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Neural-based Underwater Spherical Target Localization tlough Electrolocation

Yannick Morel, Vincent Lebastard, and Frédéric Boyer

Abstract— Navigation of cluttered underwater environments  This sensing modality is characterized by a fairly shorgean
remains to this day a challenging task in mobile robotics. (for the fish, typically a one-body length detection bubble
Applying an electric field to a mobile robot’s direct environment around its body), however it has the advantages of being
and measuring perturbations of this field, one is able to deta L . ! . .
the presence of obstacles in close proximity of the systemn | omnldlrectlonal,_ We"'_su'ted to cluttered environmerasd
addition, one is also able to infer a range of information reative ~ able to operate in turbid water. For these reasons, a nurfiber o
to the detected objects, such as their position or electrita research groups have investigated the application of dagimi
characteristics. Extracting such information from available  sensing principle to robotics (see for instance [6], [7]).
measures typically requires a model (analytical, numerickhor The typical functionality pursued has been that of under-
heuristic) descriptive of the relationship from geometry d the . L
scene to measures performed (typically referred to asorward water obstacle dete?t'on a_nd_ lo_(:_al'zat'on (referre_d tee-her
model), or of the inverse relationship (nverse model). In the  after as electro-location). Similarities between the atered
following, we directly extract one such model from experimatal ~ problem and that investigated in Electrical Impedance To-
data, and capture a forward model using a neural formalism.  mography (EIT, [8]) have motivated the use of EIT methods
Then, using an iterative procedure, we are able to estimate (see [9]). However, the number of electrodes (and therefore

the position of a detected object and assess the degree of - . . .
confidence one can place on this estimate. Merit of the appreé of available measures) on electro-location sensors i$yfair

is illustrated using experimental data for a spherical obsacle.  limited. As a result, the inverse problem (of estimating the
impedance map in the sensor’s surroundings as a function

of electric measures performed) is generally ill-pose@]j1
Autonomous or remotely controlled robotic operations iffo reduce the dimension of the solution being estimated, it
unstructured, cluttered environments have long been relsas in some instances been assumed that, in the sensor’s
ognized as constituting a significant challenge ([1]). Thelirect environment, a significant portion of the volume is
situation is to a large extent due to difficulties in usingoccupied by the surrounding fluid, whereas only a discrete
acoustic methods, such as SOund Navigation And Rangimymber of obstacles are present. Therefore, the problem can
(SONAR), in such a setting, as the clutter leads to sevete simplified by estimating the position of these obstacles,
multipath issues (see, among many others, [2] for a disather than attempting to construct a detailed impedange ma
cussion of the manner in which multipath affects SONAR)of the environment. Such approaches have been very suc-
Operational problems are only compounded in the case oéssful, with in particular techniques based on probdiailis
murky, muddy, or turbid water, in which conditions vision isestimation methods ([11]), or stochastic approaches )[12]
of little assistance in perceiving the environment. As aiites  In the following, we pursue a similar approach, in which
a wide range of applicative situations, in which roboticave attempt to reconstruct the position of a given obstacle,
could provide invaluable support, have remained beyorgtesent in the sensor’s environment. The methods builds
the capabilities of existing technology, such as for inséan upon the technique used in [13], [14] to estimate relative
in active environmental monitoring for rivers, ponds, angositions in a group of robotic swimmers using the electric
lakes, exploration of underwater wrecks, or search andigescsense. In a first step, a forward map, from relative positfon o
missions in capsizing ships. an obstacle with respect to the sensor to the electric mesisur
To overcome such limitations, roboticists have over theerformed by the sensor, is constructed. This forward map
years investigated novel sensing modalities. Of particul@an assume a variety of forms, such as an analytical model
interest in the aforementioned setting is the electric egns (as that in [7] or in [15]), or a numerical model (e.g. based on
[3]-[5]) This active sensing modality, exploited by a nienb Boundary Element Methods, BEM, [16], [17], such as that
of fish species, is based on the manipulation of electricdieldin [18]). In the following, we use experiments to collectalat
Specifically, the fish generates one such field and contidescriptive of this forward map. Then, we train a polynomial
uously measures deformations of this field using electrareural network ([19], [20]) to learn this forward map. In a
receptor located along its body. The presence of objectgecond step, when attempting to localize an obstacle,sserie
(inert or biotic), whose electric properties differ fromotie of candidate (or prospective) obstacle positions are ptede
of the surrounding fluid, will perturb the field. Based onas inputs to the trained neural net. The computed neural
the information collected, the fish is typically able to in-outputs (which correspond to predicted electric measures
fer detailed representations of its immediate surrourgjingfor each considered candidate positions) are then compared
including the presence, location, and general geometry wifith the actual electric measures. The comparison allows to
foreign objects (obstacles), or of living organisms (prey)discern likelier positions of the obstacle.

I. INTRODUCTION



The main contribution of the paper lies in presenting Tw
novel electro-location technique for obstacle localizati
technique which had to this day only been applied to th
relative position estimation problems for two mobile sysse
equipped with the electric sense (or, equivalently, to twe
electric sensors). One of the main strengths of the approaf”
lies in its expected generalizability. In particular, thelgem
of developing analytic models describing the effect of the
presence of simple (in a geometrical sense, e.g. spheric
obstacles on electric measures has been addressed (see
[21]). However, that same problem remains open for mo
complex object geometries, be it for localized obstacles ¢
arbitrary shape, or continuous, non-homogeneously curve:
walls. The corresponding analytical derivations are likel
to be rapidly become untractable, and computing nume
cal BEM models of arbitrarily detailed scenes can provc P

prohibitively time-consuming. Yet, the electric sensets, _ , . .

. i . Fig. 1. Experimental setup, top down perspective. The systeshown
a large extent, a rather myopic sense. Specifically, 'f. thith a pair of electric probes, visible as cylindrical ot white and grey.
presence of an obstacle can be discerned from availabliee probe in the foreground is mounted on a three DoF actuagstem,

measures at a given range, distance to the object must %Igwing to control its position and orientation in the tmmtal plane.
reduced to close-to-zero to distinguish geometrical festu

For example, presence of a cube or of a sphere produdested the approach is described hereafter. At later stages
electric measures which are essentially identical at a reaf development, the technology is intended to equip mobile
sonable range (see [22]). In other words, from far enouglinderwater vehicles. However, at this early developmental
most objects look alike from an electric point of view.stage, the principles are tested on a dedicated experimenta
Accordingly, one could expect to be able to successfullgetup, shown in Figure 1.

address a large number of localization problems (i.e. focal )

ization for a large class of different objects) by exploring®- Experimental Setup

similarities between the electric measures corresportdiag The physical principle behind the object localization pro-
number of generic shapes. This library of measures could edure is the following. A set of electrodes are used to
constructed using analytical or numerical models. Howevegenerate an electric field and measure relevant electrical
following the approach used hereafter and collecting datguantities. Specifically, in the setup used in the following
experimentally instead, one is able to circumvent issugfese electrodes are integrated within a slender cylinfer (
stemming from complexity of derivation or computation, andength 21.6cm, diameter2.5cm, probes seen in Figure 1
achieve greater flexibility in terms of the types of shapesnd Figure 2, see [7] for greater details). The electrodes
considered. Establishing one such library and using it tgre made of steel, the body of the cylinder itself is plastic
estimate geometry of a complex scene is however beyorgd non-conductive. This cylinder is hereafter referred to
the scope of the present paper. Instead, in the following, W theprobe or the electric probe. These probes are used
show that the proposed approach can be used to localizey@hin a 1mx1mx1m glass tank, filled with fresh water.
spherical obstacle using experimental data. They are affixed at the extremity of a perch, rigidly connécte
In Section Il, we provide a rapid description of theto a three Degree of Freedom (DoF) actuation system,
experimental setup and compare collected measures tesvaliggiowing movements in a horizontal plane (two translations
obtained from an analytical model. Then, in Section I, weyne rotation). A top-down view of the setup is provided in
use a neural approach to capture the map going from relatigggure 1. In the following, we will consider localization of
position of the obstacle to electric measures. Inverting tha single object, a metallic sphere of raditesn.
forward map, we are able to localize a sphere as a functionThe probe used features four pairs of electrodes. Two of
of performed electric measures, as discussed in Sectigiese pairs form the probe’s hemispheric extremities (see
IV. Results obtained using experimental data are providegtigure 1 or Figure 2), the other two pairs are located on the
Section V concludes this paper. fore part of the probe, their centers@gcm and3cm from
the probe center, respectively. Each pair follows a steftt |
right symmetry (see [7], [23]). A signal generator is used to
In later sections, we address the problem of localizingpply a sinusoidal signal of frequeneé.5KHz to the aft-
an object of interest, underwater, through manipulation ahost hemispherical pair of electrodes. The (peak-to-peak)
electric fields. The setting in which we have developed angalue of the current flowing through the three fore-mostgair

II. EXPERIMENTAL SETUP AND COLLECTED MEASURES



measures, we briefly present the analytical model of the

currents measured, whose derivation is presented is detail
03 in [7] (alternately, see [15] for fewer details and a higher
04 1 level of abstraction). It is convenient to consider each pai
03 +Obect ] of electrodes along the probe’s body separately, and for
02 (@) ] any such pair to estimate (or measure) the total currents
o1 flowing through it, and the difference between the current
T flowing into the left electrode and that flowing into the
> right one. The former (the sum) produces signals of greater
01 i) magnitude, which facilitates detection of a perturbatibthe
-0.2 ) 1 electric field. The latter (the lateral difference) proddaore
-03 1 detailed information regarding the detected object'stieda
—04 ] position with respect to the probe, in particular allowing
_og| LWater tank ] to straightforwardly assess whether it is located port or
‘ ‘ ‘ ‘ ‘ starboard. For ease of presentation, we group the fourrdurre
-04 -0 E)] 0.2 0.4 0.6 sums withini,, € R*, where), stands for longitudinal and
T |m

in which current sums are included from fore-most to aft-
Fig. 2. Schematics of the experimental setup, the origimef—frame of ~MOSt pair. Similarly, we group the lateral current diffeces
reference is placed at the center of the tank, a conductieaflic) sphere  within 7;, € R* (1. stands for lateral) in the same front-to-
of radius1cm is located a{zo,yo) = (0m, 0.25m), the position(z, y) . . . .
of the probe may span the area in a darker shate of blue. back order. In practice, we are interested in the pertmpatl
due to the presence of an obstacle. Accordingly, we typicall

which are connected to a common ground, is measured. Ffbtract fromi,, the values obtained in the absence of any

a more detailed description of the setup, the interestetkrea 00Stacle (which serve as reference). That operation is not
is referred to [23], [24]. necessary for,, due to the sensor’s left-right symmetry.

Position of the obstacle and of the probe in the horizontdi"€ Value ofi, (due to the presence of a spherical obstacle)
plane is described using am—frame of reference, the origin &N P& computed as follows ([7]),
of which is located at the center of the setup (see Flgurg 2). i = CoK Cou, @
To collect data to construct a forward map (from relative
position to collected measures), we dispose the obstahereC, € R*** is a conductance matrix whose expression
and probe as follows. The spherical obstacle remains fixedepends on the probe’s geometryc R* is the vector of
its center located atz,,y,) = (0m, 0.25m). The probe electrical potentials applied to the four pairs of elec&rdih
is free to move about the horizontal plane. However, fopyr casey = [0 0 0 u }T, whereu, represents the
security purposes (in particular to prevent collisionshwit signal applied to the aft-most electrode pair), dad R**4
walls or the spherical obstacle), we will in general coristra js a3 matrix whose entries are of the form
its movement to the darker blue area in Figure 2; that is, to
(z,y) € [-0.4m, 0.4m| x [-0.4m, 0.23m|. More specifically, ki = —— 7
to collect data the probe was made to travel along series Azy ||l [2[]r5 2
of straight lines parallel to the-axis in Figure 2, from wherek;; is the ™ line— j* column entry of i, v € R

Y :thOrr:j_to yt': 0'?25(;“ with 5mm stepfsl_(fu_;tr;er measurtisis the conductivity of the surrounding fluid, € R is the
In the direction oty ’ecreasmg are of fimited use, as e, harical obstacle’s radiug, € R its relative conductivity,
effect of the obstacle’s presence is not seen in the megsur

F h . h be i d 't dr; € R3 i = 1,...,4, is the vector going from the
or each sucly—position, the probe is made to trave 'OMypstacle’s position to the center of tif& pair of electrodes.

1 Txa®r
i XVTG 4 =1,...,4, (2)

v = —0.37m to x = 0.37m, with a speed of travel and & gy “theith entry of iy, can be computed as follows,
sample frequency such that we obtain a sample ev€rym B

traveled in ther direction. To isolate the contribution of the . yxa’4; (2T + (0 ) ) B

obstacle and eliminate influence of the walls, we repeatedti — =L E it i il /Tl ) 20

the same procedureithout obstacle, and subtracted that i=1,...,4, (3)

reference value from the measures collected with the dlestac -
present. An example of the obtained measures is shownwhereS, € R is a scaling factorA; € R characterizes the
Figure 3. surface of electrode pairn; € R3 is a vector characterizing
] the direction of the surface of th€" electrode pairy; ;| € R3
B. Analytical Model is a vector of same magnitude as and perpendiculat;,to
For completeness and to offer additional insights into thand E, € R? is the electric field produced by the sensor,
manner in which presence of the obstacle impacts performedaluated at the position of the obstacle, which can be



Comparison between model and measures whereD,, D, C R, D; C RS, z, y, represent the position
of the probe in the frame of reference shown in Figure
2 (position which, assuming the obstacle remains fixed at
(zo,Yo), iS representative of the sensor’s relative position
with respect to the obstacle), andepresents the vector of
useful current measures obtained for a sensor position of
(z,y). Note that the analytical model's formulation leads,
for the type of probe considered (featuring four pairs of
electrodes) to eight different current measures available
However, measures obtained on the fourth pair are typieally
linear combination of that obtained from the other eleatrod
and are thus non-informative. In the measure vetfory),
we therefore only include the first three valuesiif(z, y)
200 200 ¥ ] andiy, (x, y) (corresponding to values obtained from the fore-
@ [mm] most three pairs of electrodes).
Following the approach proposed in [13], [14], we use
Fig. 3. Comparison between experimental measures (refieesesing a a neural formalism to capture the input-output map (5) as
linearly interpolated surface) and model predictions kedrwith red dots). described by the experimental data collected. Specifically
from the form of model (1)—(4), we note that so long as
the obstacle’s position differs from that of the center of
8 Cous any electrode pgir (vyhich i_n practic_e is always_ verifigd),
Ey=— Z —;ri, (4) then f(x,y) as given in (5) is a continuous function of its
dmy i=1 7] arguments. Hence, from Weierstrass’ approximation threore
([25]), we can conclude that for any > 0 there exists a
golynomial functionf (z, y) on D, x D, such that

ir(z,y) [A]

computed as

wherew; is thei'" entry of vectoru.
We used the model given by (1)-(4) to compute th

currents expected in a configuration identical to the one for || f(x,y) — flz, )| <e, (2,y) € Dy x D, (6)

which we collected experimental data. Experimental mea- _ R _

sures (shown as a linearly interpolated surface) are caedpartiereafter, we use the following structure 6z, y) (which

to model values (represented with red dots) in Figure forresponds to that of a Single Hidden Layer Neural Net-

Represented is the first componentigf with the position work, SHL-NN, [26]),

of the obstacle kept constant &t,,y,) = (0m, 0.25_m), F@,y) 2 o(z,y)W, (2,y) € Dy x D, @)

and values of current shown for the sensor traveling over

(z,) € [-0.3m, 0.3m] x [—0.20m, 0.225m]. The currentis Where we choose(z,y) € R? as a row vector of poly-

represented on the-axis as a function of thewy-positon nomial functions ofz, y, and W e RP*® is a matrix

of the probe.We note that the exact position of the peal@ neural weights to be selected. The learning (of the

is slightly different between model and experiment, and thi9rward map (5)) task is accomplished by selectifigin

background current value (away from the peaks) is not @&ich a manner that (7) becomes descriptive of (5) and of

uniform on the experimental data as it is in the case of tHée experimental data collected. A wide range of methods

analytical model. The latter is certainly to a large extam¢ d can be used to achieve that goal. Specifically, number-

to imperfect compensation of the walls’ influence on expeing the experimental measures discussed in the previous

imental measures. Nevertheless, we note that generalstrersgction from1 to n, let X = [ 1 ... Tnp }T €
are a good match, which tends to confirm that measures gge, v 2 [y1 .o Y ]T e R, I(X)Y) 2
representative of the phenomenon investigated, as dedcril{ T = fTy) e T = [T (20, yn) }T c Rnx6
by the above analytical model. ané define ’ " o '
1. FORWARD NEURAL MODEL d(X,Y) 2 [ GT@,y) oo o (@ yn) ]T c R"*P.

.The exp.erim.ental da}tal collected, as discussed in _the P¥Ren consider
vious section, is descriptive of the forward m#p) going
from relative position of the sensor with respect to that of W2 oH(X, V)I(X,Y), (8)
the obstacle, to the current measures obtained for thaivesla

o where -T denotes the usual pseudo-inverse. The particular
position,

choice of weightsi = W* minimizes in the Least Mean
f: DyxDy — D, (5) Square (LMS) sense the reconstruction erfdr;,y;) —
T,y - i, flxi,y:), i = 1,...,n. That choice of weights is used in



the following. Note that, alternately, one could use Bagesi degree of confidence we can have in the estimate produced.
inference in the parameter space to estimate the maximurhe results can be represented in a manner that is visually
(a posteriori) likelihood? matrix, as a function of available intuitive. In particular, considering the contour plot dfet
measures (as in [27]). Such an approach presents the advastonstruction error over an area of interest, assesdialy i
tage of allowing to explicitly account for measurement roisand unlikely positions can be done by distinguishing ardéas o
when estimating?. However, in the case considered herelow reconstruction errors from areas of higher reconsimact
comparisons show that the accuracy of the obtained forwaedror. One such contour plot is provided in Figure 4.

map is not noticeably improved over the LMS solution. In the case considered, a metallic sphere of raditrs
IV. | NVERSION OF THEFORWARD M ODEL: is present in positioriz,, y,) = (0m, 0.25m). The probe is
L OCALIZATION made to travel on a straight line, parallel to thexis. The

i ) L __probe’s actual trajectory is shown in green (with initiadan
'”Ye”'”g the forward model |dent|f|e_d in the PrevioUSe g positions marked with arxx and a-, respectively). As
section can be accompllshe_d by considering the d|stanﬁ$e probe moves along the green trajectory, samples, of
between different sample points in the measurement spaggy ; - are measured. Using the forward map discussed in
D;. Specifically, for a given measuigt), performed at time - gation |11 and the above inversion procedure, we estimate
instantt > 0, consider the reconstruction error the position of the probe with respect to that of the obstacle
e(i(t),ne) 2 ||i(t) — f(n)ll, t=0, (9) These estimates are marked witfs in Figure 4. They were
obtained using an iterative procedure. Specifically, farhea
wheren, £ [ Te Ye ]T € D, x D, represents a candidate sample we began with a candidate grid spanring) <
position of the sensor. Then, consider the relative pasitio[—0.3m, 0.3m] x [0m, 0.22m]| with steps of I0mm in the
estimate chosen as z-direction andsmm in y. Then, we used a second grid,
centered on the most likely candidate of the previous grid
(chosen according to (10)), with a grid width @mm in =
andy, and 1mm steps. A third gird is then used, centered
wheren 2 [ & ]T, nElz y ]T € D, x D,, are the on the estimate obtained from the second grid, with widths
estimated and actual positions, respectively. It can bessho of 10mm in x and y, and 0.1mm steps. We note that the
(see [13]) that, assuming the inverse map is sufficientlgbtained estimates are reasonably faithful, as they remain
smooth, the more accurate our neural model (i.e. the smallelose to the actual trajectory. The contour levels shown in
¢ in (6)), and the more closely(7) matches the actual Figure 4 are those of the reconstruction error (9) for the
measure, the closer our estimatg is to the actual relative final position shown (marked with a). The lower the error
position. (dark blue), the more similar the reconstructed measuees ar
In practice, the approach only works if the sensor is withiro the available set of measures. The greater the errombrig
detection range of the object; that is, if it is close enoughed), the more dissimilar. Accordingly, positions appe@ri
that the perturbation to the electric field due to the obgectin dark blue are likely candidate positions, while positon
presence is important enough to be registered (which deperappearing in other colors (from green, to yellow and red)
on measurement noise levels, magnitude of the electric fietde unlikely. This information can be exploited in diffeten
produced by the sensor, and geometry of the object). Whamanners. In particular, the candidate of least error repiss
outside of this detection range, the object’'s presence bas im some sense the most likely candidate position (marked
influence on measures. The approach however, generalizeigh x’'s). However, in cases that there are vast areas of low
elegantly to such cases. In particular, to exploit the abowrror (such as is the case in Figure 4, with a swath of low
insights to perform localization, we use grids of candidatgalues at about: = 100mm, fromy = Omm to 200mm,
positions. Computing the reconstruction error (9) over thapproximately), the specific position of this minimum is not
entire grid, it becomes straightforward to assess likelianecessarily very informative, and it is useful to consider
areas. Specifically, in the case that the information me#he gradient of the error (or slope of the corresponding
sured is sufficiently informative (i.e. if close enough)eth error surface, if representingas a surface over—y). Both
approach yields results that explicitly discriminate thestn aspects can be combined using a Luenberger-form estimator
likely candidate position (for which the error is minimal),([28]). In black, we show the result obtained following one
from unlikely candidates (with high error). In the case thasuch approach. The model used is limited to kinematics and
the measured information is not sufficient, the ambiguitys descriptive of the fact that the probe is traveling in a
is made apparent by the results. Typically, large swatltdirection parallel to ther-axis, at an a priori known speed
appear as being good possible candidates. In that mann@f, 5mm/s). Within this model, we included system noise
considering how specifically the method is discriminatingpn speed and heading (additive Gaussian noises, with means
a likelier candidate position, it becomes possible to ndideg and).1mm/s, standard deviatioR8deg and).75mm/s)
only estimate the obstacle’s position, but also assess the reflect movement uncertainty. In addition, we exploited

0(t) £ argmin e(i(t),nc), t >0, (10)
Ne €Dz XDy



-300 -200 100 200 300

-100 0
2 [mm)]

Fig. 4. Level curves of the reconstruction eredr, ), indicating likelier
(blue, low error) and less likely (in red, high error) pawits of the probe;
actual probe trajectory in green, instantaneous estintateked with cyan
x's, Luenberger observer trajectory in black.
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Fig. 5. Localization error for increasing lateral distamad the obstacle,
means marked with dots, standard deviations representbdovackets; in
red, values obtained with the probe traveling frora= —300mm to300mm,
in blue, with the probe traveling frone = —300mm to Omm.

with a- in Figure 5, and the standard deviation is represented
with a bracket (in red). Note that, as seen for instance in
Figure 2, the probe is dissymmetric, with three pairs of
electrode on the fore part, and only one located aft. The
idea behind that specific design choice is that, if the probe
figuratively represents a mobile vehicle, it is more interds

in discerning what lies ahead (in the probable direction of
movement) than what is behind. As a result, as the probe
travels fromx = —300mm to z = 300mm, information
collected (and therefore localization), is significantigtter
when the obstacle (situated in= 0mm) lies in front of the
probe. To verify this, we show in blue in Figure 5 the same
error means and standard deviations, but only accounting fo
travel fromz = —300mm to z = Omm. As expected, the
localization errors are noticeably smaller.

V. CONCLUSION

The work presented concerns the localization of spherical
objects using electrolocation; that is, through the prec#s
applying an electric field to the sensor’s direct environtnen
measuring perturbations of this field due to the presence of
foreign objects, and inferring information relative to $lee
objects based on measured information. The approach uses
experimental data to capture, using a SHL-NN, the forward
map from obstacle relative position to the corresponding ex
pected electric measures. Then, when detecting the presenc
of an obstacle and attempting to reconstruct its positioa, t
neural forward map is inverted using an iterative procedure
A series of grids of candidate positions are presented to
the neural map, which outputs the corresponding expected
current measures. Comparing measures associated to dif-

the information inferred from electric measures to desigferent candidate positions to the actual measure performed
corrective terms. A first term is chosen proportional to thallows to discern likelier candidate positions. We shovingis
difference between currenty-position of the Luenberger experimental data, that the approach allows to estimate the

observer and that of the position of least reconstructioorer

obstacle position when within range, with a mean positignin

A second term (akin to a derivative term in a Proportionagrror that is function of the distance between sensor and

Derivative controller) is chosen proportional to the geadi
of e(x,y) evaluated at thery-position of the observer.
While the probe travels along the ling = 175mm with
an initial z-position atz = —296mm, the initial condition
of the observer is chosen &8, y) = (—270mm, 40mm), to

obstacle (the closer the sensor, the better the estimate).
The main contribution of the paper lies in presenting a
new solution to this electrolocation problem. In addition,
this solution presents a number of interesting featuresnwhe
compared to existing alternate techniques. In partictiter,

illustrate convergence of the estimate produced to theabctiapproach is readily generalizable to any particular shdpe o
trajectory of the probe. As seen in Figure 4, the informationbstacle, provided the corresponding data can be collected

is sufficiently accurate for the observed trajectory (inck)a

(to build the forward map). Conversely, typical methody rel

to converge to a neighborhood of the actual one (in greengn either analytical or numerical models, which, for com-
Finally, note that, as previously discussed, the closer thiex geometries may become either untractable or require
probe is to the obstacle, the greater the amplitude of th@ohibitive computational efforts. In addition, the apach

measures and the easier the estimation of the position.

poovides a clear map of space around the sensor, which

qguantify the impact of range, we made the probe travel iallows to intuitively discerrfa) what is the obstacle’s likeliest

straight lines parallel to the-axis (fromz = —300mm

position (if any), (b) what degree of confidence one may

to 300mm), and increasing lateral distance progressivelplace on the estimate, an(d) if the estimate is uncertain,

starting aty = 220mm (lateral distance o80mm from the
obstacle), up toy = 150mm (lateral distance of00mm).

what areas of space are likelier to be occupied and which
ones are likelier to be free. In the future, the approach

The mean positioning error for each trajectory is repre=nt will be extended to consider scenes composed of several



objects. Specifically, the approach presented here will be
supplemented by a neural classifier ([29]) and rely on a
library of captured neural models corresponding to diffiére [14]
generic objects’ forward maps (such as the one used here,
which corresponds to spheres of a given radius). When
presented with a new scene, in a first stage, the approach
will use the neural classifier to classify the type of sceng]5]
perceived (in terms of number and type of objects). Then, the
localization approach proposed here will exploit the alz#
library of forward maps to compose an estimate of the scer&6]
under consideration. [17]
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