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Abstract

In this work, we study optimal and suboptimal control strategies for the treat-
ment of a polluted water resource by using aside a continuous bioreactor. The
control consists in choosing the inlet volumetric flow rate for filling the bioreac-
tor with contaminated water from a considered resource (lake, reservoir, water-
table...). The treated outflow returns to the resource. We tackle an optimization
problem which aims to minimize the time needed to reach a prescribed mini-
mal value of contamination in the resource by choosing the input flow. Next,
we study the influence of inhomogeneities of concentrations in the bioreactor,
considering a system based on partial differential equations which describe its
dynamics. We show that applying the optimal feedback control derived for per-
fectly mixed bioreactor does not allow to reach the target with small diffusion
parameters as it drives the bioreactor to washout (the bioreactor equilibrium
with no biomass). In this case, a suboptimal feedback (which reaches the target
in finite time) is obtained with the help of a Hybrid Genetic Algorithm. Fur-
thermore, we consider that the fluid flow velocity of the water entering into the
bioreactor follows either a uniform or a nonuniform profile, showing that the
optimal volumetric flow rates obtained with the uniform profile are not optimal
if the profile is nonuniform, even when high diffusion coefficients are considered
in the model.
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1. Introduction

The decontamination of water resources is a major environmental issue in the
areas of prevention of eutrophication and wastewater treatment. Eutrophication
is a process whereby water resources becomes too rich in organic material and
mineral nutrients. Household products (phosphorus detergents) and products
used in agriculture (nitrate fertilizers) are the main causes of pollution of water
resources. As a result, some plants (in particular planktonic algae) can grow
rapidly and reduce the available oxygen of the aquatic ecosystem resulting, for
instance, in the death of local bio-organisms (such as fishes). The activated
sludge process is a way of eliminating eutrophication from water resources. The
process uses biomass (i.e., bacteria) to feed with substrate (i.e., the organic
contaminant) in wastewater, producing a high quality effluent for a reasonable
operating and maintenance cost. It consists of several interrelated components:

• A tank where the biological reaction occurs, called bioreactor. Bacteria
thrive as they travel through the bioreactor and they multiply rapidly
with sufficient food (substrate).

• A waste water source that feeds the bioreactor.

• A settler situated at the bottom of the bioreactor, separating bacteria from
the clearer water. This accumulated bacteria is called activated sludge.

• A means of collecting the activated sludge, either to return it to the biore-
actor or to remove it from the process.

The optimization of activated sludge processes has received a great attention in
the literature (see, e.g.,[1], [2] and [3] for reviews of the different optimization
techniques that have been used in bioprocesses). The objective is usually to con-
trol the inlet flow rate of the bioreactor for attaining a prescribed target (e.g., a
small prescribed amount of pollutant at the bioreactor outlet) in a finite given
time. Particularly, the maximization of bacteria production in a well mixed
fed-batch bioreactor has been studied using different optimization techniques,
as Pontryagin Maximum Principle (see [4]), Genetic Algorithms (see [5, 6, 7, 8])
or Hybrid Stochastic-Deterministic Methods (see [4], [9]). The effects of varying
the inlet flow velocity and the substrate concentration input in bioreactors have
been studied as well (see for instance [10], [11], [12] and [13]). The biological pu-
rification of waste water is an example of application of bioreactors (see [14], [15]
and [16]).

In this work, we consider a natural resource polluted with a substrate concen-
tration Sr. The objective of the treatment is to decrease Sr, as fast as possible,
to a target value Slim, by using a bioreactor. The bioreactor is fed from the re-
source with a volumetric flow rate Q, and its output returns to the resource with
the same flow rate Q. Typically, introducing biomass in the resource is avoided
because of the risk of having bacteria growing in competition with other popu-
lations that also need oxygen. Therefore, we assume that the resource contains
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only undesirable chemical substrate, that we assume to be uniformly spatially
distributed all the time. To do so, the bacteria present in the bioreactor are
filtered by a settler at the output so that they do not enter the resource (see
Figure1).

This problem was tackled in [15] under the assumption of having a well-mixed
environment, i.e., the concentration of substances were assumed homogeneous
both in the water resource and in the bioreactor. Nevertheless, the activity
of the bacteria inside the bioreactor induces a gradient of substrate concentra-
tion, which can be negligible or not, depending notably on the ratio between
the advection and diffusion effects of the physical system. We aim at studying
the influence of this gradient on the optimal inlet volumetric flow rate. Follow-
ing [15], we characterize the optimal policies among constant, time-dependent
and feedback controls and study the possible benefits of using non-constant flow
rates. Additionally, our optimization results are compared with those obtained
in [15].

Figure 1: Connection of the bioreactor with the resource

The paper is organized as follows: Section 2 introduces an ODE model describ-
ing the behavior of the contamination in the water resource and two models
describing the dynamics of the bioreactor, using ODEs and PDEs, respectively.
In Section 3, we state the optimization problem, which aims to minimize the
time needed to decontaminate the water resource. We also present the opti-
mization methods used in both ODE and PDE models. In Section 4 we explain
the numerical experiments carried out for the optimization problem and shows
the results. Section 5 draws the conclusions after the comparison between the
numerical results obtained with the ODE and PDE models.
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2. Mathematical modeling

Here we detail the mathematical models used to describe the dynamics of
the bioreactor and the water resource. More precisely, in Section 2.1 we present
an ODE system under the assumption of uniform concentration of contaminant
in the resource. We justify such an assumption for very large resource volumes
for which the treatment takes long time. The output flow Q induces then a very
small dilution rate of the contaminant in the resource compared to the diffusion
of the contaminant, that maintains an (almost perfectly) homogeneous distri-
bution in the resource. As the bioreactor volume is much smaller, the induced
advection could make the assumption of homogeneous concentrations inside the
bioreactor questionable depending on the process characteristics (reactor shape,
agitation, diffusivity...). Then, in Section 2.2 we introduce two different models
which describe the behavior of the concentrations inside bioreactor.

2.1. Water resource model

Since we assume homogeneous distribution of substrate in the water resource,
its dynamics can be described as follows [15]:







dSr

dt = Q
V
(Sout − Sr) t > 0,

Sr(0) = Sr,0,
(1)

where Sr (mol/m3) is the concentration of substrate in the water resource; V
(m3) is the water resource volume; Q (m3/s) is the volumetric flow rate and Sout

(mol/m3) denotes the concentration of substrate concentration at the outlet of
the bioreactor, which is calculated differently depending on the mathematical
modeling considered for the bioreactor.
The explicit solution of (1) is

Sr(t) = e−
∫

t

0

Q(s)
V

ds

(
∫ t

0

Q(s)

V
Sout(s)e

∫
s

0

Q(τ)
V

dτds+ Sr,0

)

. (2)

2.2. Bioreactor Models

Section 2.2.1 presents an ODE system under the assumption of uniform
concentration of substances in the bioreactor and Section 2.2.2 introduces a
PDE system in order to study the influence of inhomogeneities in the tank.
In both sections, µ(·) (s−1) denotes the growth rate function, which refers to
the growth rate of the biomass in function of the substrate concentration. We
assume that

µ(·) is increasing and concave with µ(0) = 0. (3)

An example of such a growth rate function is given by the Monod equation
(see, e.g., [15], [17] and [18]), which is used to relate microbial growth rates in
an aqueous environment to the concentration of a limiting nutrient. Its general
expression is:

µ(S) = µmax
S

K + S
, (4)

4



where µ is the specific growth rate of the microorganisms, S is the concentration
of limiting nutrient for growth, µmax is the maximum specific growth rate of the
microorganisms and K is the half-maximum kinetics constant, i.e, the value of
S for which µ(S) = µmax

2 . We observe that µmax and K are empirical coeffi-
cients, that differ between species and are based on the ambient environmental
conditions.

2.2.1. Homogeneous distribution in the bioreactor

We consider the following bioreactor model to describe the dynamics of the
bioreactor (see [15]):























dSb

dt = −µ(Sb)Bb

Y
+ Q

Vb
(Sr − Sb) t > 0,

dBb

dt = µ(Sb)Bb −
Q
Vb

Bb t > 0,

Sb(0) = Sb,0 Bb(0) = Bb,0,

(5)

where Sb (mol/m3) and Bb (mol/m3) denote the concentration inside the biore-
actor of substrate and biomass, respectively, Vb (m3) is the volume of the biore-
actor and Y is a yield coefficient, which can be set to 1 without loss of generality
(see for instance [18]).
If Q and Sr are constant, classical equilibria analysis for the bioreactor (see [18])
shows that system (5) has two equilibria, E1 = (Sr, 0) and E2 = (Sqs

b (Q), Sr −
Sqs
b (Q)), where Sqs

b (Q) fulfills Q = Vbµ(S
qs
b (Q)). Moreover, E1 is unstable and

E2 is globally asymptotically stable (excluding the case where Bb,0 = 0) when
Q < Vbµ(Sr).

Definition 2.1. We call washout the equilibrium state E1, i.e., the bioreactor
equilibrium with no biomass.

A nondimensionalization analysis of systems (1) (see [19]) and (5) (see [18])
provides us with a time scale for the bioreactor, τb = 1

‖µ‖∞

(‖µ‖∞ = µmax if the

Monod function (4) is considered), and for the water resource τr =
V
Vb

τb. Since
a reasonable hypothesis is to assume that the volume of the resource is much
larger than that of the bioreactor, i.e., V ≫ Vb, one has that τr ≫ τb. Thus,
one can consider that the dynamics of (5) is faster than that of (1) and then
make the quasi-steady state approximation, setting

Sout(t) = Sqs
b (Q(t)) (6)

in system (1). We point out that the hypothesis Q(t) < Vbµ(Sr(t)) can be
rewritten as Sqs

b (Q(t)) ∈ [0, Sr(t)). We observe that, when τr ≫ τb, the model
given by (1),(5) is not needed and we can use (1),(6) instead.

Remark 2.2. Since the mapping Q → Sqs
b (Q) given by Q = Vbµ(S

qs
b (Q)) is

a bijection from [0,+∞) to [0, Vb‖µ‖∞) we will equivalently use the notations
Q = Q(Sqs

b ) and Sqs
b = Sqs

b (Q).
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2.2.2. Inhomogeneities in the bioreactor

Many works available in the literature consider non perfectly mixed biore-
actors, such as tubular bioreactors with one dimensional spatialization (see for
instance [20], [21], [22], [23], [24], [25]). It is of interest to consider tubular
reactors with two spatial variables in order to study radial inhomogeneities of
concentrations in the bioreactor. Two dimensional spatialization bioreactors are
introduced, for instance, in the book of Dochain and VanRolleghem [26]. Partic-
ularly, model (2.154)-(2.159) presented in page 56, describes the behavior of the
substrate and biomass concentrations in the bioreactor by using an advection-
diffusion-reaction equation and a reaction equation, respectively. Moreover,
Dochain and VanRolleghem consider Dankwerts boundary conditions for the
substrate concentration, which are typical for continuous flow bioreactors (see,
e.g., [24, 27]). Here, we modify model (2.154)-(2.159) presented in [26], by using
and advection-diffusion-reaction equation together with Danckwerts boundary
conditions also for the biomass.

Remark 2.3. A typical representation of a bioreactor is a tank as depicted in
Figure 2-(a), with a small inlet aperture at its top (through which polluted water
enters the reactor) and a small outlet aperture at its bottom (through which the
treated water leaves the reactor). In Section 2.2.2, following the model developed
in [28] for fluidic mixers and for the sake of model simplification, we neglect the
possible effects coming from the size and collocation of these apertures. To do
that, we only model an intermediate part of the bioreactor, denoted by Ω∗ (dark
part of Figure 2-(a)), assuming that the volume of the removed part is negligible
compared to the total bioreactor volume.

Let the vertical cylinder denoted by Ω∗ be the domain used for modeling the
bioreactor. A typical outline of Ω∗ is depicted in Figure 2-(b). At the beginning
of the process, there is a certain amount of biomass inside Ω∗ that reacts with the
polluted water entering the reactor through the inlet Γ∗

in (the upper boundary of
the cylinder). Treated water leaves the reactor through the outlet Γ∗

out (the lower
boundary of the cylinder). Taking into account that the device’s geometry (see

(a) 3D Reactor (b) 3D Reactor simplification (c) 2D Reactor simplification

Figure 2: Typical domain representation of the bioreactor geometry.

Figure (2)-(b)) is an empty solid of revolution, it can be simplified and described
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by using a 2D domain Ω (see Figure (2)-(c)) using cylindrical coordinates. Thus,
in the simplified model the domain is the rectangle Ω = [0, L] × [0, H ], where
Γsym = {0}×(0, H) is the axis of symmetry; Γin = (0, L)×{H} is the bioreactor
inlet; and Γout = (0, L) × {0} is the bioreactor outlet. We denote Γwall =
δΩ \ (Γin ∪ Γout ∪ Γsym), where null flux is assumed.

We consider the following advection-diffusion-reaction model to describe the
dynamics in the bioreactor:







































∂Sb

∂t
= 1

r
∂
∂r
(rDS

∂Sb

∂r
) + ∂

∂z
(DS

∂Sb

∂z
)− uz

∂Sb

∂z
− µ(Sb)Bb in (0,+∞)× Ω,

∂Bb

∂t
= 1

r
∂
∂r
(rDB

∂Bb

∂r
) + ∂

∂z
(DB

∂Bb

∂z
)− uz

∂Bb

∂z
+ µ(Sb)Bb in (0,+∞)× Ω,

Sb(0, r, z) = Sb,0 in Ω,

Bb(0, r, z) = Bb,0 in Ω,

(7)

where (r, z) are the cylindrical coordinates; DS (m2/s) and DB (m2/s) are
the diffusion coefficients of substrate and biomass, respectively, when diffus-
ing throughout the water in the vessel, and u = (0, uz(t, r, z)) is the fluid flow
velocity field, where uz (m/s) is its vertical component (radial components of
the velocity field are neglected).

System (7) is completed with the following boundary conditions:







































DS
∂Sb

∂z
− uzSb = −uzSr(t) on (0,+∞)× Γin,

DB
∂Bb

∂z
− uzBb = 0 on (0,+∞)× Γin,

∂Sb

∂r
= ∂Bb

∂r
= 0 on (0,+∞)× (Γwall ∪ Γsym),

∂Sb

∂z
= ∂Bb

∂z
= 0 on (0,+∞)× Γout.

(8)

We express the variable Sout(t) to be used in system (1) as the substrate con-
centration at the outlet of the bioreactor at time t. When considering general
flow velocity fields, we have to take into account that both substrate concentra-
tion and outlet flow velocity may depend on the position of the exiting particle.
Thus, we considered an average value of the exiting substrate concentration
weighted by the flow velocity and computed as

Sout(t) =

∫

Γ∗

out
uz(t, x, y, 0)Sb(t, x, y, 0) dxdy
∫

Γ∗

out
uz(t, x, y, 0) dxdy

.

When expressed in cylindrical coordinates, it is calculated as

Sout(t) =

∫ 2π

0

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) drdθ

∫ 2π

0

∫ L

0
ruz(t, r, 0) drdθ

=

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) dr
∫ L

0
ruz(t, r, 0) dr

. (9)
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We consider two types of flow velocity fields, which do not change along the
z-axis (more general fields can be considered by using the Navier-Stokes equa-
tions).

• Homogeneous flow velocity field: As a first approach, we consider that
the vertical component of the flow velocity field is taken as uz(t, r, z) =
uz(t) = −Q(t)/A, where Q (m3/s) is the volumetric flow rate defined in
Section 2.1 and A (m2) is the area of the basis of the cylinder. In this

case, Sout(t) =
2
L2

∫ L

0 rSb(t, r, 0)dr.

• Nonhomogeneous flow velocity field: As a second approach, we con-
sider that the flow velocity field has the shape of a paraboloid of revolution
(other choices could be also considered), which is classical in Fluid Dy-
namics for ideal cases (see, for instance, the example given in page 41
of [29]) and more realistic than the previous homogeneous flow velocity
profile. More precisely, the vertical component of the flow velocity field
is taken as uz(t, r, z) = uz(t, r) = −C(L2 − r2), where C is chosen so
that the volume covered by half of the paraboloid of revolution is equal
to Q (m3/s). Since the volume generated is V = C π

2L
4, we conclude

that C(t) = 2Q(t)
πL4 and thus uz(t, r) = − 2Q(t)

πL4 (L2 − r2). In this case,

Sout(t) =
4
L4

∫ L

0
r(L2 − r2)Sb(t, r, 0)dr.

Remark 2.4. A nondimensionalization analysis of system (7)-(8) (see [30])

provides us with a time scale for the bioreactor, that is τb = max(H
2

DS
, H2

DB
,

H
umax

, 1
‖µ‖∞

), where umax is a suitable scale for the flow velocity component uz.

For the water resource, the time scale is τr =
V
Vb

1
‖µ‖∞

(see Section 2.2.1). For

the cases where τr ≫ τb (for instance, when the volume of the resource is much
larger than the volume of the bioreactor), one can consider that the dynamics
of (7)-(8) is faster than that of (1), i.e, for a reasonable process time for the
bioreactor, the changes in the entering substrate and the fluid flow velocity are
negligible (therefore, they can be treated as constants). Consequently, when deal-
ing with time intervals of the order of τr, we consider that the bioreactor is in
quasi-steady state, which we approximate by taking the solution of (7)-(8) at
time t, with t large enough (see [31]).

3. Optimization problem

We consider the optimization problem consisting in making decrease the
substrate concentration of the water resource, to a prescribed value Slim > 0
(mol/m3), in a minimal amount of time by choosing a suitable control strategy
for the input variable Q.

Definition 3.1. We denote by Σ0 and Σ the initial state and the state at an
arbitrary time, respectively. Therefore, when considering system (1),(6) Σ0 =
Sr,0 and Σ = Sr ∈ [0,+∞); and when considering system (1),(7)-(9) we have
Σ0 = (Sr,0, Sb,0, Bb,0) and Σ = (Sr, Sb, Bb) ∈ [0,+∞)× (L∞(Ω))2.
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Definition 3.2.

1. For each initial state Σ0 we consider the set of admissible time-dependent
control functions given by QOL = {Q : [0,+∞) → [0,+∞) Lebesgue mea-
surable such that Q(0) < Vbµ(Sr,0), where Sr,0 is initial state of system
(1),(6) (or system (1),(7)-(9))}. A functional Q(·) = Q(Σ0; ·) ∈ QOL is
called an open loop-control and in the following is denoted by QOL.

2. We consider the set of admissible state-dependent control functions given
by QFB = {Q : [0,+∞) → (0,+∞) (resp. Q : [0,+∞) × (L∞(Ω))2 →
[0,+∞)) such that system (1),(6) (resp. (1),(7)-(9)) admits a unique
absolutely continuous solution for any initial condition Σ0 and Q(Σ) <
Vbµ(Sr)}. A functional Q ∈ QFB is called a feedback control and in the
following is denoted by QFB. 1

Signal flow graph representations of the two control strategies defined above are
shown in Figure 3.

(a) Open-Loop control (b) Feedback control

Figure 3: Signal flow graph representations of the considered control strategies.

Remark 3.3. The stability analysis of the ODE system (5), presented in Sec-
tion 2.2.1, stated that in order to avoid washout (see Definition 2.1) a suitable
condition for the flow rate Q is Q(Σ) ∈ (0, Vbµ(Sr)). When using the ODE-PDE
system (1),(7)-(9), we have presented two possible effects which may cause inho-
mogeneities in the bioreactor: small diffusion of substances and nonhomogeneous
fluid flow velocity profile. In the first case, the entering substrate diffuses slowly
through the tank and thus, smaller flow rates are needed in order to guarantee
that the biomass has enough time to be in contact with the substrate and decon-
tamination occurs. In the second case, a nonhomogeneous profile may produce
that in some regions of the bioreactor, the liquid is ejected faster than if we use
the homogeneous flow velocity profile, and hence, smaller flow rates are needed
in order to assure that the substrate and biomass react in the whole tank. Con-
sequently, one can conclude that the bound Q(Σ) ∈ (0, Vbµ(Sr)) is also suitable
when using the ODE-PDE system (1),(7)-(9).

1The definition of QFB will be modified in Remark 3.6 for a special case that we will
studied in this paper
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Remark 3.4. A particular case of open-loop is when Q is constant, which in
the following we will be denote by QC. For each initial state Σ0 we consider
the set of admissible constant control functions given by QC = {Q : [0,+∞) →
[0,+∞) : Q(t) = c for all t ≥ 0, with c ∈ [0, Vbµ(Slim))}.

Remark 3.5. For an initial state Σ0, we call open-loop representation of the
feedback QFB to the time function QFB(·) = QFB(Σ(·)) where Σ(·), is the solu-
tion of the system (either (1),(6) or (1),(7)-(9)) with initial state Σ0.

Remark 3.6. For cases where τb ≪ τr, we can assume that system (1),(7)-(9)
is in quasi-steady state (see Remark 2.4). In this situation, we can approximate
the state of the system by Σ = Sr and open-loops and feedbacks can be assumed,
respectively, functionals of the form QOL(·) = QOL(Sr,0; ·) and Sr 7→ QFB(Sr),
where QFB ∈ QFB = {Q : [0,+∞) → (0,+∞) such that system (1),(7)-(9)
admits a unique absolutely continuous solution for any initial condition Σ0 and
Q(Sr) < Vbµ(Sr)}.

Given an initial state Σ0, the optimization problem when using open-loops can
be formulated as follows:

{

Find QOL,opt(·) ∈ QOL, such that

T (Σ0, Q
OL,opt(·)) = min

QOL(·)∈QOL
T (Σ0, Q

OL(·)), (10)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving system (1),(6) (or system (1),(7)-(9)) with the flow rate
Q = QOL(·). If the target is not achieved we set T (Σ0, Q

OL(·)) = +∞.

The optimization problem when using feedback controls can be formulated
as follows:

{

Find QFB,opt ∈ QFB, such that for every initial state Σ0

T (Σ0, Q
FB,opt(·)) = min

QFB∈QFB
T (Σ0, Q

FB(·)), (11)

where T (Σ0, Q
FB(·)) denotes the time required to achieve Sr(T (Σ0, Q

FB(·))) =
Slim when solving system (1),(6) (or system (1),(7)-(9)) with the flow rate
Q = QFB. If the target is not achieved we set T (Σ0, Q

FB(·)) = +∞.

In Section 3.1 we solve these problems considering ODE system (1),(6) and
in Section 3.2 we use ODE-PDE system (1),(7)-(9).

3.1. Optimization problem with ODE system (1),(6)

When using ODE model (1),(6), we assume τr ≫ τb. We distinguish between
the cases in which Q is a constant open-loop control or a feedback control. The
case where Q is a time-varying open loop is derived from the case in which Q
is a feedback control (as explained in Remark 3.10).
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3.1.1. Case 1: Constant open-loop control

Given an initial state Σ0 = Sr,0 ∈ [0,+∞) we look for an optimal constant
QC,opt ∈ QC solution of (10). Under assumption (3), if control variable Q is
equivalently replaced by control variable Sqs

b (see Remark 2.2) and if we denote

Sqs,C
b = {Sqs

b = Sqs
b (Q) such that Q ∈ QC}, then problem (10) becomes







Find Sqs,C,opt
b ∈ Sqs,C

b such that

T (Sr,0, S
qs,C,opt
b ) = min

S
qs,C
b

∈Sqs,C
b

T (Sr,0, S
qs,C
b ), (12)

where T (Sr,0, S
qs,C
b ) denotes the time required to achieve Sr(T (Sr,0, S

qs,C
b )) =

Slim when solving system (1),(6) with the control variable Sqs
b = Sqs,C

b . We now
present some theoretical results that are proved in [15], about problem (12).

Lemma 3.7. If Q is constant (i.e., Sqs
b is constant), one has

T (Sr,0, S
qs,C
b ) =

1
Vb

V
µ(Sqs,C

b )
ln

(

Sr,0 − Sqs,C
b

Slim − Sqs,C
b

)

. (13)

Moreover, assuming Sr,0 > Slim, optimization problem (12) has a unique solu-
tion.

We approximate the solution of problem (12) by computing

Sqs,C,opt
b = arg min

S
qs,C
b ∈Sqs,C,N

b

T (Sr,0, S
qs,C
b ), (14)

where Sqs,C,N
b = {Sqs

b,i}
N
i=1, with N ∈ N large enough and Sqs

b,i =
i

N+1Slim.

3.1.2. Case 2: Feedback control

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of (11).
Under assumption (3), if control variable Q is equivalently replaced by control

variable Sqs
b and if we denote Sqs,FB

b = {Sqs
b = Sqs

b (Q) where Q ∈ QFB}, then

Sqs,FB,opt
b = Sqs

b (QFB,opt) is called an optimal feedback. As proven in [15], we
have the following result.

Lemma 3.8. An optimal feedback Ssb,FB,opt
b : [0,+∞) → R must fulfill

Sqs,FB,opt
b = arg min

S
qs,FB
b ∈Sqs,FB

b

Vb

V
µ(Sqs,FB

b )(Sqs,FB
b − Sr) (15)

or, equivalently,

µ′(Sqs,FB,opt
b )(Sr − Sqs,FB,opt

b ) = µ(Sqs,FB,opt
b ). (16)

Moreover, QFB,opt(·) (see Remark 3.5) is decreasing along any optimal trajec-
tory.
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Remark 3.9. The fact that the open loop realization of the feedback QFB,opt

is decreasing along time can be interpreted physically as follows: as time goes
on, the substrate in the water resource is decreasing and the water that enters
the bioreactor is less polluted. Therefore, if Q(·) does not decrease, the biomass
has not enough time to be in contact with the substrate in order to grow, and
eventually becomes extinct.

Remark 3.10. If QFB,opt is solution of problem (11) when using system (1),(6),
given an initial state Σ0 = Sr,0 ∈ [0,+∞), the open-loop representation of
QFB,opt (see Remark 3.5) is solution of problem (10).

3.2. Optimization problem with ODE-PDE model (1),(7)-(9)

In the case where inhomogeneities are considered, we recall that Sout is
computed as described in (9). As in Section 3.1, we consider the cases in which
Q is chosen as an open-loop control or as a feedback control.

3.2.1. Case 1: Constant open-loop control

Given an initial state Σ0 ∈ [0,+∞)×(L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the cases
where τb ≪ τr, see Remark 3.6), we look for an optimal constant QC,opt ∈ QC

solution of problem (10), that we approximate by taking N equidistant points
in the interval (0, Vbµ(Slim)) proceeding as in problem (14).

3.2.2. Case 2: Time varying open-loop control

Given an initial state Σ0 ∈ [0,+∞) × (L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the
cases where τb ≪ τr, see Remark 3.6), we look for a time variable function
QOL,opt ∈ QOL close to a solution of (10). With that aim, we consider a family
of time varying functions with 5 optimization parameters, denoted by Q0, Q1,
Q2, Q3 and Q4. Those optimization parameters correspond to the value of the
flow rate QOL(·) at five different given fixed times t0, t1, t2, t3 and t4, starting
from time t0 = 0, so that function QOL is given by QOL(ti) = Qi (i = 0, . . . , 4),
QOL(t) is calculated with the monotone piecewise cubic hermite interpolation
method, with null derivatives at t0 and t4 (see for instance [32]) for t ∈ (ti, ti+1)
(i = 0, . . . , 3), and QOL(t) = Q4 for t ≥ t4.
Following Remark 3.9, we only consider decreasing time functions Q(·). Thus,
we compute the optimization parameters Q0, Q1, Q2, Q3 and Q4 with the
following constraints

Q0 > Q1 > Q2 > Q3 > Q4.

To that end, we consider the optimization parameter Q0 ∈ [0, Vbµ(Sr,0)) and
we define new optimization parameters α1, α2, α3 and α4 in [0, 1] such that the
interpolation data are given by

Q1 = α1Q0, Q2 = α2Q1, Q3 = α3Q2, Q4 = α4Q3.

Therefore, we approximate QOL,opt(·) by a function defined by interpolation, as
explained above, and where the corresponding vector γopt = (Qopt

0 , αopt
1 , αopt

2 ,

12



αopt
3 , αopt

4 ) is solution of
{

Find γopt ∈ (0, Vbµ(Sr,0))× (0, 1)4 such that

T (Σ0, Q
OL,opt(·)) = min

γ∈(0,Vbµ(Sr,0))×(0,1)4
T (Σ0, Q

OL(·)), (17)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving (with any suitable solver; see e.g. Section 4.1) system (1)
coupled with (7)-(9) with the flow rate Q = QOL(·). We solve problem (17) with
the Hybrid Genetic Algorithm (HGA), and its parameters, presented in [28].
The HGA is a global optimization algorithm based on a combination between
a Genetic Algorithm (which, without requiring the computation of the gradient
of the cost function, performs a first coarse global search of the solution) and a
Steepest Descent method (which performs a refined local search of the solution).
The suitability of this method to solve computationally expensive optimization
problems has been shown in [33].

3.2.3. Case 3: Feedback Approximation

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of
problem (11). To this end, proceeding similarly as done in Lemma 3.8 for
perfectly mixed bioreactors, we perform a suboptimal strategy as a greedy policy
that consists in choosing a control maximizing the instantaneous decrease of the
contaminant concentration in the resource.
For cases where τb ≪ τr, we assume that the feedback only depends on Sr, i.e.,
Σ = Sr (see Remark 3.6) and we approximate the feedback function that we are
looking for by solving the following optimization problem: Given an arbitrary
resource substrate concentration S ∈ [0,+∞) and a small time interval ∆t > 0
(chosen of the order of the water resource time scale τr in order to assure that
the bioreactor is in quasi-steady state during the time interval ∆t)







Find QFB,opt(S) ∈ [0, Vbµ(S)) such that

Sr(S,Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(18)

where Sr(S,Q
FB; ∆t) is the solution (computed with any suitable solver; see e.g

Section 4.1) of system (1) coupled with (7)-(9) at time ∆t, with S = S0 and
Q = QFB(S). Since τb ≪ τr the bioreactor is in quasi-steady state and the
choice of the concentration values Sb,0 and Bb,0 does not have influence on the
solution of problem (18). Particularly, we take Sb,0 = Bb,0 = S. We estimate
the solution of problem (18) by taking N equidistant points in the interval
(0, Vbµ(S)) and proceeding as in problem (14). Then, in order to obtain a
function of the form

QFB,opt : [Slim, Sr,0] −→ [0, Vbµ(Sr,0))

S → QFB,opt(S),
(19)

we solve problem (18) for a range of concentration values S ∈ S = {Si}
I+1
i=1 ,

where I ∈ N is large enough and Si = Sr,0−
i−1
I
(Sr,0−Slim). Finally, Q

FB,opt(S)

13



is calculated with the monotone piecewise cubic hermite interpolation with null
derivatives at Slim and Sr,0 (see [32]) for S /∈ S.

For cases where τb ≪ τr is not satisfied, we approximate the feedback function
that we are looking for by solving the following optimization problem: Given
arbitrary concentration values (S, sb, bb) ∈ [0,+∞)×(L∞(Ω))2 and a small time
interval ∆t > 0







Find QFB,opt(S, sb, bb) ∈ [0, Vbµ(S)) such that

Sr(Σ, Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(20)

where Sr(S,Q
FB; ∆t) is the solution (obtained with a suitable numerical solver;

see e.g. Section 4.1) of system (1) coupled with (7)-(9) at time ∆t, with Σ0 =
(S, sb, bb) and Q = QFB(S, sb, bb). We estimate the solution of problem (20)
by taking N equidistant points in the interval (0, Vbµ(S)) and proceeding as in
problem (14).
Then, in order to obtain a function of the form

QFB,opt : [Slim, Sr,0]× (L∞(Ω))2 −→ [0, Vbµ(Sr,0))

(S, sb, bb) → QFB,opt(S, sb, bb),
(21)

we solve problem (20) for a range of concentration values (S, sb, bb) in the set
M = {(S, sb, bb) : ∃i ∈ {1, . . . , I + 1} such that S = Si ∈ S, sb ∈ Sb,i and
bb ∈ Bb,i} where Si = Sr,0 − i−1

I
(Sr,0 − Slim), Sb,i = Bb,i = {Si,j}j∈J with

J ⊂ N and Si,j = Si

j
. If (S, sb, bb) /∈ M, we compute the mean value of the

concentrations sb and bb in the bioreactor (which we denote by sb and bb) by

sb =

2

∫ L

0

∫ H

0

rsb(r, z) dzdr

L2H
, bb =

2

∫ L

0

∫ H

0

rbb(r, z) dzdr

L2H
,

and QFB,opt(S, sb, bb) is approximated by QFB,opt(S, sb, bb), which is given by
spatial interpolation. More specifically, QFB,opt(S, sb, bb) is calculated with a
suitable trilinear or neighbor interpolation method depending if (S, sb, bb) is or
not inside the convex hull of M.

Remark 3.11. Solution of problems (18) and (20) are approximations of the
solution of problem (11) which, as shown in Section 4.3, provide satisfactory
results.

4. Numerical Experiments

In this section, we first introduce the numerical solvers used for computing
the solutions of systems (1),(6) and (1),(7)-(9). Then, in Sections 4.2 and 4.3 we
present the numerical results obtained when looking for constant and feedback
controls, respectively. Notice that in order to shorten the presentation of this
work, the results obtained when looking for time varying open-loop controls has
been included in Section 4.3.
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4.1. Numerical solvers used for systems (1),(6) and (1),(7)-(9)

The solution of system (1),(6) was computed numerically by using a fourth-
order Runge-Kutta method and the solution of system (1),(7)-(9) was computed
numerically by coupling a fourth-order Runge-Kutta method with a Finite Ele-
ment Method (see [34]). The computational experiments were carried out with
a 2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We used a triangular
mesh with around 600 elements. A numerical simulation of system (1),(7)-
(9) with time step ∆t = 100s and final time 105s, computed using MATLAB
(mathworks.com) and COMSOL Multyphisics 5.0 (www.comsol.com), takes ap-
proximately 12 seconds.

Model parameters were taken following [15, 35]: µ(·) was the Monod Func-
tion (see (4)) with µmax = 1 (s−1) and K = 1 (mol/m3). For the bioreactor and
water resource volumes we took Vb = 1 (m3) and V = 1000 (m3), respectively.
In order to obtain a cylinder of volume Vb = 1 (m3), we used a 2D bioreactor
domain with H = L = 0.68 (m). We considered a case for which the time scale
of the bioreactor was comparable to the time scale of the water resource by using
diffusion coefficients DS = DB = 0.01 (m2/s). We also consider a case where the
time scale for the bioreactor was much smaller than the time scale of the water
resource by using diffusion coefficients DS = DB = 100 (m2/s). When comput-
ing a constant open loop control (see Section 3.2.1), N = 100 was chosen to solve
problem (14). When computing a time-varying open loop (see Section 3.2.2), the
interpolation times were t0 = 0 (s), t1 = 20000(s), t2 = 40000(s), t3 = 60000(s)
and t4 = 80000(s). Those values where taken equidistant and having estimated
experimentally that the time needed to achieve the prescribed value in the re-
source is around 105s. Finally, when computing a feedback (see Section 3.2.3),
problems (18) and (20) were solved by using the MATLAB functions interp1
and interp3 (see https://www.mathworks.com/moler/interp.pdf), respec-
tively, with ∆t = 100 s.

Remark 4.1. The model parameters considered here were chosen as in [15] in
order to obtain a straightforward comparison between the methodologies proposed
in this article and the ones introduced here. Of course, they could be replaced
by other values found in the literature.

4.2. Constant Open-Loop Control

In this Section, we solve numerically the optimization problem (10) when the
volumetric flow rate Q is considered a constant. More specifically, Section 4.2.1
shows the numerical results for the ODE system (1),(6), obtained by solving
problem (14), and Section 4.2.2 shows the numerical results for the ODE-PDE
system (1),(7)-(9), obtained as explained in Section 3.2.1. Then, in Section
4.2.3 we make a comparison of the results obtained in Sections 4.2.1 and 4.2.2
in terms of the optimal constant open-loop controls and the time needed to
achieve the prescribed value of substrate concentration in the water resource,
Slim. We also compare systems (1),(6) and (1),(7)-(9) in terms of the minimum
substrate concentration achieved in the water resource if the constant flow rate

15
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obtained for system (1),(6) is used in system (1),(7)-(9). Simulations were done
with initial substrate concentration in the resource Sr,0 = 10 (mol/m3) and
with Slim = 0.1 (mol/m3). These simulations were also performed for Sr,0 = 5
(mol/m3) and similar conclusions were obtained.

4.2.1. ODE system (1),(6)

In this Section we solve the optimization problem (14) using system (1),(6)

with N = 200. The optimal constant open-loop is QC,opt
ODE = 0.0790 (m3/s) and

the corresponding decontamination time is T (Sr,0, Q
C,opt
ODE ) = 81830 (s).

4.2.2. ODE-PDE model (1),(7)-(9)

In this Section we solve the optimization problem (10) using the model given

by system (1),(7)-(9). We denote QC,opt
H and QC,opt

NH the optimal constant flow
rates when considering the homogeneous and the nonhomogeneous flow velocity
fields, respectively. Equivalently, we denote SH

r,ach and SNH
r,ach the minimum sub-

strates concentrations achieved in the water resource if QC,opt
ODE is used in system

(1),(7)-(9). For these concentration values, the flow rate QC,opt
ODE is high enough

to drive system (1),(7)-(9) to washout (see Definition 2.1), i.e., the biomass be-
come extinct and no more reaction is produced.

We distinguish between the cases where the time scale of the bioreactor is
much smaller than the time scale of the water resource (i.e., τb ≪ τr) and the
case where that condition is not satisfied.

• Case τb ≪ τr:
Table 1 shows optimal constant open loops and the corresponding decon-
tamination times. The substrate concentrations achieved in the resource
are SH

r,ach = 0.08569 (mol/m3) and SNH
r,ach = 0.1177 (mol/m3).

Sr,0 QC,opt
H T (Sr,0, Q

C,opt
H ) QC,opt

NH T (Sr,0, Q
C,opt
NH )

(mol/m3) (m3/s) (s) (m3/s) (s)
10 0.0778 81840 0.0594 110420

Table 1: ODE-PDE model: case τb ≪ τr. Values of the optimal constant open-loops Q
C,opt

H

and Q
C,opt

NH
and the corresponding decontamination times for Sr,0 = 10 (mol/m3).

• Case τb ≈ τr:
In this case, the optimal constant open loop also depends on the ini-
tial state at the bioreactor. Since we aim to compare the optimal con-
stant open-loop controls obtained for the ODE system (1),(6) and the
ODE-PDE system (1),(7)-(9), we estimate a function of the form Sr,0 →

QC,opt
H (Sr,0) by solving problem (10) for a range of initial states in the set

M defined to solve problem (20) with I = 1 and J = {1, 2, 4, 10}. Then,

QC,opt
H is approximated by computing the mean value of the set of opti-

mal constant open-loop controls obtained for the different initial states.
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This procedure is also used to obtain the optimal constant QC,opt
NH and the

substrate concentrations SH
r,ach and SNH

r,ach.
Table 2 shows the optimal constant flow rates and the corresponding de-
contamination times. The substrate concentrations achieved in the re-
source are SH

r,ach = 0.1524 (mol/m3) and SNH
r,ach = 0.1776 (mol/m3).

Sr,0 QC,opt
H T (Sr,0, Q

C,opt
H ) QC,opt

NH T (Sr,0, Q
C,opt
NH )

(mol/m3) (m3/s) (s) (m3/s) (s)
10 0.0547 102190 0.0442 129160

Table 2: ODE-PDE model: case τb ≈ τr. Values of the optimal constant open-loops Q
C,opt
H

and Q
C,opt

NH
and the corresponding decontamination times for Sr,0 = 10 (mol/m3).

4.2.3. Discussion

An interesting study is to check if the optimization results obtained in Sec-
tions 4.2.1 and 4.2.2 are similar. We make the comparison for both flow velocity
fields, described in Section 2.2.2.

• Homogenous flow velocity field: We can observe from results in Sec-
tion 4.2.1 and Table 1 that the volumetric flow rates QC,opt

ODE and QC,opt
H

(obtained with the ODE-PDE system (1),(7)-(9) when τb ≪ τr) are signifi-
cantly close and the decontamination times are comparable (the difference
is below 1% for both values of Sr,0). Nevertheless, from results in Section

4.2.1 and Table 2 one notice that the flow rate QC,opt
H (obtained with the

ODE-PDE system (1),(7)-(9) when τb ≈ τr) is around 70% of the value of

QC,opt
ODE . Furthermore, from the value SH

r,ach we conclude that if the con-

stant QC,opt
ODE is applied in system (1),(7)-(9) in the case where τb ≈ τr,

the bioreactor is driven to washout (see Definition 2.1) before the decon-
tamination target is achieved. These results seem to indicate that when
high diffusions are considered, the optimal constant controls obtained with
the ODE model are similar to those obtained with the ODE-PDE model,
whereas for low diffusion coefficients the ODE-PDE model exhibits better
results, in the sense that it provides smaller volumetric flow rates which
favor that the biomass does not become extinct in the bioreactor before
the target is achieved (see Remark 3.3).

• Nonhomogeneous flow velocity field: We can observe from results in
Section 4.2.1 and Tables 1 and 2 that the volumetric flow rates QC,opt

NH ,
obtained with the ODE-PDE system (1),(7)-(9) in the cases where τb ≪ τr
and τb ≈ τr, are around 75% and 60% of the value of the flow rate QC,opt

ODE ,
respectively. Furthermore, from the values SNH

r,ach we conclude that if the

constant QC,opt
ODE is used in the ODE-PDE system (1),(7)-(9), the bioreactor

is driven to washout (see Definition 2.1) before the decontamination target
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is achieved. These results seem to indicate that when the nonhomogeneous
flow velocity field is considered, model (1),(7)-(9) exhibits better results,
in the sense that it provides smaller volumetric flow rates which favor that
the biomass does not become extinct in the bioreactor before the target
is achieved (see Remark 3.3).

4.3. Feedback

In this Section, we look for an optimal feedback, denoted by QFB,opt solution
of problem (11). More specifically, Section 4.3.1 shows the results for the ODE
system (1),(6), obtained using Lemma 3.8 and Section 4.3.2 shows the feedback
approximations for the ODE-PDE system (1),(7)-(9), obtained when solving the
suboptimal problems (18) and (20). Section 4.3.2 also shows the feedback syn-
thesis (see definition below) of the optimal time varying open-loops, obtained
when solving (17). Then, in Section 4.3.3 we make a comparison of the results
presented in Sections 4.3.1 and 4.3.2 in terms of the feedback control. Fur-
thermore, we compare models (1),(6) and (1),(7)-(9) in terms of the minimum
substrate concentration achieved in the water resource if the optimal feedback
obtained for system (1),(6) is used in system (1),(7)-(9).

4.3.1. ODE model (1),(6)

As detailed in Section 3.1.2 if the Monod equation (4) is taken, the optimal

feedback, denoted by QFB,opt
ODE , fulfills

QFB,opt
ODE = Vbµ(S

qs,FB,opt
b ) = Vbµ(

√

K2 +K · Sr −K).

4.3.2. ODE-PDE model (1),(7)-(9)

As a first approach, we solve problem (11) by solving optimization problems
(18) and (20) (considering a feedback approximation, as described in Section
3.2.3), for both homogeneous and nonhomogeneous flow velocity fields, denot-

ing the solution by QFB,opt
H and QFB,opt

NH , respectively.
In order to compare with time varying open-loop controls (see Section 3.2.2), as
a second approach we solve problem (11) by solving the optimization problem
(17) and then taking the feedback synthesis of the time varying open-loop, i.e.,
for any time t with corresponding values Q(t) and Σ(t), we can reconstruct the
map Σ(t) → Q(t), that can be seen as a state-dependent control function, which

in the following we denote by QOL,opt
H (Σ) and QOL,opt

NH (Σ), for the homogeneous
and the nonhomogeneous flow velocity fields, respectively. Equivalently, we de-
note SH

r,ach and SNH
r,ach the minimum substrate concentrations achieved in the

water resource if QFB,opt
ODE is used in system (1),(7)-(9). For these concentration

value, the flow rateQODE
FB,opt is high enough to drive system (1),(7)-(9) to washout

(see Definition 2.1), i.e., the biomass become extinct and no more reaction is
produced.

Simulations have been conducted for substrate concentration Sr,0 = 10
(mol/m3) Slim = 0.1 (mol/m3).
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• Case τb ≪ τr
Figure 4 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 4-(a) shows the

feedbacks QFB,opt
H and QOL,opt

H (Σ) and Figure4-(b) shows the feedbacks

QFB,opt
NH and QOL,opt

NH (Σ), while the corresponding decontamination times
are shown in Table 3. Note that, for the sake of comparison, Table 3 also
includes the decontamination times T (Sr,0, Q

C,opt
ODE ), obtained in Section

4.2.1.
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(a) Homogeneous flow velocity field
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Figure 4: ODE-PDE model: case τb ≪ τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt (depicted with dashed lines).

T (Sr,0, Q
FB,opt
H ) (s) T (Sr,0, Q

OL,opt
H ) (s) T (Sr,0, Q

C,opt
H ) (s)

49870 48040 81840

T (Sr,0, Q
FB,opt
NH ) (s) T (Sr,0, Q

OL,opt
NH ) (s) T (Sr,0, Q

C,opt
NH ) (s)

64770 63990 110420

Table 3: ODE-PDE model: case τb ≪ τr. Decontamination times obtained with system
(1),(7)-(9), Sr,0 = 10 (mol/m3) and controls QFB,opt, QOL,opt and QC,opt.

• Case τb ≈ τr:
In this case, time varying open loops and feedbacks depend on the biore-
actor state. Since we aim to compare the optimal feedback obtained for
ODE model (1),(6) with the two feedback schemes obtained for ODE-PDE

model (1),(7)-(9), we approximate functions of the form Sr → QFB,opt
H (Sr)

and Sr,0 → QOL,opt
H (Sr,0; ·). In order to computeQFB,opt

H (Sr) (orQ
FB,opt
NH (Sr))

we solve problem (20) for (S, sb, bb) in the set M, defined to solve prob-
lem (18), with I = 20 and J = {1, 2, 4, 10}. Thus, for each S ∈ S,
QFB,opt(S) is approximated by computing the mean value of the set of
optimal feedbacks QFB,opt(S, sb, bb) with (S, sb, bb) ∈ M. Similarly, in

order to compute QOL,opt
H (Sr,0; ·) we solve problem (17), taking Σ0 ∈ M
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with I = 1 and J = {1, 2, 4, 10}. Then, each component of vector γopt

is approximated by computing the mean value of the set of its optimal
values obtained for the different initial states. This procedure is also used
to obtain the average optimal time varying open loop QC,opt

NH (Sr,0; ·) and
substrate concentrations SH

r,ach and SNH
r,ach.

Figure 5 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 5-(a) shows the

feedbacks QFB,opt
H and QOL,opt

H (Σ), obtained when considering the homo-

geneous flow velocity field. Figure 5-(b) shows the feedbacks QFB,opt
NH and

QOL,opt
NH (Σ), obtained when considering the nonhomogeneous flow velocity

field. The corresponding decontamination times are shown in Table 4.
Note that, for the sake of comparison, Table 4 also includes the decon-
tamination times T (Sr,0, Q

C,opt
ODE ), obtained in Section 4.2.1. The substrate

concentrations achieved in the resource are SH
r,ach = 9.9888 (mol/m3) and

SNH
r,ach = 9.9836 (mol/m3).
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Figure 5: ODE-PDE model: Case τb ≈ τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt(Σ) (depicted with dashed lines).

T (Sr,0, Q
FB,opt
H ) (s) T (Sr,0, Q

OL,opt
H ) (s) T (Sr,0, Q

C,opt
H ) (s)

58900 57610 102190

T (Sr,0, Q
FB,opt
NH ) (s) T (Sr,0, Q

OL,opt
NH ) (s) T (Sr,0, Q

C,opt
NH ) (s)

74050 74180 129160

Table 4: ODE-PDE model: case τb ≪ τr. Decontamination times obtained with system
(1),(7)-(9), Sr,0 = 10 (mol/m3) and controls QFB,opt, QOL,opt and QC,opt.

4.3.3. Discussion

An interesting study is to check if both approaches, described in Sections
3.2.2 and 3.2.3, present similar numerical results. From Figure 4 and Figure 5
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one can observe significant similarities between the two volumetric flow rates
QFB,opt and QOL,opt(Σ), being the first one a bit faster than the second one in
most of the cases. This result is not surprising, since the open-loop approach
takes into account the concentrations only at initial time, while the feedback
strategy is intrinsically more robust.

Another interesting study is to check if the optimization results obtained in
Sections 4.3.1 and 4.3.2 are similar. We make the comparison for both flow
velocity profiles, described in Section 2.2.2.

• Homogenous flow velocity field: In order to analyze the similarities
between the obtained optimal controls QFB,opt

ODE , QFB,opt
H and QOL,opt

H (Σ),
we plot them in Figure 6. It is easy to observe that the volumetric
flow rates QFB,opt

H and QOL,opt
H (Σ) (obtained with the ODE-PDE system

(1),(7)-(9) in the case where τb ≪ τr) are significantly close to the flow

rate QFB,opt
ODE (in fact, QFB,opt

H and QFB,opt
ODE seem indistinguishable in Fig-

ure 6-(a)). Nevertheless, the flow rates QFB,opt
H and QOL,opt

H (Σ) (obtained
with the ODE-PDE system (1),(7)-(9) when τb ≈ τr) are much slower

than QFB,opt
ODE . For instance, for Sr = 10 (mol/m3) the values of QFB,opt

H

and QOL,opt
H (Σ) are around 35% the value of QFB,opt

ODE . Furthermore, from

the value SH
r,ach, we conclude that if the constant control QFB,opt

ODE is used
in system (1),(7)-(9) the bioreactor is driven to washout (see Definition
2.1) before the decontamination target is achieved. These results seem
to show that when high diffusions are considered, the optimal controls
obtained with the ODE and ODE-PDE models are similar, whereas for
low diffusion coefficients the ODE-PDE model exhibits better results, in
the sense that it provides smaller volumetric flow rates that favor that the
biomass does not become extinct before the target is achieved.

• Nonhomogeneous flow velocity field: In order to analyze the similari-
ties between the obtained optimal controlsQFB,opt

ODE , QFB,opt
NH andQOL,opt

NH (Σ),
we plot them in Figure 7. It is easy to observe that the volumetric
flow rates QFB,opt

NH and QOL,opt
NH (Σ), obtained with the ODE-PDE system

(1),(7)-(9) when τb ≪ τr and τb ≈ τr, are respectively around 75% and

35% the value of the flux QFB,opt
ODE . As a result we can conclude that

the ODE-PDE systems exhibits better results when computing the opti-
mal feedback, in the sense that it provides smaller volumetric flow rates
that favor that the biomass does not become extinct before the target is
achieved.

Comparison between the considered control strategies

Here, we compare the open-loop and feedback controls obtained in Sections
4.2.2 and 4.3.2. From Tables 3 and 4, one can observe that the decontamina-
tion times obtained using time-varying open loops and feedbacks are similar.
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Figure 6: Homogeneous flow velocity field: Comparison between the feedback obtained for the
ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model when
τb ≪ τr (depicted with dashed lines) and the feedback obtained for the ODE-PDE model
when τb ≈ τr (depicted with dotted lines).
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Figure 7: Nonhomogeneous flow velocity field: Comparison between the feedback obtained
for the ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model
when τb ≪ τb(depicted with dashed lines) and the feedback obtained for the ODE-PDE model
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However, the feedback approximation exhibits two advantages with respect to
the time-dependent control: it is more robust to possible changes on the sys-
tem conditions and, once obtained, it can be applied in other scenarios without
additional computational cost. Finally, one can see that the decontamination
times among constant controls are twice larger than those among time-varying
open loops and feedbacks.

5. Conclusion

In this work, we have focused on the modeling of the problem of water
treatment by using continuous bioreactors. We have presented two mathemat-
ical models, assuming homogeneity or inhomogeneity of substrate and biomass
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concentrations in the bioreactor. We have also made a difference between con-
sidering that the fluid flow velocity in the bioreactor is homogeneous through
the inlet, or follows a nonhomogeneous profile.

We have tackled an optimization problem which aims to minimize the time
needed to clean the polluted resource, by choosing an optimal bioreactor volu-
metric inflow rate. In the case of considering homogeneity of the contaminant
in the bioreactor, it is possible to obtain analytically an optimal flow rate from
previous theoretical results. In the case of considering inhomogeneity of the
contaminant in the bioreactor, we show here how to obtain an optimal flow rate
using an hybrid genetic algorithm. The results show that, in the cases where the
time scale in the bioreactor is comparable with the time scale of the resource
(for instance, by using DS = DB = 0.01 (m2/s)), the optimal flow rates are
smaller than the optimal flow rates obtained for the mathematical model which
considers homogeneity in the bioreactor. In any case, the decontamination time
can be substantially reduced if feedback controls are used instead of constant
controls.

Our goal was to compare the numerical optimization results obtained for the
ODE and ODE-PDE models presented for coupled system between the biore-
actor and the water resource. The results show that when the time scale of the
bioreactor is much smaller than the one of the water resource, (for instance, by
using DS = DB = 100 (m2/s)), the ODE-PDE system with homogeneous flow
velocity field approaches the ODE system. Contrarily, the ODE-PDE system
with nonhomogeneous flow velocity field does not approach the ODE system in
the sense that, when using the control strategy that is optimal under the homo-
geneous assumption in the bioreactor, the biomass becomes extinct and it is not
able to make the substrate in the water resource decrease to the objective value.
Let us notice that the nonhomogeneous flow velocity field has been presented
in order to approach a more realistically behavior of the reactor (see [29]). An
important conclusion is that an optimal feedback derived for perfectly mixed
bioreactor can lead a bioreactor with non negligible diffusion terms to washout,
preventing the desired decontamination objective to be reached, while a simple
open loop control, obtained with the method presented in this work, can solve
the problem.
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Abstract

In this work, we study optimal and suboptimal control strategies for the treat-
ment of a polluted water resource by using aside a continuous bioreactor. The
control consists in choosing the inlet volumetric flow rate for filling the bioreac-
tor with contaminated water from a considered resource (lake, reservoir, water-
table...). The treated outflow returns to the resource. We tackle an optimization
problem which aims to minimize the time needed to reach a prescribed mini-
mal value of contamination in the resource by choosing the input flow. Next,
we study the influence of inhomogeneities of concentrations in the bioreactor,
considering a system based on partial differential equations which describe its
dynamics. We show that applying the optimal feedback control derived for per-
fectly mixed bioreactor does not allow to reach the target with small diffusion
parameters as it drives the bioreactor to washout (the bioreactor equilibrium
with no biomass). In this case, a suboptimal feedback (which reaches the target
in finite time) is obtained with the help of a Hybrid Genetic Algorithm. Fur-
thermore, we consider that the fluid flow velocity of the water entering into the
bioreactor follows either a uniform or a nonuniform profile, showing that the
optimal volumetric flow rates obtained with the uniform profile are not optimal
if the profile is nonuniform, even when high diffusion coefficients are considered
in the model.
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1. Introduction

The decontamination of water resources is a major environmental issue in the
areas of prevention of eutrophication and wastewater treatment. Eutrophication
is a process whereby water resources becomes too rich in organic material and
mineral nutrients. Household products (phosphorus detergents) and products
used in agriculture (nitrate fertilizers) are the main causes of pollution of water
resources. As a result, some plants (in particular planktonic algae) can grow
rapidly and reduce the available oxygen of the aquatic ecosystem resulting, for
instance, in the death of local bio-organisms (such as fishes). The activated
sludge process is a way of eliminating eutrophication from water resources. The
process uses biomass (i.e., bacteria) to feed with substrate (i.e., the organic
contaminant) in wastewater, producing a high quality effluent for a reasonable
operating and maintenance cost. It consists of several interrelated components:

• A tank where the biological reaction occurs, called bioreactor. Bacteria
thrive as they travel through the bioreactor and they multiply rapidly
with sufficient food (substrate).

• A waste water source that feeds the bioreactor.

• A settler situated at the bottom of the bioreactor, separating bacteria from
the clearer water. This accumulated bacteria is called activated sludge.

• A means of collecting the activated sludge, either to return it to the biore-
actor or to remove it from the process.

Three modes of operation are very common in activated sludge bioreactor exe-
cution: batch, continuous and fed-batch. During batch operation no substrate is
added to the initial charge and the product is not removed until the end of the
process; in continuous operation the substrate is continually added and product
continually removed; in fed-batch operation the feed rate may be changed dur-
ing the process, but no product is removed until the end. One of the advantages
of the continuous mode regarding batch and fed-batch (see [1, 2]), is that it does
not require necessarily upstream tanks (i.e., tanks used to stock contaminated
water that cannot be treated immediately by the bioreactor).

The optimization of activated sludge processes has received a great attention
in the literature (see, e.g.,[3], [4] and [5] for reviews of the different optimization
techniques that have been used in bioprocesses). The objective is usually to
control the inlet flow rate of the bioreactor for attaining a prescribed target
(e.g., a small prescribed amount of pollutant at the bioreactor outlet) in a
finite given time. Particularly, the maximization of bacteria production in a
well mixed fed-batch bioreactor has been studied using different optimization
techniques, as Pontryagin Maximum Principle (see [6]), Genetic Algorithms
(see [7, 8, 9, 10]) or Hybrid Stochastic-Deterministic Methods (see [6], [11]). The
effects of varying the inlet flow velocity and the substrate concentration input in
continuous bioreactors have been studied as well (see for instance [12], [13], [14]
and [15]). The biological purification of waste water is an example of application
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of continuous bioreactors (see [16], [17] and [18]). Specifically, the influence of
inhomogeneity was studied in [17] [19] [20], where the problem of water treat-
ment was tackled when considering non homogeneous substrate concentration
in the water resource.

Typically, introducing biomass in the resource is forbidden because of the
risk of having bacteria growing in competition with other populations that also
need oxygen. Therefore, we assume that the resource contains only undesirable
chemical substrate, that we assume to be distributed uniformly all the time.
Bacteria are present only in the bioreactor and filtered by a settler at the out-
put so that they do not enter the resource. The activity of the bacteria inside
the bioreactor induces a gradient of substrate concentration, which can be neg-
ligible or not, depending on the ratio between the advection and diffusion effects
of the physical system. We aim at studying the influence of this gradient on the
optimal inlet volumetric flow rate. Following [17], we consider a natural resource
polluted with a substrate concentration Sr. The objective of the treatment is to
decrease Sr, as fast as possible, to a target value Slim, by using a bioreactor. The
bioreactor is fed from the resource with a volumetric flow rate Q, and its output
returns to the resource with the same flow rate Q (we implicitly assume that
the impact of the volume of the collected biomass on the flow rate is negligible),
after separation of biomass in a settler (See Figure 1).

Figure 1: Connection of the bioreactor with the resource

In this work, we consider a natural resource polluted with a substrate con-
centration Sr. The objective of the treatment is to decrease Sr, as fast as
possible, to a target value Slim, with the help of a bioreactor. The bioreactor is
fed from the resource with a volumetric flow rate Q, and its output returns to
the resource with the same flow rate Q. Typically, introducing biomass in the
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resource is avoided because of the risk of having bacteria growing in competition
with other populations that also need oxygen. Therefore, we assume that the
resource contains only undesirable chemical substrate, that we assume to be
uniformly spatially distributed all the time. To do so, the bacteria present in
the bioreactor are filtered by a settler at the output so that they do not enter
the resource (see Figure1).

This problem was tackled in [17] under the assumption of having a well-mixed
environment, i.e., the concentration of substances were assumed homogeneous
both in the water resource and in the bioreactor. Nevertheless, the activity
of the bacteria inside the bioreactor induces a gradient of substrate concentra-
tion, which can be negligible or not, depending notably on the ratio between
the advection and diffusion effects of the physical system. We aim at studying
the influence of this gradient on the optimal inlet volumetric flow rate control
problem. Following [17], we characterize the optimal policies among constant,
time-dependent and feedback controls and study the possible benefits of using
non-constant flow rates. Additionally, our optimization results are compared
with those obtained in [17].

The paper is organized as follows: Section 2 introduces an ODE model de-
scribing the behavior of the contamination in the water resource and two models
describing the dynamics of the bioreactor, using ODEs and PDEs, respectively.
In Section 3, we state the optimization problem, which aims to minimize the
time needed to decontaminate the water resource. We also present the opti-
mization methods used in both ODE and PDE models. In Section 4 we explain
the numerical experiments carried out for the optimization problem and shows
the results. Section 5 draws the conclusions after the comparison between the
numerical results obtained with the ODE and PDE models.

2. Mathematical modeling

Here we detail the mathematical models used to describe the dynamics of
the bioreactor and the water resource. More precisely, in Section 2.1 we present
an ODE system under the assumption of uniform concentration of contaminant
in the resource. We justify such an assumption for very large resource volumes
for which the treatment takes long time. The output flow Q induces then a very
small dilution rate of the contaminant in the resource compared to the diffusion
of the contaminant, that maintains an (almost perfectly) homogeneous distri-
bution in the resource. As the bioreactor volume is much smaller, the induced
advection could make the assumption of homogeneous concentrations inside the
bioreactor questionable depending on the process characteristics (reactor shape,
agitation, diffusivity...). Then, in Section 2.2 we introduce two different models
which describe the behavior of the concentrations inside bioreactor.
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2.1. Water resource model
Since we assume homogeneous distribution of substrate in the water resource,

its dynamics can be described as follows [17]:






dSr

dt = Q
V
(Sout − Sr) t > 0,

Sr(0) = Sr,0,
(1)

where Sr (mol/m3) is the concentration of substrate in the water resource; V
(m3) is the water resource volume; Q (m3/s) is the volumetric flow rate and Sout

(mol/m3) denotes the concentration of substrate concentration at the outlet of
the bioreactor, which is calculated differently depending on the mathematical
modeling considered for the bioreactor.
The explicit solution of (1) is

Sr(t) = e−
∫

t

0
Q(s)
V

ds

(
∫ t

0

Q(s)

V
Sout(s)e

∫
s

0
Q(τ)
V

dτds+ Sr,0

)

. (2)

2.2. Bioreactor Models
Section 2.2.1 presents an ODE system under the assumption of uniform

concentration of substances in the bioreactor and Section 2.2.2 introduces a
PDE system in order to study the influence of inhomogeneities in the tank.
In both sections, µ(·) (s−1) denotes the growth rate function, which refers to
the growth rate of the biomass in function of the substrate concentration. We
assume that

µ(·) is increasing and concave with µ(0) = 0. (3)

An example of such a growth rate function is given by the Monod equation
(see, e.g., [17], [21] and [22]), which is used to relate microbial growth rates in
an aqueous environment to the concentration of a limiting nutrient. Its general
expression is:

µ(S) = µmax
S

K + S
, (4)

where µ is the specific growth rate of the microorganisms, S is the concentration
of limiting nutrient for growth, µmax is the maximum specific growth rate of the
microorganisms and K is the half-maximum kinetics constant, i.e, the value of
S for which µ(S) = µmax

2 . We observe that µmax and K are empirical coeffi-
cients, that differ between species and are based on the ambient environmental
conditions.

2.2.1. Homogeneous distribution in the bioreactor

We consider the following bioreactor model to describe the dynamics of the
bioreactor (see [17]):























dSb

dt = −µ(Sb)Bb

Y
+ Q

Vb
(Sr − Sb) t > 0,

dBb

dt = µ(Sb)Bb − Q
Vb

Bb t > 0,

Sb(0) = Sb,0 Bb(0) = Bb,0,

(5)
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where Sb (mol/m3) and Bb (mol/m3) denote the concentration inside the biore-
actor of substrate and biomass, respectively, Vb (m3) is the volume of the biore-
actor and Y is a yield coefficient, which can be set to 1 without loss of generality
(see for instance [22]).
If Q and Sr are constant, classical equilibria analysis for the bioreactor (see [22])
shows that system (5) has two equilibria, E1 = (Sr, 0) and E2 = (Sqs

b (Q), Sr −
Sqs
b (Q)), where Sqs

b (Q) fulfills Q = Vbµ(S
qs
b (Q)). Moreover, E1 is unstable and

E2 is globally asymptotically stable (excluding the case where Bb,0 = 0) when
Q < Vbµ(Sr).

Definition 2.1. We call washout the equilibrium state E1, i.e., the bioreactor
equilibrium with no biomass.

A nondimensionalization analysis of systems (1) (see [23]) and (5) (see [22])
provides us with a time scale for the bioreactor, τb = 1

‖µ‖∞

(‖µ‖∞ = µmax if the

Monod function (4) is considered), and for the water resource τr =
V
Vb

τb. Since
a reasonable hypothesis is to assume that the volume of the resource is much
larger than that of the bioreactor, i.e., V ≫ Vb, one has that τr ≫ τb. Thus,
one can consider that the dynamics of (5) is faster than that of (1) and then
make the quasi-steady state approximation, setting

Sout(t) = Sqs
b (Q(t)) (6)

in system (1). We point out that the hypothesis Q(t) < Vbµ(Sr(t)) can be
rewritten as Sqs

b (Q(t)) ∈ [0, Sr(t)). We observe that, when τr ≫ τb, the model
given by (1),(5) is not needed and we can use (1),(6) instead. Furthermore,
according to (2), when Q is constant the explicit solution of system (1),(6) is
given by

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Sr(t) = Sqs
b (Q) + (Sr,0 − Sqs

b (Q))e−
Vb
V

µ(Sqs
b (Q))t. (7)

Remark 2.2. Since the mapping Q → Sqs
b (Q) given by Q = Vbµ(S

qs
b (Q)) is a

bijection from [0,+∞) to [0, Vb‖µ‖∞), we can use as the ODE model for the
water resource

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭






dSr

dt (t) =
Q
V
(µ−1( Q

Vb
)− Sr(t)) t > 0,

Sr(0) = Sr,0,

(8)

or, equivalently

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭






dSr

dt (t) =
Vb

V
µ(Sqs

b )(Sqs
b − Sr(t)) t > 0,

Sr(0) = Sr,0.
(9)

Due to the bijection mentioned above, we will equivalently use the notations
Q = Q(Sqs

b ) and Sqs
b = Sqs

b (Q). Giving a function Sqs
b is equivalent to give a

function Q, and viceversa.
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2.2.2. Inhomogeneities in the bioreactor

Many works available in the literature consider non perfectly mixed biore-
actors, such as tubular bioreactors with one dimensional spatialization (see for
instance [24], [25], [26], [27], [28], [29]). It is of interest to consider tubular
reactors with two spatial variables in order to study radial inhomogeneities of
concentrations in the bioreactor. Two dimensional spatialization bioreactors are
introduced, for instance, in the book of Dochain and VanRolleghem [30]. Partic-
ularly, model (2.154)-(2.159) presented in page 56, describes the behavior of the
substrate and biomass concentrations in the bioreactor by using an advection-
diffusion-reaction equation and a reaction equation, respectively. Moreover,
Dochain and VanRolleghem consider Dankwerts boundary conditions for the
substrate concentration, which are typical for continuous flow bioreactors (see,
e.g., [28, 31]). Here, we modify model (2.154)-(2.159) presented in [30], by using
and advection-diffusion-reaction equation together with Danckwerts boundary
conditions also for the biomass.

Remark 2.3. A typical representation of a bioreactor is a tank as depicted in
Figure 2-(a), with a small inlet aperture at its top (through which polluted water
enters the reactor) and a small outlet aperture at its bottom (through which the
treated water leaves the reactor). In Section 2.2.2, following the model developed
in [32] for fluidic mixers and for the sake of model simplification, we neglect the
possible effects coming from the size and collocation of these apertures. To do
that, we only model an intermediate part of the bioreactor, denoted by Ω∗ (dark
part of Figure 2-(a)), assuming that the volume of the removed part is negligible
compared to the total bioreactor volume.

Let the vertical cylinder denoted by Ω∗ be the domain used for modeling the
bioreactor. A typical outline of Ω∗ is depicted in Figure 2-(b). At the beginning
of the process, there is a certain amount of biomass inside Ω∗ that reacts with the
polluted water entering the reactor through the inlet Γ∗

in (the upper boundary of
the cylinder). Treated water leaves the reactor through the outlet Γ∗

out (the lower
boundary of the cylinder). Taking into account that the device’s geometry (see

(a) 3D Reactor (b) 3D Reactor simplification (c) 2D Reactor simplification

Figure 2: Typical domain representation of the bioreactor geometry.

Figure (2)-(b)) is an empty solid of revolution, it can be simplified and described
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by using a 2D domain Ω (see Figure (2)-(c)) using cylindrical coordinates. Thus,
in the simplified model the domain is the rectangle Ω = [0, L] × [0, H], where
Γsym = {0}×(0, H) is the axis of symmetry; Γin = (0, L)×{H} is the bioreactor
inlet; and Γout = (0, L) × {0} is the bioreactor outlet. We denote Γwall =
δΩ \ (Γin ∪ Γout ∪ Γsym), where null flux is assumed.

We consider the following advection-diffusion-reaction model to describe the
dynamics in the bioreactor:







































∂Sb

∂t
= 1

r
∂
∂r
(rDS

∂Sb

∂r
) + ∂

∂z
(DS

∂Sb

∂z
)− uz

∂Sb

∂z
− µ(Sb)Bb in (0,+∞)× Ω,

∂Bb

∂t
= 1

r
∂
∂r
(rDB

∂Bb

∂r
) + ∂

∂z
(DB

∂Bb

∂z
)− uz

∂Bb

∂z
+ µ(Sb)Bb in (0,+∞)× Ω,

Sb(0, r, z) = Sb,0 in Ω,

Bb(0, r, z) = Bb,0 in Ω,

(10)

where (r, z) are the cylindrical coordinates; DS (m2/s) and DB (m2/s) are
the diffusion coefficients of substrate and biomass, respectively, when diffus-
ing throughout the water in the vessel, and u = (0, uz(t, r, z)) is the fluid flow
velocity field, where uz (m/s) is its vertical component (radial components of
the velocity field are neglected).

System (10) is completed with the following boundary conditions:







































DS
∂Sb

∂z
− uzSb = −uzSr(t) on (0,+∞)× Γin,

DB
∂Bb

∂z
− uzBb = 0 on (0,+∞)× Γin,

∂Sb

∂r
= ∂Bb

∂r
= 0 on (0,+∞)× (Γwall ∪ Γsym),

∂Sb

∂z
= ∂Bb

∂z
= 0 on (0,+∞)× Γout.

(11)

Remark 2.4. If Sb,0 ≥ 0 in Ω, Sb,0, Bb,0 ∈ L∞(Ω), Sr ∈ L∞(0,∞), µ is lip-
schitz, µ(0) = 0 and µ(z) ≥ 0 for z ≥ 0, then system (10)-(11) has a unique
solution (Sb, Bb) ∈ (C([0,+∞);L2(Ω)) ∩ L∞((0,∞)× Ω))2 (see [33]).

We express the variable Sout(t) to be used in system (1) as the substrate con-
centration at the outlet of the bioreactor at time t. When considering general
flow velocity fields, we have to take into account that both substrate concentra-
tion and outlet flow velocity may depend on the position of the exiting particle.
Thus, we considered an average value of the exiting substrate concentration
weighted by the flow velocity and computed as

Sout(t) =

∫

Γ∗

out
uz(t, x, y, 0)Sb(t, x, y, 0) dxdy
∫

Γ∗

out
uz(t, x, y, 0) dxdy

.
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When expressed in cylindrical coordinates, it is calculated as

Sout(t) =

∫ 2π

0

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) drdθ

∫ 2π

0

∫ L

0
ruz(t, r, 0) drdθ

=

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) dr
∫ L

0
ruz(t, r, 0) dr

. (12)

We consider two types of flow velocity fields, which do not change along the
z-axis (more general fields can be considered by using the Navier-Stokes equa-
tions).

• Homogeneous flow velocity field: As a first approach, we consider that
the vertical component of the flow velocity field is taken as uz(t, r, z) =
uz(t) = −Q(t)/A, where Q (m3/s) is the volumetric flow rate defined in
Section 2.1 and A (m2) is the area of the basis of the cylinder. In this

case, Sout(t) =
2
L2

∫ L

0
rSb(t, r, 0)dr.

• Nonhomogeneous flow velocity field: As a second approach, we con-
sider that the flow velocity field has the shape of a parabolloid of revolu-
tion (other choices could be also considered), which is classical in Fluid
Dynamics for ideal cases (see, for instance, the example given in page
41 of [34]) and more realistic than the previous homogeneous flow veloc-
ity profile. More precisely, the vertical component of the flow velocity
field is taken as uz(t, r, z) = uz(t, r) = −C(L2 − r2), where C is cho-
sen so that the volume covered by half of the paraboloid of revolution is
equal to Q (m3/s). Since the volume generated is V = C π

2L
4, we con-

clude that C(t) = 2Q(t)
πL4 and thus uz(t, r) = − 2Q(t)

πL4 (L2 − r2). In this case,

Sout(t) =
4
L4

∫ L

0
r(L2 − r2)Sb(t, r, 0)dr.

Remark 2.5. A nondimensionalization analysis of system (10)-(11) (see [35])

provides us with a time scale for the bioreactor, that is τb = max(H
2

DS
, H2

DB
,

H
umax

, 1
‖µ‖∞

), where umax is a suitable scale for the flow velocity component uz.

For the water resource, the time scale is τr =
V
Vb

1
‖µ‖∞

(see Section 2.2.1). For

the cases where τr ≫ τb (for instance, when the volume of the resource is much
larger than the volume of the bioreactor), one can consider that the dynamics
of (10)-(11) is faster than that of (1), i.e, for a reasonable process time for
the bioreactor, the changes in the entering substrate and the fluid flow velocity
are negligible (therefore, they can be treated as constants). Consequently, when
dealing with time intervals of the order of τr, we consider that the bioreactor is
in quasi-steady state, which we approximate by taking the solution of (10)-(11)
at time t, with t large enough (see [36]).

Under this hypothesis, system (10)-(11) can be changed, at each time t ∈ (0,+∞),
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by

✟
✟
✟
✟

✟
✟
✟
✟

✟
✟
✟

✟
✟
✟
✟

✟
✟
✟
✟

✟
✟
✟

✟
✟
✟
✟

✟
✟
✟

✟
✟
✟















































































1
r

∂
∂r
(rDS

∂S
qs
b

∂r
) + ∂

∂z
(DS

∂S
qs
b

∂z
)− uz

∂S
qs
b

∂z
= µ(Sqs

b )Bqs
b in Ω,

1
r

∂
∂r
(rDB

∂B
qs
b

∂r
) + ∂

∂z
(DB

∂B
qs
b

∂z
)− uz

∂B
qs
b

∂z
= −µ(Sqs

b )Bqs
b in Ω,

DS
∂S

qs
b

∂z
− uzS

qs
b = −uzSr on Γin,

DB
∂B

qs
b

∂z
− uzB

qs
b = 0 on Γin,

∂S
qs
b

∂r
=

∂B
qs
b

∂r
= 0 on Γwall ∪ Γsym,

∂S
qs
b

∂z
=

∂B
qs
b

∂z
= 0 on Γout,

(13)

where uz(t, ·) and Sr(t) are time dependent and (Sqs
b (t, r, z), Bqs

b (t, r, z))
(mol/m3) are the substrate and biomass concentrations of the bioreactor in
quasi-steady state, respectively. A usual way to solve numerically nonlinear sys-
tem (13) is to solve numerically (10)-(11) (which is usually easier) and then take
the solution corresponding to large values of t as the solution of (13) (see [36]).
Therefore, computing numerically the solution of system (13) could be very
heavy. This is why in the following we consider and solve system (1),(10)-(12),
also for the cases where τb ≪ τr.

3. Optimization problem

We consider the optimization problem consisting in making decrease the
substrate concentration of the water resource, to a prescribed value Slim > 0
(mol/m3), in a minimal amount of time by choosing a suitable control strategy
for the input variable Q.

Definition 3.1. We denote by Σ0 and Σ the initial state and the state at an
arbitrary time, respectively. Therefore, when considering system (1),(6) Σ0 =
Sr,0 and Σ = Sr ∈ [0,+∞); and when considering system (1),(10)-(12) we have
Σ0 = (Sr,0, Sb,0, Bb,0) and Σ = (Sr, Sb, Bb) ∈ [0,+∞)× (L∞(Ω))2.

Definition 3.2.

1. For each initial state Σ0 we consider the set of admissible time-dependent
control functions given by QOL = {Q : [0,+∞) → [0,+∞) Lebesgue mea-
surable such that Q(0) < Vbµ(Sr,0), where Sr,0 is initial state of system
(1),(6) (or system (1),(10)-(12))}. A functional Q(·) = Q(Σ0; ·) ∈ QOL

is called an open loop-control and in the following is denoted by QOL.

2. We consider the set of admissible state-dependent control functions given
by QFB = {Q : [0,+∞) → (0,+∞) (resp. Q : [0,+∞) × (L∞(Ω))2 →
[0,+∞)) such that system (1),(6) (resp. (1),(10)-(12)) admits a unique
absolutely continuous solution for any initial condition Σ0 and Q(Σ) <
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Vbµ(Sr)}. A functional Q ∈ QFB is called a feedback control and in the
following is denoted by QFB. 1

Signal flow graph representations of the two control strategies defined above are
shown in Figure 3.

(a) Open-Loop control (b) Feedback control

Figure 3: Signal flow graph representations of the considered control strategies.

Remark 3.3. The stability analysis of the ODE system (5), presented in Sec-
tion 2.2.1, stated that in order to avoid washout (see Definition 2.1) a suitable
condition for the flow rate Q is Q(Σ) ∈ (0, Vbµ(Sr)). When using the ODE-
PDE system (1),(10)-(12), we have presented two possible effects which may
cause inhomogeneities in the bioreactor: small diffusion of substances and non-
homogeneous fluid flow velocity profile. In the first case, the entering substrate
diffuses slowly through the tank and thus, smaller flow rates are needed in order
to guarantee that the biomass has enough time to be in contact with the substrate
and decontamination occurs. In the second case, a nonhomogeneous profile may
produce that in some regions of the bioreactor, the liquid is ejected faster than if
we use the homogeneous flow velocity profile, and hence, smaller flow rates are
needed in order to assure that the substrate and biomass react in the whole tank
(see Remark 4.2 for better explanation of the second case). Consequently, one
can conclude that the bound Q(Σ) ∈ (0, Vbµ(Sr)) is also suitable when using the
ODE-PDE system (1),(10)-(12).

Remark 3.4. A particular case of open-loop is when Q is constant, which in the
following we will be denote by QC. For each initial state Σ0 we consider the set
of admissible constant control functions given by QC = {Q : [0,+∞) → [0,+∞):
Q(t) ≡ c with c ∈ [0, Vbµ(Sr,0))}. Furthermore, since the objective is to decrease
the substrate concentration of the water resource to a prescribed value Slim in
minimal time, the set of admissible constant control functions is reduced to QC =
{Q : [0,+∞) → [0,+∞) : Q(t) = c for all t ≥ 0, with c ∈ [0, Vbµ(Slim))}.

1The definition of QFB will be modified in Remark 3.6 for a special case that we will
studied in this paper

11



Remark 3.5. For an initial state Σ0, we call open-loop representation of the
feedback QFB to the time function QFB(·) = QFB(Σ(·)) where Σ(·), is the solu-
tion of the system (either (1),(6) or (1),(10)-(12)) with initial state Σ0.

Remark 3.6. For cases where τb ≪ τr, we can assume that system (1),(10)-
(12) is in quasi-steady state (see Remark 2.5). In this situation, we can ap-
proximate the state of the system by Σ = Sr and open-loops and feedbacks can
be assumed, respectively, functionals of the form QOL(·) = QOL(Sr,0; ·) and
Sr 7→ QFB(Sr), where QFB ∈ QFB = {Q : [0,+∞) → (0,+∞) such that sys-
tem (1),(10)-(12) admits a unique absolutely continuous solution for any initial
condition Σ0 and Q(Sr) < Vbµ(Sr)}.

Given an initial state Σ0, the optimization problem when using open-loops can
be formulated as follows:

{

Find QOL,opt(·) ∈ QOL, such that

T (Σ0, Q
OL,opt(·)) = min

QOL(·)∈QOL
T (Σ0, Q

OL(·)), (14)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving system (1),(6) (or system (1),(10)-(12)) with the flow rate
Q = QOL(·). If the target is not achieved we set T (Σ0, Q

OL(·)) = +∞.

The optimization problem when using feedback controls can be formulated
as follows:

{

Find QFB,opt ∈ QFB, such that for every initial state Σ0

T (Σ0, Q
FB,opt(·)) = min

QFB∈QFB
T (Σ0, Q

FB(·)), (15)

where T (Σ0, Q
FB(·)) denotes the time required to achieve Sr(T (Σ0, Q

FB(·))) =
Slim when solving system (1),(6) (or system (1),(10)-(12)) with the flow rate
Q = QFB. If the target is not achieved we set T (Σ0, Q

FB(·)) = +∞.

In Section 3.1 we solve these problems considering ODE system (1),(6) and
in Section 3.2 we use ODE-PDE system (1),(10)-(12).

3.1. Optimization problem with ODE system (1),(6)

When using ODE model (1),(6), we assume τr ≫ τb. We distinguish between
the cases in which Q is a constant open-loop control or a feedback control. The
case where Q is a time-varying open loop is derived from the case in which Q
is a feedback control (as explained in Remark 3.11).

3.1.1. Case 1: Constant open-loop control

Given an initial state Σ0 = Sr,0 ∈ [0,+∞) we look for an optimal constant
QC,opt ∈ QC solution of (14). Under assumption (3), if control variable Q is

12



equivalently replaced by control variable Sqs
b (see Remark 2.2) and if we denote

Sqs,C
b = {Sqs

b = Sqs
b (Q) such that Q ∈ QC}, then problem (14) becomes







Find Sqs,C,opt
b ∈ Sqs,C

b such that

T (Sr,0, S
qs,C,opt
b ) = min

S
qs,C
b ∈Sqs,C

b

T (Sr,0, S
qs,C
b ), (16)

where T (Sr,0, S
qs,C
b ) denotes the time required to achieve Sr(T (Sr,0, S

qs,C
b )) =

Slim when solving system (1),(6) with the control variable Sqs
b = Sqs,C

b . We now
present some theoretical results that are proved in [17], about problem (16).

Lemma 3.7. If Q is constant (i.e., Sqs
b is constant), one has

T (Sr,0, S
qs,C
b ) =

1
Vb

V
µ(Sqs,C

b )
ln

(

Sr,0 − Sqs,C
b

Slim − Sqs,C
b

)

. (17)

Moreover, assuming Sr,0 > Slim, optimization problem (16) has a unique solu-
tion.

Lemma 3.8. Assuming Sr,0 > Slim, optimization problem (16) has a unique
solution.

We approximate the solution of problem (16) by computing

Sqs,C,opt
b = arg min

S
qs,C
b ∈Sqs,C,N

b

T (Sr,0, S
qs,C
b ), (18)

where Sqs,C,N
b = {Sqs

b,i}
N
i=1, with N ∈ N large enough and Sqs

b,i =
i

N+1Slim.

3.1.2. Case 2: Feedback control

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of (15).
Under assumption (3), if control variable Q is equivalently replaced by control

variable Sqs
b and if we denote Sqs,FB

b = {Sqs
b = Sqs

b (Q) where Q ∈ QFB}, then

Sqs,FB,opt
b = Sqs

b (QFB,opt) is called an optimal feedback. As proven in [17], we
have the following result.

Lemma 3.9. An optimal feedback Ssb,FB,opt
b : [0,+∞) → R must fulfill

Sqs,FB,opt
b = arg min

S
qs,FB
b ∈Sqs,FB

b

Vb

V
µ(Sqs,FB

b )(Sqs,FB
b − Sr) (19)

or, equivalently,

µ′(Sqs,FB,opt
b )(Sr − Sqs,FB,opt

b ) = µ(Sqs,FB,opt
b ). (20)

Moreover, QFB,opt(·) (see Remark 3.5) is decreasing along any optimal trajec-
tory.
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If the Monod equation (4) is used we can solve explicitly equation (20) with

Sqs,FB,opt
b (Sr) =

√
K2 +KSr −K.

Remark 3.10. The fact that the open loop realization of the feedback QFB,opt

is decreasing along time can be interpreted physically as follows: as time goes
on, the substrate in the water resource is decreasing and the water that enters
the bioreactor is less polluted. Therefore, if Q(·) does not decrease, the biomass
has not enough time to be in contact with the substrate in order to grow, and
eventually becomes extinct. Mathematically, when Q

Vb
> µ(Sr), biomass goes

asymptotically to the washout equilibrium (see Definition 2.1).

Remark 3.11. If QFB,opt is solution of problem (15) when using system (1),(6),
given an initial state Σ0 = Sr,0 ∈ [0,+∞), the open-loop representation of
QFB,opt (see Remark 3.5) is solution of problem (14).

3.2. Optimization problem with ODE-PDE model (1),(10)-(12)

In the case where inhomogeneities are considered, we recall that Sout is
computed as described in (12). As in Section 3.1, we consider the cases in
which Q is chosen as an open-loop control or as a feedback control.

3.2.1. Case 1: Constant open-loop control

Given an initial state Σ0 ∈ [0,+∞)×(L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the cases
where τb ≪ τr, see Remark 3.6), we look for an optimal constant QC,opt ∈ QC

solution of problem (14), that we approximate by taking N equidistant points
in the interval (0, Vbµ(Slim)) proceeding as in problem (18).

3.2.2. Case 2: Time varying open-loop control

Given an initial state Σ0 ∈ [0,+∞) × (L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the
cases where τb ≪ τr, see Remark 3.6), we look for a time variable function
QOL,opt ∈ QOL close to a solution of (14). With that aim, we consider a family
of time varying functions with 5 optimization parameters, denoted by Q0, Q1,
Q2, Q3 and Q4. Those optimization parameters correspond to the value of the
flow rate QOL(·) at five different given fixed times t0, t1, t2, t3 and t4, starting
from time t0 = 0, so that function QOL is given by QOL(ti) = Qi (i = 0, . . . , 4),
QOL(t) is calculated with the monotone piecewise cubic hermite interpolation
method, with null derivatives at t0 and t4 (see for instance [37]) for t ∈ (ti, ti+1)
(i = 0, . . . , 3), and QOL(t) = Q4 for t ≥ t4.

✟
✟
✟
✟

✟
✟
✟

✟
✟
✟
✟

✟
✟
✟

QOL(t) =























Q0 if t = 0,
Q1 if t = t1,
Q2 if t = t2,
Q3 if t = t3,
Q4 if t ≥ t4

Following Remark 3.10, we only consider decreasing time functions Q(·). Thus,
we compute the optimization parameters Q0, Q1, Q2, Q3 and Q4 with the
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following constraints
Q0 > Q1 > Q2 > Q3 > Q4.

To that end, we consider the optimization parameter Q0 ∈ [0, Vbµ(Sr,0)) and
we define new optimization parameters α1, α2, α3 and α4 in [0, 1] such that the
interpolation data are given by

Q1 = α1Q0, Q2 = α2Q1, Q3 = α3Q2, Q4 = α4Q3.

Therefore, we approximate QOL,opt(·) by a function defined by interpolation, as
explained above, and where the corresponding vector γopt = (Qopt

0 , αopt
1 , αopt

2 ,
αopt
3 , αopt

4 ) is solution of
{

Find γopt ∈ (0, Vbµ(Sr,0))× (0, 1)4 such that

T (Σ0, Q
OL,opt(·)) = min

γ∈(0,Vbµ(Sr,0))×(0,1)4
T (Σ0, Q

OL(·)), (21)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving (with any suitable solver; see e.g. Section 4.1) system (1) cou-
pled with (10)-(12) with the flow rate Q = QOL(·). We solve problem (21) with
the Hybrid Genetic Algorithm (HGA), and its parameters, presented in [32].
The HGA is a global optimization algorithm based on a combination between
a Genetic Algorithm (which, without requiring the computation of the gradient
of the cost function, performs a first coarse global search of the solution) and a
Steepest Descent method (which performs a refined local search of the solution).
The suitability of this method to solve computationally expensive optimization
problems has been shown in [38].

Remark 3.12. We have used other approaches for computing time varying
open-loop solutions of problem (14), for instance Q(t) = 1

(At+B)p , where A,B, p

are in a suitable search space. Nevertheless, in the following we do not present
the optimization results obtained with this approach since they are not better
than those obtained with the approach explained above.

3.2.3. Case 3: Feedback Approximation

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of
problem (15). To this end, proceeding similarly as done in Lemma 3.9 for
perfectly mixed bioreactors, we perform a suboptimal strategy as a greedy policy
that consists in choosing a control maximizing the instantaneous decrease of the
contaminant concentration in the resource.
For cases where τb ≪ τr, we assume that the feedback only depends on Sr, i.e.,
Σ = Sr (see Remark 3.6) and we approximate the feedback function that we are
looking for by solving the following optimization problem: Given an arbitrary
resource substrate concentration S ∈ [0,+∞) and a small time interval ∆t > 0
(chosen of the order of the water resource time scale τr in order to assure that
the bioreactor is in quasi-steady state during the time interval ∆t)







Find QFB,opt(S) ∈ [0, Vbµ(S)) such that

Sr(S,Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(22)
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where Sr(S,Q
FB; ∆t) is the solution (computed with any suitable solver; see e.g

Section 4.1) of system (1) coupled with (10)-(12) at time ∆t, with S = S0 and
Q = QFB(S). Since τb ≪ τr the bioreactor is in quasi-steady state and the
choice of the concentration values Sb,0 and Bb,0 does not have influence on the
solution of problem (22). Particularly, we take Sb,0 = Bb,0 = S. We estimate
the solution of problem (22) by taking N equidistant points in the interval
(0, Vbµ(S)) and proceeding as in problem (18). Then, in order to obtain a
function of the form

QFB,opt : [Slim, Sr,0] −→ [0, Vbµ(Sr,0))

S → QFB,opt(S),
(23)

we solve problem (22) for a range of concentration values S ∈ S = {Si}
I+1
i=1 ,

where I ∈ N is large enough and Si = Sr,0−
i−1
I
(Sr,0−Slim). Finally, Q

FB,opt(S)
is calculated with the monotone piecewise cubic hermite interpolation with null
derivatives at Slim and Sr,0 (see [37]) for S /∈ S.

For cases where τb ≪ τr is not satisfied, we approximate the feedback function
that we are looking for by solving the following optimization problem: Given
arbitrary concentration values (S, sb, bb) ∈ [0,+∞)×(L∞(Ω))2 and a small time
interval ∆t > 0







Find QFB,opt(S, sb, bb) ∈ [0, Vbµ(S)) such that

Sr(Σ, Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(24)

where Sr(S,Q
FB; ∆t) is the solution (obtained with a suitable numerical solver;

see e.g. Section 4.1) of system (1) coupled with (10)-(12) at time ∆t, with
Σ0 = (S, sb, bb) and Q = QFB(S, sb, bb). We estimate the solution of problem
(24) by taking N equidistant points in the interval (0, Vbµ(S)) and proceeding
as in problem (18).
Then, in order to obtain a function of the form

QFB,opt : [Slim, Sr,0]× (L∞(Ω))2 −→ [0, Vbµ(Sr,0))

(S, sb, bb) → QFB,opt(S, sb, bb),
(25)

we solve problem (24) for a range of concentration values (S, sb, bb) in the set
M = {(S, sb, bb) : ∃i ∈ {1, . . . , I + 1} such that S = Si ∈ S, sb ∈ Sb,i and
bb ∈ Bb,i} where Si = Sr,0 − i−1

I
(Sr,0 − Slim), Sb,i = Bb,i = {Si,j}j∈J with

J ⊂ N and Si,j = Si

j
. If (S, sb, bb) /∈ M, we compute the mean value of the

concentrations sb and bb in the bioreactor (which we denote by sb and bb) by

sb =

2

∫ L

0

∫ H

0

rsb(r, z) dzdr

L2H
, bb =

2

∫ L

0

∫ H

0

rbb(r, z) dzdr

L2H
,
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and QFB,opt(S, sb, bb) is approximated by QFB,opt(S, sb, bb), which is given by
spatial interpolation. More specifically, QFB,opt(S, sb, bb) is calculated with a
suitable trilinear or neighbor interpolation method depending if (S, sb, bb) is or
not inside the convex hull of M.

Remark 3.13. Set M has been chosen following the stability analysis of the
ODE system (5), presented in Section 2.2.1, which shows that the value of con-
centration of both substrate and biomass at their equilibria state is below the
substrate concentration in the resource. Nevertheless, in order to obtain a func-
tion of the form (25), the same methodology can be applied with more general
sets M.

Remark 3.14. Solution of problems (22) and (24) are approximations of the
solution of problem (15) which, as shown in Section 4.3, provide satisfactory
results.

4. Numerical Experiments

In this section, we first introduce the numerical solvers used for computing
the solutions of systems (1),(6) and (1),(10)-(12). Then, in Sections 4.2 and 4.3
we present the numerical results obtained when looking for constant and feed-
back controls, respectively. Notice that in order to shorten the presentation of
this work, the results obtained when looking for time varying open-loop controls
has been included in Section 4.3.

4.1. Numerical solvers used for systems (1),(6) and (1),(10)-(12)

The solution of system (1),(6) was computed numerically by using a fourth-
order Runge-Kutta method and the solution of system (1),(10)-(12) was com-
puted numerically by coupling a fourth-order Runge-Kutta method with a Fi-
nite Element Method (see [39]). The computational experiments were carried
out with a 2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We used
a triangular mesh with around 600 elements. A numerical simulation of sys-
tem (1),(10)-(12) with time step ∆t = 100s and final time 105s, computed using
MATLAB (mathworks.com) and COMSOLMultyphisics 5.0 (www.comsol.com),
takes approximately 12 seconds.

Model parameters were taken following [17, 19]: µ(·) was the Monod Func-
tion (see (4)) with µmax = 1 (s−1) and K = 1 (mol/m3). For the bioreactor and
water resource volumes we took Vb = 1 (m3) and V = 1000 (m3), respectively.
In order to obtain a cylinder of volume Vb = 1 (m3), we used a 2D bioreactor
domain with H = L = 0.68 (m). We considered a case for which the time scale
of the bioreactor was comparable to the time scale of the water resource by using
diffusion coefficients DS = DB = 0.01 (m2/s). We also consider a case where the
time scale for the bioreactor was much smaller than the time scale of the water
resource by using diffusion coefficients DS = DB = 100 (m2/s). When comput-
ing a constant open loop control (see Section 3.2.1), N = 100 was chosen to solve

17

mathworks.com
www.comsol.com


problem (18). When computing a time-varying open loop (see Section 3.2.2), the
interpolation times were t0 = 0 (s), t1 = 20000(s), t2 = 40000(s), t3 = 60000(s)
and t4 = 80000(s). Those values where taken equidistant and having estimated
experimentally that the time needed to achieve the prescribed value in the re-
source is around 105s. Finally, when computing a feedback (see Section 3.2.3),
problems (22) and (24) were solved by using the MATLAB functions interp1
and interp3 (see https://www.mathworks.com/moler/interp.pdf), respec-
tively, with ∆t = 100 s.

Remark 4.1. The model parameters considered here were chosen as in [17] in
order to obtain a straightforward comparison between the methodologies proposed
in this article and the ones introduced here. Of course, they could be replaced
by other values found in the literature.

4.2. Constant Open-Loop Control

In this Section, we solve numerically the optimization problem (14) when the
volumetric flow rate Q is considered a constant. More specifically, Section 4.2.1
shows the numerical results for the ODE system (1),(6), obtained by solving
problem (18), and Section 4.2.2 shows the numerical results for the ODE-PDE
system (1),(10)-(12), obtained as explained in Section 3.2.1. Then, in Section
4.2.3 we make a comparison of the results obtained in Sections 4.2.1 and 4.2.2
in terms of the optimal constant open-loop controls and the time needed to
achieve the prescribed value of substrate concentration in the water resource,
Slim. We also compare systems (1),(6) and (1),(10)-(12) in terms of the min-
imum substrate concentration achieved in the water resource if the constant
flow rate obtained for system (1),(6) is used in system (1),(10)-(12). Simu-
lations were done with initial substrate concentration in the resource Sr,0= 5
and 10 (mol/m3) and with Slim = 0.1 (mol/m3). These simulations were also
performed for Sr,0 = 5 (mol/m3) and similar conclusions were obtained.

4.2.1. ODE system (1),(6)

In this Section we solve the optimization problem (18) using system (1),(6)

with N = 200. The optimal constant open-loop is QC,opt
ODE = 0.0790 (m3/s) and

the corresponding decontamination time is T (Sr,0, Q
C,opt
ODE ) = 81830 (s). Table 1

shows the results.

Sr,0 (mol/m3) QC,opt
ODE (m3/s) T (Sr,0, Q

C,opt
ODE )(s)

5 0.0776 74090
10 0.0790 81830

Table 1: ODE model: Value of the optimal constant open-loop Q
C,opt
ODE

and the corresponding
decontamination time for two different initial values Sr,0.
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4.2.2. ODE-PDE model (1),(10)-(12)

In this Section we solve the optimization problem (14) using the model given

by system (1),(10)-(12). We denote QC,opt
H and QC,opt

NH the optimal constant flow
rates when considering the homogeneous and the nonhomogeneous flow veloc-
ity fields, respectively. Equivalently, we denote SH

r,ach and SNH
r,ach the minimum

substrates concentrations achieved in the water resource if QC,opt
ODE is used in sys-

tem (1),(10)-(12). For these concentration values, the flow rate QC,opt
ODE is high

enough to drive system (1),(10)-(12) to washout (see Definition 2.1), i.e., the
biomass become extinct and no more reaction is produced.

We distinguish between the cases where the time scale of the bioreactor is
much smaller than the time scale of the water resource (i.e., τb ≪ τr) and the
case where that condition is not satisfied.

• Case τb ≪ τr:
Table 2 shows optimal constant open loops and the corresponding decon-
tamination times and Table 3 shows the substrate concentrations achieved
in the resource. The substrate concentrations achieved in the resource are
SH
r,ach = 0.08569 (mol/m3) and SNH

r,ach = 0.1177 (mol/m3).

Sr,0 QC,opt
H T (Sr,0, Q

C,opt
H ) QC,opt

NH T (Sr,0, Q
C,opt
NH )

(mol/m3) (m3/s) (s) (m3/s) (s)
5 0.0758 72750 0.0581 98490
10 0.0778 81840 0.0594 110420

Table 2: ODE-PDE model: case τb ≪ τr. Values of the optimal constant open-loops Q
C,opt
H

and Q
C,opt
NH

and the corresponding decontamination times for two initial values Sr,0= 10
(mol/m3).

Sr,0 (mol/m3) SH
r,ach (mol/m3) SNH

r,ach (mol/m3)

5 0.08404 0.1153
10 0.08569 0.1177

Table 3: ODE-PDE model: case τb ≪ τr. Substrate concentrations achieved if the constant
flow rate Q

C,opt
ODE

is used in system (1),(10)-(12) for two initial values Sr,0.

• Case τb ≈ τr:
In this case, the optimal constant open loop also depends on the initial
state at the bioreactor. Since we aim to compare the optimal constant
open-loop controls obtained for the ODE system (1),(6) and the ODE-
PDE system (1),(10)-(12), we estimate a function of the form Sr,0 →

QC,opt
H (Sr,0) by solving problem (14) for a range of initial states in the set

M defined to solve problem (24) with I = 1 and J = {1, 2, 4, 10}. Then,
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QC,opt
H is approximated by computing the mean value of the set of opti-

mal constant open-loop controls obtained for the different initial states.
This procedure is also used to obtain the optimal constant QC,opt

NH and the
substrate concentrations SH

r,ach and SNH
r,ach.

Table 4 shows the optimal constant flow rates and the corresponding
decontamination times and Table 5 shows the substrate concentrations
achieved in the resource. The substrate concentrations achieved in the
resource are SH

r,ach = 0.1524 (mol/m3) and SNH
r,ach = 0.1776 (mol/m3).

Sr,0 QC,opt
H T (Sr,0, Q

C,opt
H ) QC,opt

NH T (Sr,0, Q
C,opt
NH )

(mol/m3) (m3/s) (s) (m3/s) (s)
5 0.0540 89260 0.0435 113390
10 0.0547 102190 0.0442 129160

Table 4: ODE-PDE model: case τb ≈ τr. Values of the optimal constant open-loops Q
C,opt
H

and Q
C,opt
NH

and the corresponding decontamination times for two different initial values Sr,0=
10 (mol/m3).

Sr,0 (mol/m3) SH
r,ach (mol/m3) SNH

r,ach (mol/m3)

5 0.14811 0.1738
10 0.1524 0.1776

Table 5: ODE-PDE model: case τb ≈ τr. Substrate concentration achieved if the constant
Q

C,opt
ODE

is used in system (1),(10)-(12)for two different initial values Sr,0.

4.2.3. Discussion

An interesting study is to check if the optimization results obtained in Sec-
tions 4.2.1 and 4.2.2 are similar. We make the comparison for both flow velocity
fields, described in Section 2.2.2.

• Homogenous flow velocity field: We can observe from results in Sec-
tion 4.2.1 and Table 2 that the volumetric flow rates QC,opt

ODE and QC,opt
H

(obtained with the ODE-PDE system (1),(10)-(12) when τb ≪ τr) are
significantly close and the decontamination times are comparable (the dif-
ference is below 1% for both values of Sr,0). Nevertheless, from results

in Section 4.2.1 and Table 4 one notice that the flow rate QC,opt
H (ob-

tained with the ODE-PDE system (1),(10)-(12) when τb ≈ τr) is around

70% of the value of QC,opt
ODE . Furthermore, from the values SH

r,ach we con-

clude that if the constant QC,opt
ODE is applied in system (1),(10)-(12) in the

case where τb ≈ τr, the bioreactor is driven to washout (see Definition
2.1) before the decontamination target is achieved. These results seem to
indicate that when high diffusions are considered, the optimal constant
controls obtained with the ODE model are similar to those obtained with
the ODE-PDE model, whereas for low diffusion coefficients the ODE-PDE
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model exhibits better results, in the sense that it provides smaller volu-
metric flow rates which favor that the biomass does not become extinct in
the bioreactor before the target is achieved (see Remark 3.3).

• Nonhomogeneous flow velocity field: We can observe from results in
Section 4.2.1 and Tables 2 and 4 that the volumetric flow rates QC,opt

NH , ob-
tained with the ODE-PDE system (1),(10)-(12) in the cases where τb ≪ τr
and τb ≈ τr, are around 75% and 60% of the value of the flow rate QC,opt

ODE ,
respectively. Furthermore, from the values SNH

r,ach we conclude that if the

constant QC,opt
ODE is used in the ODE-PDE system (1),(10)-(12), the biore-

actor is driven to washout (see Definition 2.1) before the decontamination
target is achieved. These results seem to indicate that when the nonho-
mogeneous flow velocity field is considered, model (1),(10)-(12) exhibits
better results, in the sense that it provides smaller volumetric flow rates
which favor that the biomass does not become extinct in the bioreactor
before the target is achieved (see Remark 3.3). The influence of the non-
homogeneous flow velocity field in the washout phenomena is explained in
Remark 4.2.

Remark 4.2. We recall from Section 2.2 that the washout phenomena (see
Definition 2.1) is produced when Q(t) ≥ Vbµ(Sr(t)). It is reasonable to assume
that for high diffusion coefficients DS and DB, the substrate and biomass con-
centrations become homogeneous in the bioreactor so that the ODE-PDE model
(1),(10)-(11) approaches the ODE model (9), and consequently, the washout
is also produced when Q(t) ≥ Vbµ(Sr(t)). Nevertheless, this analogy only takes
place when using the homogeneous flow velocity field in system (1),(10)-(12).
As detailed in Section 2.2.2, the nonhomogeneous flow velocity field is taken

as uz(r, t) = − 3Q(t)
√
L2−r2

3L3 , so it attains its maximum depth at r = 0. This
maximum depth is 3

2 the maximum depth if the homogeneous profile is taken,
so we can conclude that when using the nonhomogeneous flow velocity field,
washout occurs for Q(t) ≥ Qmax(t), where Qmax(t) is some value in the interval
[ 23Vbµ(Sr(t)), Vbµ(Sr(t))]. In order to find a physical explanation, we observe
Figure 4-(a), pointing out that if the nonhomogeneous flow velocity field is used,
the liquid located in region 1 is ejected from the bioreactor faster than if we
use the homogeneous flow velocity field. Thus, the substrate is in contact with
the biomass less time and consequently the water remains polluted in this region
when going out from the reactor. Furthermore, due to diffusion, the particles sit-
uated in the regions 1 and 2 are mixed and the resulting contamination value is
higher than the required threshold. Figure 4-(b) shows the difference in terms of
decontamination time between using the homogeneous and the nonhomogeneous
flow velocity fields when Q (m3/s) is considered constant (Q ∈ QC). Particu-
larly, taking Sr,0 = 5 (mol/m3) and the objective value Slim = 0.5 (mol/m3), one
obtains that in order to avoid washout Q should be in the interval [0, 0.33). We
observe that the washout phenomena starts at the value Q ≈ 0.33 in the case of
considering the homogeneous flow velocity field, but starts earlier if we use the

21



nonhomogeneous flow velocity field.
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(a) Typical homogeneous and nonhomoge-
neous flow velocity fields
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(b) Decontamination times obtained by us-
ing the homogeneous flow velocity field (de-
picted by a solid line) or the ellipsoid flow ve-
locity field (depicted by a dashed line). No-
tice that the vertical lines are allocated at
the value of Q for which washout starts.

Figure 4: Scheme of the washout phenomena when using the homogeneous and the nonhom-
geneous flow velocity fields.

4.3. Feedback

In this Section, we look for an optimal feedback, denoted by QFB,opt solution
of problem (15). More specifically, Section 4.3.1 shows the results for the ODE
system (1),(6), obtained using Lemma 3.9 and Section 4.3.2 shows the feedback
approximations for the ODE-PDE system (1),(10)-(12), obtained when solving
the suboptimal problems (22) and (24). Section 4.3.2 also shows the feedback
synthesis (see definition below) of the optimal time varying open-loops, obtained
when solving (21). Then, in Section 4.3.3 we make a comparison of the results
presented in Sections 4.3.1 and 4.3.2 in terms of the feedback control. Further-
more, we compare models (1),(6) and (1),(10)-(12) in terms of the minimum
substrate concentration achieved in the water resource if the optimal feedback
obtained for system (1),(6) is used in system (1),(10)-(12).

4.3.1. ODE model (1),(6)

As detailed in Section 3.1.2 if the Monod equation (4) is taken, the optimal

feedback, denoted by QFB,opt
ODE , fulfills

QFB,opt
ODE = Vbµ(S

qs,FB,opt
b ) = Vbµ(

√

K2 +K · Sr −K).

4.3.2. ODE-PDE model (1),(10)-(12)

As a first approach, we solve problem (15) by solving optimization problems
(22) and (24) (considering a feedback approximation, as described in Section
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3.2.3), for both homogeneous and nonhomogeneous flow velocity fields, denot-

ing the solution by QFB,opt
H and QFB,opt

NH , respectively.
In order to compare with time varying open-loop controls (see Section 3.2.2), as
a second approach we solve problem (15) by solving the optimization problem
(21) and then taking the feedback synthesis of the time varying open-loop, i.e.,
for any time t with corresponding values Q(t) and Σ(t), we can reconstruct the
map Σ(t) → Q(t), that can be seen as a state-dependent control function, which

in the following we denote by QOL,opt
H (Σ) and QOL,opt

NH (Σ), for the homogeneous
and the nonhomogeneous flow velocity fields, respectively. Equivalently, we de-
note SH

r,ach and SNH
r,ach the minimum substrate concentrations achieved in the

water resource if QFB,opt
ODE is used in system (1),(10)-(12). For these concentra-

tion value, the flow rate QODE
FB,opt is high enough to drive system (1),(10)-(12)

to washout (see Definition 2.1), i.e., the biomass become extinct and no more
reaction is produced.

Simulations have been conducted for substrate concentration Sr,0 = 10
(mol/m3) Slim = 0.1 (mol/m3).

• Case τb ≪ τr
Figure 5 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 5-(a) shows the

feedbacks QFB,opt
H and QOL,opt

H (Σ) and Figure 5-(b) shows the feedbacks

QFB,opt
NH and QOL,opt

NH (Σ), while the corresponding decontamination times
are shown in Table 6. Note that, for the sake of comparison, Table 6 also
includes the decontamination times T (Sr,0, Q

C,opt
ODE ), obtained in Section

4.2.1.
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(a) Homogeneous flow velocity field
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Figure 5: ODE-PDE model: case τb ≪ τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt (depicted with dashed lines).

• Case τb ≈ τr:
In this case, time varying open loops and feedbacks depend on the biore-
actor state. Since we aim to compare the optimal feedback obtained for
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T (Sr,0, Q
FB,opt
H ) (s) T (Sr,0, Q

OL,opt
H ) (s) T (Sr,0, Q

C,opt
H ) (s)

49870 48040 81840

T (Sr,0, Q
FB,opt
NH ) (s) T (Sr,0, Q

OL,opt
NH ) (s) T (Sr,0, Q

C,opt
NH ) (s)

64770 63990 110420

Table 6: ODE-PDE model: case τb ≪ τr. Decontamination times obtained with system
(1),(10)-(12), Sr,0 = 10 (mol/m3) and controls QFB,opt, QOL,opt and QC,opt.

ODE model (1),(6) with the two feedback schemes obtained for ODE-
PDE model (1),(10)-(12), we approximate functions of the form Sr →

QFB,opt
H (Sr) and Sr,0 → QOL,opt

H (Sr,0; ·). In order to compute QFB,opt
H (Sr)

(or QFB,opt
NH (Sr)) we solve problem (24) for (S, sb, bb) in the set M, defined

to solve problem (22), with I = 20 and J = {1, 2, 4, 10}. Thus, for each
S ∈ S, QFB,opt(S) is approximated by computing the mean value of the
set of optimal feedbacks QFB,opt(S, sb, bb) with (S, sb, bb) ∈ M. Similarly,

in order to compute QOL,opt
H (Sr,0; ·) we solve problem (21), taking Σ0 ∈ M

with I = 1 and J = {1, 2, 4, 10}. Then, each component of vector γopt

is approximated by computing the mean value of the set of its optimal
values obtained for the different initial states. This procedure is also used
to obtain the average optimal time varying open loop QC,opt

NH (Sr,0; ·) and
substrate concentrations SH

r,ach and SNH
r,ach.

Figure 6 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 6-(a) shows the

feedbacks QFB,opt
H and QOL,opt

H (Σ), obtained when considering the homo-

geneous flow velocity field. Figure 6-(b) shows the feedbacks QFB,opt
NH and

QOL,opt
NH (Σ), obtained when considering the nonhomogeneous flow velocity

field. The corresponding decontamination times are shown in Table 8.
Note that, for the sake of comparison, Table 8 also includes the decon-
tamination times T (Sr,0, Q

C,opt
ODE ), obtained in Section 4.2.1. The substrate

concentrations achieved in the resource are SH
r,ach = 9.9888 (mol/m3) and

SNH
r,ach = 9.9836 (mol/m3). Table 7 shows the substrate concentrations

achieved in the resource.

Sr,0 (mol/m3) SH
r,ach (mol/m3) SNH

r,ach (mol/m3)

10 9.9888 9.9836

Table 7: ODE-PDE model: Case τb ≈ τr. Substrate concentration achieved if the feedback
Q

FB,opt
ODE

is used in System (1),(10)-(12).

4.3.3. Discussion

An interesting study is to check if both approaches, described in Sections
3.2.2 and 3.2.3, present similar numerical results. From Figure 5 and Figure 6
one can observe significant similarities between the two volumetric flow rates
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Figure 6: ODE-PDE model: Case τb ≈ τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt(Σ) (depicted with dashed lines).

T (Sr,0, Q
FB,opt
H ) (s) T (Sr,0, Q

OL,opt
H ) (s) T (Sr,0, Q

C,opt
H ) (s)

58900 57610 102190

T (Sr,0, Q
FB,opt
NH ) (s) T (Sr,0, Q

OL,opt
NH ) (s) T (Sr,0, Q

C,opt
NH ) (s)

74050 74180 129160

Table 8: ODE-PDE model: case τb ≪ τr. Decontamination times obtained with system
(1),(10)-(12), Sr,0 = 10 (mol/m3) and controls QFB,opt, QOL,opt and QC,opt.

QFB,opt and QOL,opt(Σ), being the first one a bit faster than the second one in
most of the cases. This result is not surprising, since the open-loop approach
takes into account the concentrations only at initial time, while the feedback
strategy is intrinsically more robust.

Another interesting study is to check if the optimization results obtained in
Sections 4.3.1 and 4.3.2 are similar. We make the comparison for both flow
velocity profiles, described in Section 2.2.2.

• Homogenous flow velocity field: In order to analyze the similarities
between the obtained optimal controls QFB,opt

ODE , QFB,opt
H and QOL,opt

H (Σ),
we plot them in Figure 7. It is easy to observe that the volumetric
flow rates QFB,opt

H and QOL,opt
H (Σ) (obtained with the ODE-PDE system

(1),(10)-(12) in the case where τb ≪ τr) are significantly close to the flow

rate QFB,opt
ODE (in fact, QFB,opt

H and QFB,opt
ODE seem indistinguishable in Fig-

ure 7-(a)). Nevertheless, the flow rates QFB,opt
H and QOL,opt

H (Σ) (obtained
with the ODE-PDE system (1),(10)-(12) when τb ≈ τr) are much slower

than QFB,opt
ODE . For instance, for Sr = 10 (mol/m3) the values of QFB,opt

H

and QOL,opt
H (Σ) are around 35% the value of QFB,opt

ODE . Furthermore, from

the value SH
r,ach, we conclude that if the constant control QFB,opt

ODE is used
in system (1),(10)-(12) the bioreactor is driven to washout (see Definition
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2.1) before the decontamination target is achieved. These results seem
to show that when high diffusions are considered, the optimal controls
obtained with the ODE and ODE-PDE models are similar, whereas for
low diffusion coefficients the ODE-PDE model exhibits better results, in
the sense that it provides smaller volumetric flow rates that favor that the
biomass does not become extinct before the target is achieved.

• Nonhomogeneous flow velocity field: In order to analyze the similari-
ties between the obtained optimal controlsQFB,opt

ODE , QFB,opt
NH andQOL,opt

NH (Σ),
we plot them in Figure 8. It is easy to observe that the volumetric
flow rates QFB,opt

NH and QOL,opt
NH (Σ), obtained with the ODE-PDE system

(1),(10)-(12) when τb ≪ τr and τb ≈ τr, are respectively around 75%

and 35% the value of the flux QFB,opt
ODE . As a result we can conclude that

the ODE-PDE systems exhibits better results when computing the opti-
mal feedback, in the sense that it provides smaller volumetric flow rates
that favor that the biomass does not become extinct before the target is
achieved.
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Figure 7: Homogeneous flow velocity field: Comparison between the feedback obtained for the
ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model when
τb ≪ τr (depicted with dashed lines) and the feedback obtained for the ODE-PDE model
when τb ≈ τr (depicted with dotted lines).

Comparison between the considered control strategies

Here, we compare the open-loop and feedback controls obtained in Sections
4.2.2 and 4.3.2. From Tables 6 and 8, one can observe that the decontamina-
tion times obtained using time-varying open loops and feedbacks are similar.
However, the feedback approximation exhibits two advantages with respect to
time-dependent controls: it is more robust to possible changes on the system
conditions and, once obtained, it can be applied in other scenarios without addi-
tional computational cost. Finally, one can see that the decontamination times
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Figure 8: Nonhomogeneous flow velocity field: Comparison between the feedback obtained
for the ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model
when τb ≪ τb(depicted with dashed lines) and the feedback obtained for the ODE-PDE model
when τb ≈ τr (depicted with dotted lines).

among constant controls are twice larger than those among time-varying open
loops and feedbacks.

5. Conclusion

In this work, we have focused on the modeling of the problem of water
treatment by using continuous bioreactors. We have presented two mathemat-
ical models, assuming homogeneity or inhomogeneity of substrate and biomass
concentrations in the bioreactor. We have also made a difference between con-
sidering that the fluid flow velocity in the bioreactor is homogeneous through
the inlet, or follows a nonhomogeneous profile.

We have tackled an optimization problem which aims to minimize the time
needed to clean the polluted resource, by choosing an optimal bioreactor volu-
metric inflow rate. In the case of considering homogeneity of the contaminant
in the bioreactor, it is possible to obtain analytically an optimal flow rate from
previous theoretical results. In the case of considering inhomogeneity of the
contaminant in the bioreactor, we show here how to obtain an optimal flow rate
using an hybrid genetic algorithm. The results show that, in the cases where the
time scale in the bioreactor is comparable with the time scale of the resource
(for instance, by using DS = DB = 0.01 (m2/s)), the optimal flow rates are
smaller than the optimal flow rates obtained for the mathematical model which
considers homogeneity in the bioreactor. In any case, the decontamination time
can be substantially reduced if feedback controls are used instead of constant
controls.

Our goal was to compare the numerical optimization results obtained for the
ODE and ODE-PDE models presented for coupled system between the biore-
actor and the water resource. The results show that when the time scale of the
bioreactor is much smaller than the one of the water resource, (for instance, by

27



using DS = DB = 100 (m2/s)), the ODE-PDE system with homogeneous flow
velocity field approaches the ODE system. Contrarily, the ODE-PDE system
with nonhomogeneous flow velocity field does not approach the ODE system in
the sense that, when using the control strategy that is optimal under the homo-
geneous assumption in the bioreactor, the biomass becomes extinct and it is not
able to make the substrate in the water resource decrease to the objective value.
Let us notice that the nonhomogeneous flow velocity field has been presented
in order to approach a more realistically behavior of the reactor (see [34]). An
important conclusion is that an optimal feedback derived for perfectly mixed
bioreactor can lead a bioreactor with non negligible diffusion terms to washout,
preventing the desired decontamination objective to be reached, while a simple
open loop control, obtained with the method presented in this work, can solve
the problem.
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