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Neural-based Underwater Surface Localization through Electrolocation

Yannick Morel, Vincent Lebastard, and Frédéric Boyer

Abstract— By manipulation of electric fields, it is possible
to detect the presence of foreign objects underwater. The
presented work builds upon a previous result, in which was
developed a neural network-based methodology allowing to
address this detection problem for spherical objects. Hereafter,
we show that the approach generalizes to the case of continuous
walls. The technique relies on a neural model of the forward
map (from scene configuration to electric measures). Exploiting
this model, together with collected electric measures, it becomes
possible to detect and infer the relative distance and orientation
of a planar wall. In addition, we show that relying on a single
forward model, only descriptive of the presence of a single
wall, it is possible to address the same problem in presence of
a combination of walls forming a corner or a corridor. Closing
the motion control loop with information obtained using the
proposed approach, it becomes possible to regulate position
of a system at a fixed distance and orientation from a wall,
with applications to the exploration and monitoring of flooded
pipelines, or to surface quality monitoring of ships’ hulls (in
relation to biofouling). Data collected experimentally are used
together with analytical models and numerical simulations to
illustrate efficacy of the approach.

I. INTRODUCTION

In underwater robotics, the electric sense ([1]) is rapidly
emerging as an effective complement to more classical
navigation instruments, such as those based on acoustics, in-
cluding SOund Navigation And Ranging systems (SONAR,
[2]) and Doppler Velocity Loggers (DVL, [3]), or Inertial
Navigation Systems (INS, [4]). This sensorial modality is
based on manipulation of electric fields. Typically, the sys-
tem applies a known electric field to its direct environment,
then carefully monitors its variations. Presence of foreign
objects in the system’s vicinity will lead to perturbations
of the emitted electric field. By detecting, measuring and
interpreting these perturbations, it becomes possible to infer
a range of information on the object(s) detected and more
generally on the system’s direct environment ([1], [5]).

The most common application of this sensing technology
consists in underwater obstacle detection, localization and
avoidance ([6], [7]), but a range of additional useful function-
alities are achievable, including localization and movement
coordination of teams of mobile robots ([8], [9]), object
shape recognition ([10]), and short range communication
([11]). Such functionalities have been achieved using a
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wide range of processing techniques. A number of results
are based on techniques inspired from those in Electric
Impedance Tomography (EIT, [12]), by which one attempts
to exploit available electric measures to reconstruct the
impedance map of the system’s near environment. In general
however, such techniques require expansive sets of measures
and heavy computations ([13]), and the estimation problem
is oftentimes ill-conditioned ([14]). However, if instead of
attempting to reconstruct a detailed impedance map, one
assumes most of the environment is homogeneous and
features only a limited number of foreign objects, it becomes
possible to significantly alleviate the computational burden.
In particular, one is then able to parameterize the scene using
a relatively concise set of variables, for instance describing
the objects’ shape, electric properties and position in the
scene. It has been shown that it is possible to reconstruct
(or, more specifically: observe) these variables using electric
measures together with a forward model, describing the rela-
tionship from scene geometry to achieved electric measures
([15], [16]). This scene reconstruction or estimation problem
can be addressed using different approaches, including well
established techniques such as Kalman filtering ([15], [16]).
As an alternative to such methods, we have proposed in [17]
an approach based on the development of a neural network-
based forward model ([18]). In particular, for a given type of
scene (i.e. presence of a pair of cooperating mobile robots
in [8], or for a spherical object in [17]), we collect series
of electric measures descriptive of this scene (for a range
of acceptable relative robot positions or sphere locations,
respectively). Such data sets can be generated using either
analytical forward models (such as that in [19]), numerical
models (such as that based on the Boundary Element Method
in [20], see [21] for a discussion of BEM), or an experi-
mental setup (such as that described in [19]). Once such a
model is constructed, it can be exploited to reconstruct the
scene based on available electric measures. The inversion
method proposed in [8] (also used in the following, in [17],
and comparable to the beamforming technique presented in
[22]) consists in presenting to the forward model a range
of candidate scene structures, as described by the relevant
variables (e.g. relative position of a robot, or location of
a sphere). Then, comparing the neural model’s output to
the current available measure, it becomes possible to infer
relative merit of different candidates. Specifically, owing
to the forward map’s continuity (as discussed in [8], and
as illustrated by existing numerical and analytical models),
and assuming that the forward neural model is faithful,
outputs of the neural model for candidates close to the actual
scene (as measured in terms of distance in the relevant
variable space) will remain close to the available measure
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Fig. 1. Definition of scene configuration variables: distance d and
orientation ψ; wall marked as a thick black line to the left.

(distance in the measure space). Conversely, as candidate
scenes become more distant from the actual one, the model
outputs in general become more dissimilar to the measures.
Accordingly, representing over the domain of definition of
possible scenes (or of candidate scenes) the similarity or
dissimilarity between corresponding model outputs and the
available measure(s) allows to discriminate possible or likely
candidate scenes from unlikely ones ([8], [17]).

One should note, however, that the forward map that we
attempt to invert using the aforementioned procedure is not
necessarily invertible (in practice, even in ideal conditions,
it is only at most locally invertible due to range limitations).
Invertibility depends on a number of factors, including the
number of available independent measures and complexity of
the scene (i.e. number of independent variables necessary to
describe it). In addition, impact of the presence of a foreign
object on measures rapidly decreases with distance. More
specifically, the corresponding perturbation on measures
typically becomes indistinguishable from measurement noise
at a distance roughly equivalent to the physical length of the
dipole producing the electric field (specific detection range
depends on the quality of electronics used for signal acqui-
sition, dimensions and electric properties of the object to
be detected, exposed surface and material of the electrodes,
and power used to produce the electric field, as discussed in
[19]). Hence, once an object is far enough from the sensor,
it becomes impossible to infer its situation based on electric
measures. Accordingly, attempting to directly construct or
identify an inverse model (from measures to scene) can
be expected to prove, at the very least, problematic, if
not outright impossible. Instead, the proposed approach has
several benefits. In particular, precisely because it is not
attempting to reconstruct the inverse map, it circumvents
issues of ill-definition. Typically (as discussed in [17]), in
an area of scene configuration space in which the mapping
is invertible, a single scene configuration candidate will
emerge as a best match (that is, when used as input to the
neural model, yielding the neural output that provides the
closest match to the measure available). Conversely, in a non-
invertible area, such as when the sensor is to far away from
the object to be detected and localized, entire swathes of the
scene configuration space will emerge as equally likely. That
situation makes it impossible to discriminate one single most
likely location (as expected, since it is not possible to do so
from available data). Yet, it remains possible to: a) come to a

realization that there is ambiguity and that it is impossible to
highlight a particular scene configuration candidate (in other
words, we know that we do not know), b) still discriminate
likely areas (instead of specific candidates) from unlikely
ones. Typically, when located too far from the target object,
it still remains possible to determine the area of space around
the sensor within which the object is unlikely to be located,
versus areas further away from the sensor where it may be.

In [17], we applied the approach delineated above to the
case of a scene featuring a single spherical object. In the
following, we apply the same approach to a case in which
the sensor is placed in the presence of a planar, vertical wall.
For ease of exposition, the problem is treated in a horizontal
plane of reference, in such a manner that, assuming the
considered wall is infinite, two variables are sufficient to
entirely describe the scene; a distance d ∈ R+, and a relative
orientation ψ ∈ (−π, π] descriptive of the orientation of the
sensor with respect to the wall. Definition of both variables
is provided in Figure 1, which also provides a schematic
view of the type of sensors considered hereafter: a slender,
cylindrical electric probe composed of an insulating plastic
shell (light grey in Figure 1) and of four pairs of steel
electrodes (in a darker shade of grey, two hemispherical pairs
at the probe’s extremities, two additional cylindrical ones on
the fore half). In the following, we show how, using the
approach discussed in [17], we are able to capture a neural
model descriptive of the relationship between a scene such as
that in Figure 1 and electric measures performed by a sensor
(e.g. the probe represented in this same figure). We then
employ the aforementioned inversion procedure to estimate
the value of d and ψ corresponding to a particular electric
measure performed. Finally, we show that the information
obtained is sufficient to close the motion control loop and
allow movements of the sensor in good intelligence with its
environment, including regulation of the probe’s position at
given distances and relative orientations from the wall.

Contribution of the presented work stems from a number
of factors. In particular, the results presented illustrate the
generalizability of the proposed approach, which had previ-
ously successfully been applied to solve relative positioning
and coordination problems (in [8]) and sphere localization
problems ([17]), and is here used to address the problem of
localizing a continuous planar wall. In addition, the presented
work provides a novel algorithmic tool to solve the wall
localization problem in electrolocation, which had previously
been addressed using for instance Kalman filters ([16]),
but never using the proposed neural approach. Finally, an
interesting feature of the proposed approach, differentiating
it from alternative techniques, lies in its capacity of handling
scenes more complex than those used to construct the
direct model it relies on. Specifically, the neural model we
construct is based on the presence of a single planar wall.
However, it can be used in cases in which several (possibly
intersecting) walls are present, forming combinations of
corners and corridors, and allow safe navigation of one such
scene without requiring any adjustment. By comparison,
alternate approaches such as that in [16], while still able to



handle corners and corridors, will typically require additional
dedicated models.

In Section II, we provide a brief description of the
experimental setup we used to collect data, present a simple
analytical model used at latter stages to test the proposed
approach, and discuss the neural model constructed based
on data collected. Then, in Section III, we show in what
manner we are able to exploit the neural model of Section
II to infer position of a planar wall from performed electric
measures. We also show how this same model can be used
to navigate corners and corridors. Section IV concludes this
paper.

II. EXPERIMENTAL SETUP AND COLLECTED MEASURES

The problem addressed in the following is that of estimating
the relative position of a mobile underwater system with re-
spect to an insulating wall (or more generally plane surface)
using electrolocation. This electrolocation approach follows
a simple principle; the system, using a set of electrode
located on its surface, applies an electric field to its sur-
roundings. These same electrodes are then used to measure
relevant electric variables, such as for instance difference of
electric potential between electrodes (as in [23]), or electric
currents flowing through the electrodes (see for instance
[16]). Based on such measures, one is able to infer a range of
information descriptive of the system’s direct environment.
In particular, presence of foreign objects, whose electric
conductivity is distinct from that of the surrounding fluid,
will perturb the field emitted by the system. Detecting
such perturbations in the measures performed can allows to
estimate a range of information regarding the foreign objects
in question, including relative position in space with respect
to the system, size, shape, and conductivity ([16], [23]).

A. Experimental Setup

Hereafter, we apply the neural-based approach introduced
in [8] (where it is used to estimate relative position of
underwater mobile systems) and later used in [17] to locate
spherical objects underwater. Building upon a series of mea-
sures characterizing electric current patterns in presence of
an insulating wall, it becomes possible to construct a forward
model, descriptive of the relationship from scene geometry
to electric measures performed. As previously alluded to,
in the case considered, which is that of a single mobile
system in the presence of an infinite wall, and considering
motion in the horizontal plane exclusively, the scene can
be described using two variables; the distance d ∈ R+

between wall and mobile system, and the orientation ψ ∈
(−π, π] of the mobile system with respect to the wall. The
proposed approach will be tested using data collected on an
experimental setup, described in detail in [19]. This setup is
composed of 1m×1m×1m glass tank filled with fresh water.
The setup uses electric probes (qualitatively representing a
mobile vehicle equipped with the electric sense), which are
composed of a cylindrical, non-conductive plastic body (of
length 22cm, 2cm diameter), and feature four pairs of steel
electrodes located along the length of the probe (three pairs

on the fore half, one pair aft), with each pair of electrodes
following a strict left-right symmetry (probe shown in Figure
1). In practice, a 22.5KHz sinusoidal signal is applied to
the aft-most pair of electrodes. Then, the peak-to-peak value
of the current flowing through the three fore-most pairs of
electrodes (connected to a common ground) is measured.
These probes are mounted on a three Degree of Freedom
(DoF) actuation system, allowing movement in the horizontal
plane (two translations, one rotation; see [15], [19] for
additional details on the experimental setup).

Position of the probe relative to a particular wall is
described by the aforementioned distance d and relative ori-
entation ψ. Specifically, and as shown in Figure 1, we define
d as the distance between the probe’s center and the nearest
point of the wall, and assign ψ = 0 to the relative orientation
for which the probe’s fore is pointing away from the wall.
Below, we discuss the relationship between scene geometry,
as described by d, ψ, and the current measures obtained by
the probe. Then, data collected using the experimental setup
described here is used to train a neural network providing an
alternate model of the same relationship, and comparisons
between experimental measures and models are performed.

B. Analytical Model
For ease of interpretation, currents measured by the probes
described in Section II-A are summed and subtracted for
each electrode pair. Qualitatively, looking at the sum of
currents for each pair of electrodes on the probe (that is,
for each pair, the sum of current flowing through the left-
side and the right-side electrodes) provides insights into
the position of a perturbing object in the longitudinal di-
rection of the probe (that is, along its longitudinal axis
of symmetry). Conversely, considering left-right differences
(difference between the current flowing through the left-side
electrode and that flowing through the right-side one) helps
in determining whether objects are located port or starboard.
In the following, we note the current sums ilo(t) ∈ R4,
t > 0, where lo stands for longitudinal, and ila(t) ∈ R4,
the left-right differences, where la stands for lateral. These
currents can be computed as follows (see details in [19]),

ilo(t) = C0K(t)C0u, t > 0, (1)
ila(t) = (1 + S⊥)L(t)C0u, (2)

where the conductance matrix C0 ∈ R4×4 is a function of
probe geometry and of the surrounding fluid’s conductivity,
the column vector u ∈ R4 describes the electric potentials
assigned to the four pairs of electrodes, S⊥ ∈ R is a scaling
factor, and K(t), L(t) ∈ R4×4 are matrices computed as
follows,

kij =
1

4πγ∥rij(t)∥
, i, j = 1, . . . , 4, t > 0, (3)

lij = − Āi
4π∥rij(t)∥3

[
−sin(ψ(t)) cos(ψ(t))

]
rij(t), (4)

where kij(t), lij(t) ∈ R represent the ith line– jth column
entries of K(t) and L(t), respectively, γ ∈ R describes the
medium’s conductivity, Āi ∈ R is a scaling factor function



of the surface of the ith pair of electrodes, rij(t) ∈ R2 is
the vector describing the position of the ith electrode pair
with respect to a mirror image of the jth pair (specifically,
the jth pair of electrodes of a virtual probe, mirror image of
the actual one across the wall’s surface, see [19]), computed
as follows,

rij(t) =

[
2d(t)
0

]
+

[
(xi + xj)cos(ψ(t))
(xi − xj)sin(ψ(t))

]
, t > 0, (5)

where xk ∈ R, k = 1, . . . , 4, represents the position of
electrode pair k along the longitudinal axis of symmetry
of the probe. Using (1)–(5), one is able to compute the
value of lateral and longitudinal currents for given scene
geometries, as described by values of d(t) and ψ(t). Finally,
note that while the above model provides ilo(t) and ila(t),
t > 0, for all four pairs of electrodes (meaning ilo(t), ila(t) ∈
R4), due to the fact that whatever current flowing into
the front three pairs is flowing out of the aft-most pair
of electrode (or emitter, [19]), the overall set of measures
contains information redundancy. Accordingly, it is typical
to only consider measures on the front three electrode pairs,
as it allows to reduce dimension of the problem with no loss
of information. Therefore, in the following, we will only
consider īlo(t), īla(t) ∈ R3, which describe currents flowing
through the first three pairs of electrodes only.

C. Neural Model
We follow the approach introduced in [8], and approximate
the relationship from scene geometry, described by d, ψ,
to collected measures of the current (row) vector i(d, ψ) ,[
īTlo(d, ψ) īTla(d, ψ)

]
∈ Di ⊂ R6, for a given (fixed) fluid

conductivity γ, using the following neural formalism,

î(d, ψ) , φ(d, ψ)W, (d, ψ) ∈ Dd ×Dψ , Ds, (6)

where î(d, ψ) ∈ Di provides an estimate of the current
vector i(·, ·) for a scene configuration given by d, ψ, the
row vector φ(d, ψ) ∈ Rp contains polynomial functions of
d and ψ chosen a priori, and W ∈ Rp×6 is a weight matrix,
to be selected in such a manner that î(d, ψ) provides an
accurate estimate of i(d, ψ) over the domain of definition of
admissible scenes Ds.

To train the above model, that is, to select an appropriate
weight matrix W in (6), we use sets of data representative of
the scene we intend to capture. This data can be generated
using either analytical (or numerical) models, such as that in
Section II-B, or experimental setups such as that discussed
in Section II-A. In the following, we will work using the
latter: experimental data captured on the electric bench setup
of Section II-A. This data was collected by adjusting the
position and orientation of an electric probe with respect to
one of the tank’s four walls. To reduce impact of the presence
of the other three walls on measures performed, movements
of the probe were constrained to a line perpendicular to
the wall of interest, and crossing the center of the tank.
Keeping the probe between the tank’s center and the wall
of interest, we are able to maintain the probe at a distance
greater than half a meter from other walls, which is generally

sufficient to ensure the impact of their presence on measures
remains largely negligible. Measures im(d, ψ) ∈ R6 were
collected for the front three pairs of electrodes (a measure
im(d, ψ) corresponding to the actual currents i(d, ψ) ∈ R6

plus measurement noise). These measures were collected
along straight trajectories starting at the tank’s center and
ending at the wall of interest. Movement speed of the probe
and sampling frequency were adjusted to obtain samples
about every 2mm along these trajectories. The process was
repeated for relative orientations of the probe with respect to
the wall ψ spanning (−π, π] with steps of π/36rad (5deg),
for a total of 72 trajectories.

We used the collected data to determine an
appropriate value for the weight matrix W . In
particular, we built a current measure matrix
Im(ds, ψs) ,

[
iTm(d1, ψ1) . . . iTm(dq, ψq)

]T ∈ Rq×6,
where im(dj , ψj) is the current measure collected at distance
dj from, and relative orientation ψj with respect to the
wall, j = 1, . . . , q, and ds, ψs, are vectors of distances and
relative orientations containing all values at which measures
were collected. We then built the corresponding polynomial
matrix Φ(ds, ψs) ,

[
φT(d1, ψ1) . . . φT(dq, ψq)

]T ∈
Rq×p, where φT(dj , ψj) is a polynomial function
of its inputs. Typically, we use φ(dj , ψj) =[
d0jψ

0
j . . . d0jψj

k2 d1jψ
0
j . . . dj

k1ψj
k2
]

∈ Rp,
where k1, k2 ∈ N are φ’s polynomial orders and, by
construction of φ(·, ·), p = (k1 + 1) × (k2 + 1). Then, we
select the neural weight matrix Wm ∈ Rp×6 corresponding
to (or descriptive of) the collected set of measures as
follows (computed as the most-likely, a posteriori estimate,
based on collected measures, [24]),

Wm=
(
ΦT(ds, ψs)Φ(ds, ψs)+Σm

)
†ΦT(ds, ψs)Im(ds, ψs), (7)

where the design constant Σm ∈ Rp×p allows to account
for the presence of measurement noise in the data, and
where explicit mention of Wm’s dependency on (ds, ψs),
was omitted for brevity. Then, the captured neural model
can compute predictions î(d, ψ) = φ(d, ψ)Wm of current
values i(d, ψ), for (d, ψ) ∈ [0, 0.5m]×(−π, π], domain over
which experimental data was collected to train the model.

To compare accuracy of the analytical model in Section
II-B and of the above neural approach, we constructed one
such neural model, using k1 = k2 = 12, and Σm = 1e−6Idp,
where Idp ∈ Rp×p is the p–dimensional identity matrix.
The numerical value of parameters in the analytical model
in Section II-B are u =

[
0 0 0 10V

]T, S⊥ = 3.51,
γ = 0.04S/m, Ā =

[
π/2 2 2 π/2

]T
r2em2, the probe

radius is re = 0.01m, positions of the electrode pairs’
centers along the probe longitudinal axis of symmetry are
x =

[
0.105 0.068 0.03 −0.1

]T
m (positive in the

fore direction, negative aft), and the conductance matrix has
the following value,

C0=


306.146 −126.072 −92.715 −87.358
−124.882 335.734 −127.993 −82.858
−91.705 −128.228 312.126 −92.193
−87.306 −83.591 −93.330 264.229

 e−5S.
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Fig. 2. Comparison between experimental data (copper surface), and output
of a neural model captured using the represented data, shown with •’s.

We observe that, over the data set used for training, the
mean error between the analytical model in Section II-B
and experimental measures is 2.83e−2mA (with a standard
deviation of about 7.95e−2mA). Scaled by each of the six
considered currents maximum amplitude (specifically, for
each current in īlo and īla we compute the amplitude of the
experimental data as the difference between maximum and
minimum current value measured, we then divide the mean
error obtained for each of these six currents by this amplitude
to better contextualize the error), we obtain an average error
of 1.003% of each current’s respective maximum amplitude
(standard deviation of 2.6%). For the neural model, the mean
error is of about 1.93e−3mA (0.068% scaled), with a stan-
dard deviation of 4.08e−3mA (0.14% scaled). A comparison
between experimental data and output of the neural model is
provided in Figure 2, where the copper surface corresponds
to the collected set of data for the 3rd lateral current (noted
ila3(d, ψ)). Output of the neural model for a range of (d, ψ)
coordinates is marked with •’s in Figure 2. Consideration
of Figure 2 gives rise to a number of points. First, the
neural model appears to provide a reasonable approximation.
However, such a judgement of value is fairly difficult to
perform when considering Figure 2 alone. In particular, if
currents’ amplitude is of the order of 1mA near the wall, it
very rapidly drops (decreases in 1/d2, as seen in (4)). To
the extent that beyond d = 0.1m, it becomes difficult to
discern anything as currents appear to be identically null. In
reality, there remains notable and exploitable variations in
currents well beyond d = 0.1m. To highlight that fact, we
apply a logarithmic transformation to the data (as well as to
the output of the neural network) as follows,

ilj(d, ψ) =
sign(ij(d, ψ))

(
log(|ij(d, ψ)|+ bj)− log(bj)

)
max(d,ψ)∈Ds

(
log(|ij(d, ψ)|+ bj)− log(bj)

) ,
j = 1, . . . , 6, (8)

where ij(d, ψ) represents the jth entry of the current vector
i(d, ψ), ilj(d, ψ) is the logarithmically transformed current
corresponding to ij(d, ψ), and bj represents an offset used
to avoid the logarithmic singularity at zero. Applying this
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Fig. 3. Comparison between experimental data (copper surface) and neural
output (•’s) with logarithmic scaling.

transformation to the same data shown in Figure 2, it
becomes easier to discern changes in currents at greater
distance from the wall, as seen in Figure 3.

III. WALL LOCALIZATION

In the following, we employ the same inversion approach
as that in [8], [17], which is also comparable to the beam-
forming technique in [22]. Specifically, we attempt to a)
detect presence of a wall, and b) estimate its location and
orientation relative to that of the probe. To achieve these
objectives, we exploit electric measures performed by the
probe together with the neural model discussed in Section II-
C. In particular, when a measure of current im(d, ψ) is made
available, we use the developed neural forward model to
compute possible current measures ic(dc, ψc), corresponding
to a range of candidate relative distances dc and orientations
ψc. Then, comparing candidate measures ic(dc, ψc) to the
actual measure im(d, ψ), it becomes possible to discriminate
areas of the scene space Ds likelier to contain the actual wall
position (d, ψ), from areas unlikely to contain it. Specifically,
numerically computing the prediction error ep(im, dc, ψc) ,
∥im − ic(dc, ψc)∥ over a given candidate range (dc, ψc) ∈
Dc ⊂ Ds, areas of Dc featuring (relatively) high values of
ep are less likely to contain the actual wall position, whereas
areas featuring lower error are more likely to contain it.

A. Wall Localization over Open-loop Probe Trajectory

To test the proposed approach, we consider a case in which
the probe is in the presence of a single wall. The probe
is made to move along a quarter circle. Trajectory of the
probe’s center is represented with a thin blue line in Figure
4, with an initial position marked with an ×, and a final
position with a ⋄. The shape of the probe itself is also
shown in its final position. The wall is marked with a thick
black line (along the x = 0 line). Orientation of the probe
in its initial position is such that it is pointing towards
the wall (ψ = πrad, in accordance with Figure 1), and
is made to continuously decrease to reach ψ = π/2rad at
the final position (probe parallel to the wall, as shown in
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Fig. 4. Electric probe moving in an open-loop trajectory; probe trajectory
represented with a thin blue line, trajectory of the wall position estimate
shown with a thick blue line, initial probe position marked with an ×, final
position with a ⋄, final position of the probe reflection marked with a •.

Figure 4), in such a manner that the probe’s longitudinal
axis of symmetry remains tangent to the xy–trajectory of
the probe’s center. To estimate position of the wall, we
used the forward neural model discussed in Section II.
Model inversion was performed using the iterative two-step
procedure presented in [8]. In a first step, we compute
predicted current measures on a grid of candidate positions
(dc, ψc) ∈ [1e−2m, 0.4m] × [0, 2π) , Dc1, with steps of
5cm in the d direction and π/12rad in the ψ direction. A first
estimate of the wall’s relative position (d̂1, ψ̂1) is selected as
the candidate position for which the current prediction error
is minimal over the candidate grid; that is,

(d̂, ψ̂) = argmin
(dc,ψc)∈Dc

ep(im, dc, ψc). (9)

Then, with use a finer candidate grid, centered about the
previous estimate (d̂1, ψ̂1), with a grid width of 0.1m in
d and π/12rad in ψ, and grid steps of 2.5e−3m in d and
π/180rad in ψ. This second grid’s candidate with lowest
prediction error is selected as the estimated relative position
of the wall. We represented this estimated position as a thick
blue line in Figure 4, with initial estimated wall position
marked with an ×, and the final one with a •. The current
measures used to estimate position of the wall as shown in
Figure 4 were obtained using the reflection model in Section
II-B (note the probe’s final position reflection, represented
to the left of the wall in Figure 4, with a • marking
its center). Reconstructing the estimated wall (closest with
respect to the probe) position (in thick blue in Figure 4), and
comparing it to its actual (closest) position over the quarter
circle trajectory considered, we obtain an average position
error of about 7e−3m with standard deviation 6.2e−3m.
In other words, and as is apparent from Figure 4, the
approach is able to reconstruct the wall’s position, based
on the neural model and provided current measures, with
reasonable accuracy. The reconstruction error for the final
probe position is shown in Figure 5, computed over a wide
range of candidate distances and orientations. The resulting
surface’s lowest point designates the most likely candidate
position. Trajectory of this estimate in the d–ψ plane is
shown in blue; the actual relative position is in green.
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Fig. 5. Error surface for the final probe position, the surface’s minimum
represents the most likely candidate position and is selected as an estimate
of this position. This estimate’s trajectory is shown as a blue line, whereas
the actual wall relative position is shown in a green line.

B. Closing the Motion Control Loop
Exploiting the information provided by the wall position es-
timate, it becomes possible to guide the probe’s movements
in such a manner that it avoids colliding with the wall, or
even remains constrained at a consistent distance from this
wall. More specifically, we assign the probe simple non-
holonomic kinematics of the usual form,

ẋ(t) = v(t) cos(ψa(t)), x(0) = x0, t > 0, (10)
ẏ(t) = v(t) sin(ψa(t)), y(0) = y0, (11)
ψ̇a(t) = ω(t), ψa(0) = ψa0, (12)

where x(t), y(t) ∈ R, represent the probe’s center position,
ψa ∈ (−π, π] its orientation with respect to the xy–frame
of reference (with ψa = 0 when the probe points towards
the x–axis’ positive direction), v(t), ω(t) ∈ R, are the
longitudinal displacement speed and angular velocity, which
act here as control inputs to system (10)–(12). These inputs
are computed as the sum of two terms, v(t) = vc(t)+ vj(t),
ω(t) = ωc(t) + ωj(t), t > 0, where vj(t), ωj(t) ∈ R, are
obtained from a joystick’s output, allowing the user to direct
movements of the probe, whereas va(t), ωa(t) ∈ R, are
computed using wall position estimates as follows,

vc(t) = min(max(|d̂(t)− dd| − dt, 0), vs), t > 0, (13)

ωc(t) = gω

(
sign(vj(t)δψ(t))ψdm tanh

(
d̂(t)− dd

dd
π

)
+δψ(t)− sign(δψ(t))π/2

)
, (14)

where vs = 0.1m/s represents the maximum assignable
velocity, dd = 0.1m is the distance from the wall at which
we intend to regulate the probe, dt = 0.01m is a distance
threshold, δψ(t) , π − ψ̂(t) describes orientation of the
probe with respect to the wall, ψdm = π/4 represents a
maximum desired relative heading, gω = 0.2 is a control
gain, and sign(·) is the usual signum function. Value of
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Fig. 6. Control signals, vj(t), ωj(t), t > 0, shown in blue, vc(t), ωc(t),
in red.

vc(t) is by construction saturated at vs = 0.1m/s, whereas we
saturate the value computed by (14) at π/5rad/s. In addition,
value of vj(t) and ωj(t) is obtained by scaling the joystick’s
output signals on the front-back and left-right axes from 0
with the stick at the center, up to 0.05m/s and 0.35rad/s at
maximum tilt on either axis, respectively. The closed-loop
is simulated using MathWorks R⃝ Simulink R⃝, together with
a USB joystick. The neural model and inversion procedures
are the same as in Section III-A, the electrical model used
to produce electric measures is that in Section II-B. A
wall is placed parallel to the y–axis at x = −0.5m, the
probe is initially located at (x, y) = (−0.2m,−0.2m) with
orientation ψa = πrad. Control signals are shown in Figure
6; the corresponding probe trajectory is represented in blue
in Figure 7. Initially, the user is providing a positive velocity
command (in blue in Figure 6, up). The regulating command
(13) (in red, up) is also pushing the probe forward, until it
reaches the desired distance from the wall dd = 0.1m. Once
the probe has reached its desired position with respect to the
wall (at fixed relative distance and orientation), the command
(13)–(14) is able to maintain this desired position, using
only estimates of distance and orientation provided by the
electric measures and estimation algorithm discussed above.
At around 8s, the user is attempting to wrestle orientation
of the probe away from its regulated value. However, the
regulating signal compensates and is able to maintain the
orientation at a value near the desired one, as seen in the
probe last position shown in Figure 7. Movements parallel
to the wall (along the green line in Figure 7)

Finally, we reproduce the same simulation, using the
same neural forward model, descriptive of the presence of a
single planar wall, but now place the probe in presence of
combinations of walls, forming either a corner or a corridor.
We use the same control inputs (13)–(14) to regulate distance
from the wall and orientation of the probe. Results are shown
in Figure 8 and Figure 9. In both cases, the estimation
procedure is able to reasonably well estimate position of
(the closest) wall. In the case of the corner, distance is
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Fig. 7. Closed-loop probe trajectory, with virtual constraint at 0.1m from
the wall.
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Fig. 8. Closed-loop probe trajectory in a corridor.

underestimated in a given area due to the concurrent (and sig-
nificant) influence of both walls on measures. Nevertheless,
the method generalizes well in that it is capable of safely
regimenting movements of the probe along the walls. Note
in addition that it did not require new or additional modeling
considerations to account for the presence of several walls.

IV. CONCLUSION

In the work presented, we have applied the electrolocation
algorithm (first introduced in [8]) to estimate the relative
distance and orientation of an underwater planar surface from
an electric sensor. The approach is based on the development
of a neural forward model, describing the map from scene
geometry to electric measures. This neural network can be
trained using either experimental data (as was the case here),
or numerical data obtained from analytical of numerical
models. To invert this forward model and estimate scene-
relative information from measures, a series of candidate
relative wall positions are fed to the neural network. Output
for each candidate is then compared to the available elec-
tric measure. Based on similarity between model outputs
and measures, it becomes possible to discriminate likely
scene configurations from unlikely one and, in fine, reach
an estimate. The approach was shown to work using a
forward model obtained from experimental data. Numerical
simulation results show that the information reconstructed
is sufficient to enforce virtual movement constraints on a
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Fig. 9. Closed-loop probe trajectory in a corner.

system and regulate its distance and orientation with respect
to the detected wall (while leaving the degree of freedom of
displacement along the wall free). Using a single forward
model descriptive of the presence of a single wall, it is
possible to successfully enforce such virtual constraints
for combinations of walls, including corners and corridors.
Further generalization of the proposed approach to localize
non-planar walls (slanted, curved, or of arbitrary shape) is
ongoing.
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