
HAL Id: hal-01503384
https://hal.science/hal-01503384

Preprint submitted on 7 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Clock Constraints Specification Langage : A mechanized
denotational semantics in Agda

Mathieu Montin, Marc Pantel

To cite this version:
Mathieu Montin, Marc Pantel. Clock Constraints Specification Langage : A mechanized denotational
semantics in Agda. 2017. �hal-01503384�

https://hal.science/hal-01503384
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Clock Constraints Specification Langage :
A mechanized denotational semantics in Agda.

Mathieu Montin∗‡, Marc Pantel∗‡

∗Université de Toulouse ; INP, IRIT ; 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
‡CNRS ; Institut de Recherche en Informatique de Toulouse (IRIT) ; Toulouse, France

mathieu.montin@enseeiht.fr, marc.pantel@enseeiht.fr

Abstract—CCSL is a concurrency modeling language defined
inside the MARTE UML profile. It was designed to provide
system designers with requirement modeling facilities that are
easier to master than temporal logics. It allows the expression of
event occurrences and constraints between them. TimeSquare is a
tool that implements CCSL providing on the one hand textual and
graphical modeling facilities, and on the other hand a solver that
checks the satisfaction of these constraints, hence giving CCSL an
operational semantics. This toolset allows to assess system specific
properties at the model level. But, some properties need to best
verified at language level, especially when extending the language
itself. In order to prove these ones, the designers of CCSL
provided a denotational semantics that associate mathematical
definitions to CCSL constructs. But, since this semantics is hand-
made and lacks a formal version to build and verify the properties
of the extensions, we propose to mechanize it in a proof assistant.
We have selected the Agda theorem prover, developed by Ulf
Norell at Chalmer’s university for this work.

Index Terms—CCSL, Denotational semantics, Proof assistant,
Agda.

I. INTRODUCTION

As real systems are getting more and more complex, a
strong separation between the various concerns of the same
system has become a major requirement. Specialists of each
engineering domain will define their parts of the system
in their own language and these parts are then integrated.
The main drawback lies in the fact that many properties are
not preserved during the integration of the various concerns.
Thus, if you prove that the different subsystems satisfy some
requirements, there is no guarantee whatsoever that the whole
system will also satisfy these requirements.

A common successfull approach to tackle this problem is
to abstract the different parts in the same language according
to the concern handled by this language, and then to reason
over this language instead of reasoning over the different sub-
languages in which the subsystems have been defined. Such a
high level language has to be formally specified so that its use
can be trusted. The Clock Constraint Specification Language
(CCSL), developed by the AOSTE team from INRIA, stands as
one of the best attempt to create such a user dedicated language
that targets system engineers instead of formal method experts.
However, it lacks a mechanized denotational semantics to
formalize all the proofs of correctness at the language level,
which is what we propose in this paper.

We will start by explaining the underlying concepts of
CCSL, which are the instants, the strict partial orders relating
these instants and their link to the notion of Time Structure.
Then we will define the clocks linking the instants to the actual
modeled concerns and we will move on to more advanced
concepts such as relations and expressions around clocks, in
order to reach constraints definitions.

This work has been done using the Agda proof assistant,
developed by Ulf Norell at the Chalmers University, and the
accent will be made on the choices made to fit this tool.
Agda is a dependently typed programming langage suited to
both programming and building theories and proofs, thanks
to the Curry-Howard isomorphism. Agda comes with several
features, including (but not limited to) a type checker, a
termination checker and a development environment in the
form of an interactive emacs mode.

II. RELATED WORK

Our proposal provides a mechanization of the semantics
of CCSL in a proof assistant. As such, this approach could
be reused for other concurrent langages. Such a work has
already been done using different kind of formal methods,
for example [1] using Higher Order Logic in Isabelle/HOL;
[2] and [3] using the Calculus of Inductive Constructions in
Coq, whose description can be found in [4]. The use of Agda
in this development is motivated by the expressiveness of the
langage coupled with its underlying unification mechanism -
in other words, Agda allows, for instance, to pattern-match on
the equality proof, thus unifying its operands. This provides
an interactive proof experience that other tools that do not
provide unification lacks: Agda, as opposed to coq, does not
rely on the application of tactics to inhabit types, but gives a
well-designed framework to build them in interaction with the
type checker and unifier. More on Agda can be found in [5],
[6] and [7]. Although they differ from these two aspects, both
of these tools rely on the same underlying intuitionistic type
theory, first described in [8] and clarified in [9].

The denotational semantics of CCSL on which this work is
based can be found in [10]. TimeSquare, the tool developed
to describe CCSL systems as well as solve constraint sets
has been presented in [11]. As for CCSL itself, it was first
presented in [12]. Athough our semantics aims at being the
same as the paper version, it differs through the way it has

been expressed, to best suit the constraints and the possibilities
offered by Agda. An example of differences is the handling
of the notion of TimeStructure - see [13] - who was translated
from a constructive mathematical set theory to a generic type
to better match the use of a type theory.

III. EXAMPLE

We will consider a simple system throughout this paper,
which can be turned On and Off, and can execute a simple
action when it is On, which will remain unspecified until fur-
ther notice. This system can be represented by the automaton
in Figure 1.

Offstart On

Switch on

Switch off

Execute

Figure 1. A simple automaton

Let’s rename, for the sake of clarity, the different transitions
as ton, toff and tex. A possible trace (i.e. sequence of transition
occurences) for the system is depicted in Figure 2. This trace
starts with the birth of the system and possibly continues
indefinitely, which makes this finite representation partial.

ton toff ton tex tex toff ton tex toff

Figure 2. A possible trace

IV. REPRESENTATION OF TIME

A. Instants

Instant is the main concept on which CCSL is defined.
Informally, an instant is a point in a time-line where events can
occur. But this vision, which we all have instinctively, implies
that two instants are always comparable, one of them being
after the other one, and vice versa. However in distributed
systems, there is no global clock, and one does not always
know which event has occurred, or will occur, before or
after any other given event, making this a poor choice to
represent instants in the global case. Thus, in our framework,
instants will be an unspecified Agda type - which we will
call Support (Instant is the name for the algebraic structure).
The cardinality of this type is unspecified as well and will
remain so throughout the paper. It is important to note that
Set in Agda represents a type, and not a mathematical set.
In dependently typed langages, sets can be emulated as unary
relations, as we will see later, but are not native constructs of
the langages. However, by langage abuse, we will often call
an Agda Set a set instead of a type.

Support : Set

B. Strict partial orders
Since time cannot be seen as a line on which events occurs,

instants cannot be linked by a total order. Two events are not
necessarily comparable, which leads to the use of partial orders
to represent the possible links. In CCSL, each pair of instants
is either :
• strictly comparable, through a precedence relation ≺

which means that one precedes the other one.
• equivalent, through a coincidence relation ≈ which

means that, regarding our point of view, the instants
cannot be differentiated.

• independent, which means that they are not linked by any
of the two previously defined relations.

A partial order requires these relations to have certain proper-
ties, which are, as a reminder :
• ≈ is an equivalence relation
• ≺ is irreflexive regarding ≈
• ≺ is transitive
• ≺ respects the equivalence classes induced by ≈

The Agda library provides such an algebraic structure.

record IsStrictPartialOrder {a `1 `2} {A : Set a}
(_≈_ : Rel A `1) (_<_ : Rel A `2)
: Set (a t `1 t `2) where
field
isEquivalence : IsEquivalence _≈_
irrefl : Irreflexive _≈_ _<_
trans : Transitive _<_
<-resp-≈ : _<_ Respects2 _≈_

record StrictPartialOrder c `1 `2 :
Set (suc (c t `1 t `2)) where
field
Carrier : Set c
≈ : Rel Carrier `1
< : Rel Carrier `2
ispo : IsStrictPartialOrder _≈_ _<_

This code defines two records, both dependent - a record
is called dependent when one or more of its fields are typed
depending on the value of other fields. Their signature is quite
complicated because they are expressed at a generic level
of universe (represented by the quantities a, `1 and `2 and
the operators t and suc) for the set and the two relations,
even though they represent a simple algrebraic structure. The
stratification of the universe as levels is used in type theory to
reject paradoxes inherent to classical set theories.

The first record, named IsStrictPartialOrder, is
parametrized by two relations (≈ and <) and a set A,
and states what it means for these relations to define a strict
partial order over the set. It consists in four predicates which
have been detailed before. The second record encapsulate this
definition inside an actual strict partial order, with the relations
and the set being part of the record.

C. Intervals
Since the relations that will be defined later on have a

lifetime, it is useful to have the notion of intervals. Let us
consider the following definition :

data Interval : Set where
[_,_] : (α : Support) → (β : Support) → Interval
[_,∞] : (α : Support) → Interval

We define two kinds of intervals, one that is bounded on
both sides, and one that is only bounded on the left side.
This asymmetry is inherent to the underlying asymmetry in a
system life : it has been started at a specific time, but might
be running forever. This allows us to define the belonging to
an interval :

∈ : Support → Interval → Set
v ∈ [α ,∞[= α 4 v
v ∈ [α , β] = α 4 v × ¬ (β ≺ v)

These axioms entail interval inclusion :

⊂ : Interval → Interval → Set
I ⊂ J = ∀ {x} → x ∈ I → x ∈ J

V. CLOCKS

A. Intuitive definition

A clock is an entity that represents the occurrences of a
specific event in a specific system. Thus, the execution of such
a system is traced by the occurrences of the clocks it provides.
Each of these clocks is said to tick whenever (i.e. at every
instant) the event it represents occurs. In the example of Figure
1, this system exhibits three different clocks representing the
occurrences of the transitions :

• ”con” ticks when the system is turned on.
• ”coff” ticks when the system is shut down.
• ”cex” ticks when the action is executed.

A possible trace for these clocks is depicted in Figure 3.

coff

con

cex

Figure 3. Ordered trace of clocks

Note that the set of instants on which a specific clock ticks
must be totally ordered, which is why we could represent them
on a well-defined time-line.

In this example, we represented the instants ”globally”
ordered as they were in Figure 2, even though this disposition
actually requires constraints to be added to the system. The
right representation, which is actually pointless alone, is given
in Figure 4.

coff

con

cex

Figure 4. Unordered trace of clocks

B. Formal definition

Formally, a clock is a dependent record which define a
subset of instants (the ones on which it ticks) and ensures
that these instants are totally ordered. This gives the following
definition :
record Clock : Set1 where
constructor
[_◦_]

field
Ticks : Support → Set
TicTot : ∀ {x y} →
Ticks x → Ticks y → x 6= y → x ≺ y] y ≺ x

A clock is a dependent record (which is implicitly
parametrized by the set of instants through the module defi-
nition) which provides a constructor to build a clock and two
fields. The first field is a predicate on the instants to encode
the subset on which the clock ticks, and the second is the
proof that the ticks of the clock are totally ordered.

C. Birth and Death

In the current state of CCSL, and in our current work
accordingly, a clock contains a lot more fields. They are related
to the existence of a birth and a death to encode its lifetime. In
this paper however, we will not present this part of our work,
since it would hide the fundamental aspects of the work behind
technical difficulties.

D. Filter

It is possible to reduce the ticks of a clock regarding a
certain predicate on instants. This filtering is done as follow :

filterBy : Clock → (Support → Set) → Clock
filterBy [Ticks ◦ TicTot] P =
[(λ x → Ticks c x × P x)
◦ (λ x1 x2 → TicTot c (proj1 x1) (proj1 x2))]

The function filterBy builds a new clock from an input
clock and a predicate. The new clock will tick when both the
input clock ticks and the predicates holds on a specific instant.
The proof that the instants of the new clock are totally ordered
is built from the proof that the input clock was totally ordered
itself. Removing some of the instants does not change this
property.

This definition will be particularly useful when considering
some intervals as relation lifetimes. The filtering on intervals
becomes :
|i : Clock → Interval → Clock
c |i I = filterBy c (\x → x ∈ I)

In this case, the filtering predicate is instantiated by the
membership of an instant inside a specific interval, thus
reducing the ticks of the input clock to this interval.

VI. RELATIONS

A. Definition

As shown on figure 4, clocks on their own do not give
any information on the system from which they are extracted.
Individually, they are shown as - potentially - endless streams
of totally ordered ticks which cannot be precisely placed on

the system time-line. To overcome this limitation, a relevant
system must be described by at least two clocks, and the links
between them must be specified. These links can be from
different types and are known as ”relations”.

A relation holds, by default, for the lifetime of the system.
In Agda, we can state what it means for two clocks to be
related. The global Agda type for relations is the following :

GlobalRelation : Set1

GlobalRelation = Clock → Clock → Set

However, it is often useful to reduce the lifetime of a relation
to a certain predicate over the instants (usually intervals), in
which case the type becomes :

PredRelation : Set1

PredRelation = Clock → Clock → (Support → Set) → Set
InteRelation : Set1

InteRelation = Clock → Clock → Interval → Set

Considering a given interval, two clocks are related if they
satisfy the relation whenever they tick inside this interval. In
our framework, we adopted a more suitable vision of relations
restricted to an interval. Two clocks are considered related on a
given interval when their filtered versions are related globally
through the same relation. Thus, by restricting the ”Ticks”
predicate on our clock, we obtain a more natural version of
interval constrained relations. Let us consider a relation ” R ”,
defined in Agda as follows :

postulate _R_ : GlobalRelation

Restraining this relation over a specific predicate (subset) is
then done very easily :

R|_ : PredicatedRelation
c1 R c2 | P = (filterBy c1 P) R (filterBy c2 P)
R|i_ : IntervalledRelation
c1 R c2 |i P = (c1 |i I) R (c2 |i I)

B. Main relations

In the following section, we present some of the main
relations provided by CCSL, and their representation in our
framework. Since we explained how we can easily transform a
global relation into a predicated relation, we will only describe
these relations globally.

1) Strict precedence: A clock c1 is said to strictly precede
a clock c2 when each consecutive ticks of c2 is strictly
preceded by a distinct and consecutive ticks of c1. Note that
the ”consecutive” word can only refer to discrete clocks. In
dense clocks, the equivalent is that every ticks of c1 placed
between two mapped ticks must be mapped as well. Before
getting to the formal definition of this relation, let us consider
some graphical examples in Figures 5, 6 and 7.

c1

c2

Figure 5. A standard precedence example

c1

c2

Figure 6. A specific precedence example

c1

c2

Figure 7. An incorrect precedence example

Figure 5 is the example that comes to mind when we
think of this definition. Each instant of c2 is mapped to an
instant of c1 in a way the precedence relation looks obvious.
However, this definition does not force this mapping to be
bijective, which means c1 could have additional ticks that
are not mapped to ticks of c2. If these ticks occur after the
ones mapped to c2, like on figure 6, the precedence is still
well-formed, as opposed to figure 7 where they are placed in
between mapped ticks, thus compromising the relation. One
can observe that this problem could be avoided by changing
the mapped instant such that the additional ticks are always
positioned as on figure 5. This seem obvious when the number
of ticks is finite, yet not so much when it is not. This could
be the subject of a future work.

The precedence relation requires the existence of a function
which maps the instants of c2 with the corresponding instants
of c1. It is defined as follows :

|�’_ : (_ → _) → GlobalRelation
h | c1 �’ c2 =
let Tc1 = Ticks c1 in
let Tc2 = Ticks c2 in
(∀ {i} → Tc2 i → (Tc1 (h i) × h i ≺ i))
× (∀ {i j} → Tc2 i → Tc2 j → i ≺ j → h i ≺ h j)
× (∀ {i j p} → Tc2 i → Tc2 j → p ∈ [h i , h j]
→ ∃ λ k → Tc2 k × h k ≡ p)

� : GlobalRelation
c1 � c2 = ∃ λ h → h | c1 �’ c2

It is transitive, and such a transitivity has been proven in
the framework. The mapping function is the composition of
the two underlying mapping functions. The proof is partly
depicted here :

trans�’ : ∀ {c1 c2 c3 h1 h2} → c1 �’ c2 | h1

→ c2 �’ c3 | h2 → c1 �’ c3 | (h1 ◦ h2)
trans�’ _ _ _ = ...
trans� : ∀ {c1 c2 c3} → c1 � c2 → c2 � c3 → c1 � c3

trans� {c1} {c2} {c3} (h1 , p1) (h2 , p2) =
h1 ◦ h2 , trans�’ {c1} {c2} {c3} {h1} {h2} p1 p2

In our example, there is a precedence relation between con
and coff, which leads to the timeline in Figure 8.

2) Non-strict precedence: The non-strict precedence allows
two mapped instants to be coincident, thus the underlying
relation is 4 instead of ≺ . This relation is mostly similar
to the strict precedence and will not be detailed thoroughly. A
simple example is however given in Figure 9.

coff

con

Figure 8. con precedes coff

c1

c2

Figure 9. An example of non-strict precedence

The Agda definition is the same as the strict precedence,
except for the substitution of the strict relation by the non-
strict one. This relation is transitive as well, and this has been
proven accordingly. The two proofs are factorized through the
abstraction of the underlying relation.

3) Subclocking: A clock c1 is said to be a subclock of a
clock c2 when every ticks of c1 is coincident to a tick of c2.
It means that whenever c1 ticks, c2 ticks as well. Figure 10
shows an example of subclocking.

c1

c2

Figure 10. c1 is a subclock of c2

The Agda definition of this relation is fairly simple and
corresponds to the intuitive one :

v : GlobalRelation
c1 v c2 =
let Tc1 = Ticks c1 in
let Tc2 = Ticks c2 in
∀ {x1} → Tc1 x1 → ∃ λ x2 → x1 ≈ x2 × Tc2 x2

As for the precedence, this relation is transitive, which can
be proven this way :

transv : ∀ {c1 c2 c3} → c1 v c2 → c2 v c3 → c1 v c3

transv c1c2 c2c3 = λ x → let (_ , pi , qi) = (c1c2 x) in
let (j , pj , qj) = (c2c3 qi) in j , trans≈ pi pj , qj

Until now, the action executed by the system while running
remained unspecified. We are going to specify it to exhibit an
example of subclocking. Imagine that our system is connected
to a light through the use of a memory containing a variable
x. This variable will be accessed and assigned by our system.
The automaton in Figure 1 becomes the one in Figure 11.

Offstart On

ton {x← 0}

toff {x← 0}

tex {x← 1− x}

Figure 11. The automaton with a memory

The system pilots the lights through the assignement of x
to 0 (light off) or 1 (light on). When the system is turned on,

the light remains off until a button is pressed which turns it
on. Pressing the same button will alternatively switch off the
light and turn it on. Shutting down the system turns it off.
In this situation, two additional clocks must be added to the
system. One will trace the assignment of x to 0 and the other
its assignment to 1. The resulting trace is shown in Figure 12.

coff

con

cex

cx0

cx1

Figure 12. The trace of the system with the addition of the variable x

In this example, we can identify at least two cases of
subclocking. For instance, con is a subclock of cx0

and cx1

is a subclock of cex.
4) Alternation: In the section about strict precedence, we

stated that the clock con precedes the clock coff in our example
system. However, we purposely omitted to state that this
precedence has to be constrained even more. Let us consider
the situation in Figure 13.

coff

con

Figure 13. The precedence is true but not enough

The system is turned on twice before being shut down,
which should not be possible. In some cases, the precedence
itself is not strong enough to specify the behavior of two
clocks. The need to express the alternation between events
comes from this original lack. Two clocks are said to be
alternated when one precedes the other in such a way that
two ticks of a clock cannot occur in between two ticks of the
other one. Note that the underlying precedence has to be strict
for the relation to be consistent. A non-strict precedence would
lead to illformed cases of alternation. In this case, the trace of
our system is actually the one presented on figure 8, on which
we added the additional informations shown on Figure 14.

coff

con

Figure 14. con alternates with coff

In Agda, this relation is defined as follow :

�� : GlobalRelation
c1 �� c2 = ∃ λ h → c1 �’ c2 | h
× ∀ {i j} → i ≺ j → i ≺ h j

5) Equality: Two clocks c1 and c2 are equal when they
only tick on coincident instant. It means that if c1 ticks on
i then there exists an instant k which coincides with i and
where c2 ticks. An example is represented in Figure 15.

c1

c2

Figure 15. c1 is equal to c2

This definition is exactly equivalent to a double subclocking,
which is how we have defined it in Agda.
v : GlobalRelation
c1 v c2 = c1 v c2 × c2 v c1

Since the underlying relation is an equivalence we can easily
prove that this new relation is an equivalence as well :
eqv : IsEquivalence _v_
eqv = ...

6) Exclusion: Two clocks are in exclusion when they have
no coincident ticks. The Agda definition for this relation is
fairly simple, and we will not provide any graphical example
considering the nature of the relation.
] : GlobalRelation
c1] c2 =
let Tc1 = Ticks c1 in
let Tc2 = Ticks c2 in
∀ {x y} → Tc1 x → Tc2 y → ¬ x ≈ y

VII. EXPRESSIONS

A. Definitions
CCSL allows to define new clocks from existing clocks. But

the formal definition of such operations can be complicated.
Creating new clocks usually sets an arbitrary order between
the instants on which the underlying clocks are ticking, which
means that two clocks apparently independent are getting re-
lated because a new clock is created from them. The common
example is the union. The union of two clocks ticks whenever
one of the two clocks ticks. Since a clock has a total order on
its ticks, the ticks of the union must be totally ordered, which
leads to a total order on the ticks of the two other clocks. To
handle this difficulty, we do not propose to create clocks in a
functional way, but to relate the three clocks using predicates
to state that a clock could be the result of such operations, thus
deviating from the original CCSL denotational semantics.

Unlike relations, expressions will not usually be defined
on a specific interval. However, it is made possible in the
framework by filtering the resulting clock on the interval.

The global type of expressions is defined in our work as a
relation between three clocks :
GlobalExpression : Set1

GlobalExpression = Clock → Clock → Clock → Set

1) Intersection: A common expression on clocks is the
intersection. The clocks which results from the intersection
of two clocks only ticks on each instant they simultaneously
tick. This expression is a predicate on the three clocks.

≡∩_ : GlobalExpression
c ≡ c1 ∩ c2 =
let Tc1 = Ticks c1 in
let Tc2 = Ticks c2 in
let Tc = Ticks c in
(∀ {i} → Tc i → ∃ \j → ∃ \k →
Tc1 j × Tc2 k × i ≈ j × i ≈ k)

× (∀ {i j} → Tc1 i → Tc2 j → i ≈ j →
∃ \k → Tc k × k ≈ i)

This first part of this predicate states that whenever c ticks
on an instant i, there exists two instants j and k which are
coincident to i and on which both c1 and c2 ticks respectively.

The second part states that if c1 ticks on i, c2 ticks on
j, and if these instants are coincident, then c ticks on an
instant coincident to them. Figure 16 shows an example of
intersection.

c

c1

c2

Figure 16. An example of intersection

It is important to note that this expression does not change
the relations between the instants on which the underlying
clocks tick. Indeed, the total order induced by the definition
of c was already present in both c1 and c2

2) Union: As explained in the introduction of this part, the
union is a tricky expression to fully understand, despite its
apparent simplicity, because it induces an order on instants
which was not present before. Not only does it build a new
clock but it also constrains the traces of the system. The
following predicate explains what it means for a clock to be
the union of two other clocks, and handles this issue.
≡∪_ : Clock → Clock → Clock → Set
c ≡ c1 ∪ c2 =
let Tc1 = Ticks c1 in
let Tc2 = Ticks c2 in
let Tc = Ticks c in
(∀ {i} → (Tc1 i] Tc2 i) → ∃ \j → i ≈ j × Tc j)
× (∀ {i} → Tc i → ∃ \j → i ≈ j × (Tc1 j] Tc2 j))

The first part of this predicate states that if either c1 or c2
ticks on an instant i then there exists an instant coincident to
i on which c ticks.

The second part states that if c ticks on an instant i then
there exists an instant j which is coincident to i and on which
either c1 or c2 ticks. Figure 17 depicts an example of union.

Note that this example does not show how the instants are
being ordered by the expression. It makes it look like they
already are, which is not the case. The clock c happens to be
consistent with the idea of the union of c1 and c2, but it is not
the result of any operation.

c

c1

c2

Figure 17. An example of union

3) Other expressions: There exists a lot of other expres-
sions (either fundamental or derivate), some of them depend-
ing on the death instant, some other being induced by a natural
number. None of them will be detailed in this paper, whose
goal is not to present all CCSL constructs, but to explain the
ideas behind their mechanization.

VIII. PROPERTIES

A. CCSL specification

In this work, instants are represented as a classic set with an
unspecified strict partial order relation. Every construct from
CCSL which we specified in Agda is expressed using this set,
which is passed as a parameter to the different modules. This
view is different from the one of the CCSL creators, who see
the instants of a system (the Time Structure) as the union of all
the instants on which its different clocks ticks. This vision that
synthesize the Support set from the clocks, is unsuitable for
tools like Agda. Indeed, as we saw when defining the clocks,
sets are not native in this kind of langages and are emulated by
predicates. They are not actual sets as seen in the ZFC theory.
This is why we had to change the status of the instants and the
Time Structure they form. Providing a specific set as instants
and a specific relation to order them would mean solving the
ordering of the events induced by the clocks of a system and
the relations / expressions defined around them.

A CCSL specification is a set of constraints applied to
a set of clocks. These constraints can be either relations or
expressions, since both of these can influence the underlying
ordering of the instants. The goal of this work is not to solve
a set of constraints (this is done by the TimeSquare tool)
but to provide a mechanised semantics for CCSL. It can be
used to define and validate additions to the language that may
remain unclear or unspecified in a paper version. One of these
additions is the instant refinement which will be presented in
a further section. Regarding a CCSL specification, one of the
goals of our work is to reduce the set of constraints it contains.
For instance, if one of the constraints in the set can be deduced
from the other one, it should be removed. Another example is
if one of the clocks needs to be hidden from the specification,
all constraints linked to it must disappear without any loss of
information regarding the other clocks. In both cases, we need
properties linking the different constraints in order to achieve
some unifications between them.

The following section presents some of the properties we
proved in our framework. Most of these properties are fairly
easy to understand, but the proofs are not necessarily simple,

and will not be fully detailed. The transitivity properties have
already been mentioned and will be leftout of this section.

B. Example of properties

Let c0, c, c1, c2 and c3 be five clocks.
1) Subclock and exclusion: If c1 is in exclusion of c3 and

if c2 is a subclock of c3 then c1 is in exclusion of c2 as well.
This is intuitive since c2 ticks at most each time c3 ticks. This
can be expressed and proven in Agda :

excluSub : ∀ {c1 c2 c3} → c1] c3 → c2 v c3 → c1] c2

excluSub c1]c3 c2vc3 t1x t2y with c2vc3 t2y
excluSub c1]c3 c2vc3 t1x t2y | a , y≈a , ta
= λ x → c1]c3 t1x ta (trans≈ x y≈a)

2) The union is symmetrical: If c can be viewed as the
union of c1 and c2 then it can also be viewed as the union of
c2 and c3.

To prove this property, we need to be able to swap a sum
of types, which is done by the following function.

flipSum : ∀ {a b} {A : Set a} {B : Set b} →
A] B → B] A

flipSum (inj1 x) = inj2 x
flipSum (inj2 y) = inj1 y

Proving that the union is symmetrical is done as follows :

symUnion : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c ≡ c2 ∪ c1

symUnion (proj1 , proj2 , proj3) =
(λ x → proj1 (flipSum x)) ,
(λ x → let (a , b , c) = proj2 x in a , b , flipSum c) ,
flipSum proj3

3) Union and subclocking: We can prove that each compo-
nent of a union is a subclock of the union. That can be proved
both ways (for both clocks) using the symmetry of the union.

subUnionl : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c1 v c
subUnionl (p1 , _ , _) = λ x → p1 (inj1 x)

subUnionr : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c2 v c
subUnionr {c} {c1} {c2} p =
subUnionl {c} {c2} {c1} (symUnion {c} {c1} {c2} p)

4) Unicity of union: We can prove the unicity of the union
relatively to the equivalence classes induced by the underlying
equivalence relation. We start by proving that if two clocks
correspond to the same union, one is a subclock of the other.

uu : ∀ {c0 c c1 c2} →
c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c v c0

uu (proj1 , proj2 , proj3) (proj4 , proj5 , proj6) =
λ x → let (_ , ≈x , tx) = proj5 x in

let (y , ≈y , ty) = proj1 tx in
y , trans≈ ≈x ≈y , ty

We conclude by applying the previous property both ways.

unicityUnion : ∀ {c0 c c1 c2} →
c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c v c0

unicityUnion {c0} {c} {c1} {c2} p q =
uu {c0} {c} {c1} {c2} p q , uu {c} {c0} {c1} {c2} q p

5) The intersection is symmetrical: It is possible to prove
that the intersection is also symmetrical. The proof is a
bit more verbose than the one for the union, but not quite
complicated as well.

symInter : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c ≡ c2 ∩ c1

symInter (proj1 , proj2 , proj3 , proj4) =
(λ ti →
let (j , k , tj , tk , i≈j , i≈k) = proj1 ti in
k , j , tk , tj , i≈k , i≈j) ,

(λ ti tj i≈j →
let (k , tk , k≈i) = proj2 tj ti (sym≈ i≈j) in
k , tk , trans≈ k≈i (sym≈ i≈j)) ,

(proj4 , proj3)

6) Intersection and subclocking: As opposed to the union,
when c is enforced to be the intersection of c1 and c2, c is a
subclock of both of them, which can be proven.

subInterl : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c v c1

subInterl (p , _ , _) = λ x →
let (j , _ , tj , _ , i≈j , _) = p x in
j , i≈j , tj

subInterr : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c v c2

subInterr {c} {c1} {c2} c≡c1∩c2 =
subInterl {c} {c2} {c1} (symInter {c} {c1} {c2} c≡c1∩c2)

7) Unicity of intersection: As for the union, we can prove
that the intersection is unique.

ui : ∀ {c0 c c1 c2} →
c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c v c0

ui (proj1 , proj2 , proj3) (proj4 , proj5 , proj6) =
λ x →
let (j , k , tj , tk , i≈j , i≈k) = proj4 x in
let (l , tl , l≈j) =
proj2 tj tk (trans≈ (sym≈ i≈j) i≈k) in
l , trans≈ i≈j (sym≈ l≈j) , tl

unicityInter : ∀ {c0 c c1 c2} →
c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c v c0

unicityInter {c0} {c} {c1} {c2} p q =
ui {c0} {c} {c1} {c2} p q , ui {c} {c0} {c1} {c2} q p

8) Intersection and union: As a consequence of these
proofs, we can easily prove that the intersection is a subclock
of the union, using the transitivity of the subclocking.

subInterUnion : ∀ {c0 c c1 c2} →
c0 ≡ c1 ∩ c2 → c ≡ c1 ∪ c2 → c0 v c

subInterUnion {c0} {c} {c1} {c2} c0≡c1∩c2 c≡c1∪c2 =
transv’ {c0} {c1} {c}
(subInterl {c0} {c1} {c2} c0≡c1∩c2)
(subUnionl {c} {c1} {c2} c≡c1∪c2)

9) A clock Lattice: With these proofs and some others
on intersection and union, the set of clocks exhibits the
mathematical structure of a lattice, with the sup operator being
the union, and the inf operator being the intersection.

IX. CONCLUSION

A. Summary

In this work, we have proposed a mechanization of CCSL
in Agda. We have clarified certain notions inherent to this
language, and have proposed ways of encoding it in a proof
assistant. As stated in the first part of this paper, details
about the lifetime of a clock, encoded as a birth instant and
a death instant have been omited. Their presentation would
not have been suitable to this article. However, this has been
encoded in the framework and will be presented later on.
This work stands as an example of mechanisation in Agda
for a concurrent langage, as well as an attempt to provide

the CCSL developpers with a complete mechanized semantics
from which different features could eventually be extracted,
as explained in the next section.

B. Future work

This work brings different perspectives that would complete
and extend both CCSL and our semantics :
• We will define and prove as many properties as possible over
the relations and the expressions defined in CCSL, in order to
provide a correct way to reduce the set of constraints related
to a certain specification. This will be done by computing
derived constraints and comparing them to those that have
been provided in the set.
• We will extend the langage through the definition of instant
refinement in order to encode the notions of simulation,
bisimulation and weak bisimulation in the framework to get
a better hold over them. It requires to consider sets of clocks
and the relations that bind them.
• We will go deeper into the definition of the birth and death
instants to handle some difficulties that emerge with these
notions. For instance, they induce loss of some algebraic
properties which we would like to handle properly.

ACKNOWLEDGMENT

The authors would like to thank Julien DeAntoni, Robert
De Simone and Frédéric Mallet for providing us with their
time and valuable expertise regarding CCSL. This work could
not have been done without them.

REFERENCES

[1] R. Hale, R. Cardell-Oliver, and J. Herbert, “An embedding of timed
transition systems in HOL,” Formal Methods in System Design, vol. 3,
no. 1/2, 1993.

[2] M. Garnacho, J. Bodeveix, and M. Filali-Amine, “A mechanized seman-
tic framework for real-time systems,” in Formal Modeling and Analysis
of Timed Systems - 11th International Conference, FORMATS 2013,
Buenos Aires, Argentina, August 29-31, 2013. Proceedings, 2013.

[3] C. Paulin-Mohring, “Modelisation of timed automata in coq,” in The-
oretical Aspects of Computer Software, 4th International Symposium,
TACS 2001, Sendai, Japan, October 29-31, 2001, Proceedings, 2001.

[4] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. An EATCS Series, 2004.

[5] U. Norell, “Dependently typed programming in agda,” in Proceedings
of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January
24, 2009, 2009.

[6] J. Malakhovski, “Brutal [meta]introduction to dependent types in agda.”
[7] A. Bove and P. Dybjer, “Dependent types at work,” in Language

Engineering and Rigorous Software Development, International LerNet
ALFA Summer School 2008, Piriapolis, Uruguay, February 24 - March
1, 2008, Revised Tutorial Lectures, 2008, pp. 57–99.

[8] P. Martin-Löf, Intuitionistic type theory.
[9] ——, “Intuitionistic type theory. notes by giovanni sambin.”

[10] J. Deantoni, C. André, and R. Gascon, “CCSL denotational semantics,”
Research Report RR-8628, 2014.

[11] J. Deantoni and F. Mallet, “TimeSquare: Treat your Models with Logical
Time,” in TOOLS - 50th International Conference on Objects, Models,
Components, Patterns - 2012, 2012.

[12] C. André and F. Mallet, “Clock Constraints in UML/MARTE CCSL,”
INRIA, Research Report RR-6540, 2008.

[13] G. Winskel, “Event structures,” in Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986, Part II, Proceedings of an
Advanced Course, Bad Honnef, 8.-19. September 1986, 1986.

