID  

for 30 days 

Efficacy of ENR  
for the eradication  
of Brucella canis  

in a kennel 

12 

Incomplete  
efficacy of ENR 

but safety use 
during gestation 

[130] 

Cats 

Chronic  
bartonellosis  

(B. henselae and  
B. clarridgeiae) 

N  
(25 cats)  

+ E  
(18 cats) 

22.7 mg  
PO BID for  

14 or 28 days 

Comparative efficacy 
of ENR and DOX 
(each one with 2 

treatment durations) 

43  
(23 ENR +  
17 DOX +  
3 controls) 

Efficacy of high 
dose long duration 

ENR treatment  
(4 to 6 weeks) 

[131] 

Cats 
Conjunctivitis 

(Chlamydophila  
felis) 

N 

5 mg/kg SC SID  
for 3 days then  

PO SID for  
11 days 

Comparative  
efficacy of  

ENR and DOX 

25  
(14 ENR  

+ 11 DOX) 

Equal  
improvement  
of ENR and  

DOX  
in clinical  

signs  
and infection 

status 

[132] 

RODENTS       

Mice 
Systemic  
infections  

(Escherichia coli) 
E 5 mg/kg  

SC or PO 

Efficacy of ENR  
(2 different routes  
of administration) 

NP 

Efficacy of ENR  
and superiority  

of the  
injectable  
form (SC) 

[133] 

Calomys 
callosus 

Toxoplasmosis 
(Toxoplasma  

gondii) 
E 

3 mg/kg  
SC SID for  

3 days 

Comparative  
efficacy of  

ENR and SUL 

15  
(5 ENR + 5  

SUL + 5 controls) 

Efficacy of ENR  
as a potential  

alternative drug 
[134] 

LAGOMORPHS       

Rabbits Pasteurella  
multocida (Pam) 

N (11 rab-
bits)  

+ E (12 
rabbits) 

5 mg/kg SC BID  
for 10 days 

Efficacy of ENR  
in the elimination  

of Pam from  
asymptomatically 
infected rabbits 

11 (N) + 12 (E) 

Inefficacy  
of ENR  

to eliminate  
Pasteurella  
multocida 

[135] 

CRUSTACEANS       

Artemia 
franciscana 

(nauplii) 

Vibrio harveyi 
(strain PN9801) E 

ENR 4h before  
infection (A) or  

24 h after  
infection (B) 

Comparative  
efficacy of  

ENR (2 regimens) 
600 

Efficacy of  
ENR  

to stop the  
course  

of a bacterial  
infection in  

Artemia  
franciscana 

[136] 
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of injection for injectable forms, particularly in pigs [3]. However, some more serious adverse effects of enro-
floxacin could appear targetting the juvenile joints, the reproductive system, the ocular system and the central 
nervous system. 

The best known adverse effects of enrofloxacin concern the joints of young animals and result in arthropathy, 
articular cartilage degeneration, tendonitis and other forms of tendon injury [80] [81] [83] [84]. In order to try to 
understand quinolone related-arthropathy, a study was carried out in 1994 on juvenile New Zealand White Rab-
bits indicating that quinolones stimulate the cellular respiratory burst of immature articular chondrocytes which 
results in the production of oxygen-derived compounds highly toxic for the cartilage [83]. However the mecha-
nisms underlying fluoroquinolones-induced tendinopathy and cartilage degeneration remained incompletely un-
derstood. Thus, further studies were necessary such as the study carried out in 2008 on canine Achilles tendon 
cells and chondrocytes suggesting that enrofloxacin-induced tendinopathy and cartilage damage could be ex-
plained by the inhibition of cell proliferation, induction of apoptosis and DNA fragmentation [84]. In young 
chickens, a study led in 2009 to determine the chondrotoxic effects of enrofloxacin on avian articular cartilage 
indicates that only very high dosage of enrofloxacin can induce toxic effects in articular cartilage of growing 
chickens and that the intensity of chondrotoxicity is dose- and time-dependent. Thus it is suggested that qui-
nolone-induced arthropathy is far less expressed in birds than in mammals [85].  

To assess the effects of enrofloxacin on adult joints, a study was carried out in 2000. The effects of long-term 
administration of an injectable enrofloxacin solution were evaluated by the monitoring of physical and muscu-
loskeletal variables in adult horses. Adverse effects were only detected with high doses and consist of lameness, 
cellulitis, tendinitis, sheath effusion and even transient neurologic signs [86]. 

The adverse effects of enrofloxacin on the reproductive system were mainly investigated in males in order to 
assess the impact of this antibiotic on the fertility parameters. A study carried out in 2008 in male chickens sug-
gested that enrofloxacin at therapeutical dose does not affect the sperm motility, the weight of testes, wattles and 
combs and the testicular concentration of testosterone, ascorbic acid, total protein and cholesterol [87]. On the 
opposite, a study led in the same year to evaluate toxic effects of enrofloxacin on sperm quality in male mice in-
dicates that a fixed 150 mg/kg dose of enrofloxacin could lead to structural damages in the testicular tissue re-
sulting in disruption of spermatogenesis in the testes with deterioration of motility, content and morphology of 
sperms [81]. Although the toxicity of enrofloxacin on the female reproductive tract was less investigated, a re-
cent study on the use of intrauterine enrofloxacin infusion in healthy mares reveals acute effects including en-
dometrial ulceration, necrosis and haemorrhage and chronic effects including fibrosis and inflammation [88]. 

The ocular toxicity of enrofloxacin has been suggested by the association of enrofloxacin, retinal degeneration 
and blindness in cats [89] [90]. A retrospective clinical study carried out to assess the possible connection be-
tween the administration of parenteral enrofloxacin and the onset of acute retinal degeneration in cats highlights 
the potential retinotoxicity of parenteral enrofloxacin which can result in acute and diffuse retinal degeneration, 
particularly with dosages exceeding 5 mg/kg once daily (which is the manufacturer’s current dosage recom-
mendation). Mydriasis and blindness were frequently observed but some cats may recover their sight [89].  

At slightly higher doses, central nervous system signs of lethargy, anorexia and hypersalivation were ob-
served in dogs as shown in a recent study carried out to assess a high dose short duration enrofloxacin protocol 
in dogs with uncomplicated urinary tract infections [82]. 

7. Residues and Toxicity for Consumers 
In many animal species, the use of enrofloxacin lead to its de-ethylation to its primary metabolite ciprofloxacin 
and both enrofloxacin and ciprofloxacin would be found as drug residues in animal muscle and tissue [76] [91]. 

The consumption of meat containing these residues represent a significant threat against human health be-
cause it may result in disruption of the colonization barrier, development of drug-resistant bacterial strains or 
even allergies [91] [92]. In this regard, a recent study provides information on in vitro testing to determine if 
concentrations of veterinary antimicrobial agent residues entering the human colon remain microbiologically ac-
tive [92]. Thus, the authorities have defined Acceptable Daily Intakes (ADI) of antimicrobial veterinary residues 
by human. The European Medicines Agency (EMA) have set the overall ADI value for enrofloxacin at 6.2 
µg/kg body weight [92] [93] corresponding to the microbiological ADI because it is lower than the toxicological 
ADI of 12 µg/kg body weight which was calculated by applying a safety factor of 100 to the No Observed Ef-
fect Level (NOEL) of 1.2 mg/kg body weight per day [94].  
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In order to protect consumer’s health, many countries have defined Maximum Residue Limits (MRL) of 
enrofloxacin and ciprofloxacin in animal-derived products [76]. In the European Union (EU), the MRLs of 
enrofloxacin and ciprofloxacin in muscle tissues and milk of all species are 100 µg/L [93] but as there is no 
MRL for enrofloxacin in eggs, enrofloxacin is forbidden in animals form which eggs are produced for human 
consumption [93].  

To measure the enrofloxacin and ciprofloxacin residues in animal-derived foods including milk, eggs, honey 
and even mane and tail hair in horses, many analytical methods have been developed. Among these methods, we 
can mention High Performance Liquid Chromatography (HPLC); HPLC-Diode Array Detection method com-
bined with liquid chromatography-mass spectrometry; HPLC-Ultraviolet Diode Array Detection method; mole-
cularly imprinted solid-phase extraction procedure; liquid chromatography using a metal chelate affinity column; 
finally, the method of ChemiLuminescence Enzyme ImmunoAssay [76] [77] [91] [95]-[97].  

8. Ecotoxicity 
The release of enrofloxacin and ciprofloxacin in the environment is mainly due to the direct discharge of aqua-
culture products and the excretion in urine and feces of livestock animals [98]. It results in the contamination of 
soil, surface water, sediment, ground water and biota [99]. Once released into the environment the behavior of a 
chemical substance is determined by its tendency to partition from the aqueous phase to the atmosphere which is 
expressed by the Henry’s Law Constant (HLC) and its affinity to adsorb on solid which is expressed by the Oc-
tanol-Water Partition Constant (Kow or log Kow) [99]. Enrofloxacin have a very low HLC at ambient tempera-
ture (<10 - 15 atm∙m3∙mol−1) resulting in a negligible volatile loss and its Kow is low (0.83) while enrofloxacin 
have a high affinity for sludge, soils and sediments [99]. 

In the environment, enrofloxacin and ciprofloxacin can undergo degradations by different processes including 
photolysis, biodegradation and oxidation by mineral oxides but they are not sensitive to hydrolysis [99]. Despite 
these degradation mechanisms, environmental half-life time of enrofloxacin and ciprofloxacin are very long 
(half-life time estimated between 1155 and 3466 days for ciprofloxacin in a mesocosm soil study performed by 
Walters et al. in 2010, indicating an important persistence in soil matrices [100]. 

This long environmental persistence of enrofloxacin and ciprofloxacin can affect the growing or the activity 
of the soil microbial communities [101]. Indeed, although some edaphic organisms may utilize and decompose 
enrofloxacin as a nutrient, it is suggested that enrofloxacin or ciprofloxacin concentrations exceeding 0.2 mg/kg 
result in significant toxicity for the edaphon [101] [102]. Thus, edaphic ammonification and nitrification are af-
fected and the edaphon community structure is modified, which can impact the soil fertility [102]. Furthermore, 
a quite recent study carried out in 2008 indicates that the exposure of whole earthworms and their different tis-
sues to various concentrations of enrofloxacin can lead to changes in catalase activity and to a lesser extent, in 
growth rate [103]. 

The toxicity of enrofloxacin and ciprofloxacin for aquatic ecosystems has been assessed in many studies, as 
well on microorganisms as on algae or even aquatic vertebrates and invertebrates [104] [105]. Among these stu-
dies, three were carried out recently in zebrafish embryos [106], in tropical freshwater ecosystems with the mon-
itoring of macro-invertebrates, zooplankton, phytoplankton, periphyton, bacteria, organic matter decomposition 
and nitrogen cycling [105] and in three tropical aquatic species (the green-algae Chlorella sp., the micro-inver- 
tebrate Moina macrocopa and the Nile tilapia Oreochromis niloticus) collected in a stream receiving effluents 
from a Pangasius catfish farm which uses enrofloxacin [104]. The results of these three studies are similar, sug-
gesting that residual concentrations of enrofloxacin and ciprofloxacin in aquatic environment are not likely to 
result in direct or indirect severe toxic effects on aquatic ecosystems [104]-[106]. 

9. Conclusion 
The fluoroquinolones are one of the most useful classes of antibiotics, as well in human medicine as in veteri-
nary medicine. Thanks to their broad spectrum of activity against a wide range of bacteria and their physico-
chemical properties, their use is increasing. Enrofloxacin, which is a third generation fluoroquinolone only 
available in veterinary medicine, is thus used in many species with few adverse effects. However, there are re-
cent concerns about the emergence of quinolone-resistant bacterial strains and the impact on the environment of 
the overuse of these drugs. Thus, there is now an important need to use fluoroquinolones with caution to pre-
serve their effectiveness for many years. In veterinary medicine, it is essential to reserve these drugs for cases 
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requiring a powerful antibiotic and to prescribe and/or administer them only under a good clinical assessment 
and with appropriate regimens. 
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Abbreviations 
ADI: Acceptable Daily Intakes;  
EMA: European Medicines Agency;  
Gyrase: DNA Topoisomerase II;  
G-DNA: Clived DNA Sequence;  
HLC: Henry’s Law Constant;  
HPLC: High Performance Liquid Chromatography;  
MAR: Multiple Antimicrobial Resistance;  
MIC: Minimum Inhibitory Concentration;  
MPC: Mutant Prevention Concentration;  
MRL: Maximum Residue Limits;  
PCR: Polymerase Chain Reaction;  
NOEL: No Observed Effect Level;  
PMQR: Plasmide-Mediated Quinolone Resistance;  
QRDR: Quinolone Resistance-Determining Region;  
SPC: Summary of Product Characteristics;  
Topo IV: DNA Topoisomerase IV;  
T-DNA: Transported DNA Sequence. 
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