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Neural-based Underwater Spherical Target Localization through Electrolocation

Yannick Morel, Vincent Lebastard, and Frédéric Boyer

Abstract— Navigation of cluttered underwater environments
remains to this day a challenging task in mobile robotics.
Applying an electric field to a mobile robot’s direct environment
and measuring perturbations of this field, one is able to detect
the presence of obstacles in close proximity of the system. In
addition, one is also able to infer a range of information relative
to the detected objects, such as their position or electrical
characteristics. Extracting such information from available
measures typically requires a model (analytical, numerical or
heuristic) descriptive of the relationship from geometry of the
scene to measures performed (typically referred to asforward
model), or of the inverse relationship (inverse model). In the
following, we directly extract one such model from experimental
data, and capture a forward model using a neural formalism.
Then, using an iterative procedure, we are able to estimate
the position of a detected object and assess the degree of
confidence one can place on this estimate. Merit of the approach
is illustrated using experimental data for a spherical obstacle.

I. I NTRODUCTION

Autonomous or remotely controlled robotic operations in
unstructured, cluttered environments have long been rec-
ognized as constituting a significant challenge ([1]). The
situation is to a large extent due to difficulties in using
acoustic methods, such as SOund Navigation And Ranging
(SONAR), in such a setting, as the clutter leads to severe
multipath issues (see, among many others, [2] for a dis-
cussion of the manner in which multipath affects SONAR).
Operational problems are only compounded in the case of
murky, muddy, or turbid water, in which conditions vision is
of little assistance in perceiving the environment. As a result,
a wide range of applicative situations, in which robotics
could provide invaluable support, have remained beyond
the capabilities of existing technology, such as for instance
in active environmental monitoring for rivers, ponds, and
lakes, exploration of underwater wrecks, or search and rescue
missions in capsizing ships.

To overcome such limitations, roboticists have over the
years investigated novel sensing modalities. Of particular
interest in the aforementioned setting is the electric sense (
[3]–[5]). This active sensing modality, exploited by a number
of fish species, is based on the manipulation of electric fields.
Specifically, the fish generates one such field and contin-
uously measures deformations of this field using electro-
receptor located along its body. The presence of objects
(inert or biotic), whose electric properties differ from those
of the surrounding fluid, will perturb the field. Based on
the information collected, the fish is typically able to in-
fer detailed representations of its immediate surroundings,
including the presence, location, and general geometry of
foreign objects (obstacles), or of living organisms (prey).

This sensing modality is characterized by a fairly short range
(for the fish, typically a one-body length detection bubble
around its body), however it has the advantages of being
omnidirectional, well-suited to cluttered environments,and
able to operate in turbid water. For these reasons, a number of
research groups have investigated the application of a similar
sensing principle to robotics (see for instance [6], [7]).

The typical functionality pursued has been that of under-
water obstacle detection and localization (referred to here-
after as electro-location). Similarities between the considered
problem and that investigated in Electrical Impedance To-
mography (EIT, [8]) have motivated the use of EIT methods
(see [9]). However, the number of electrodes (and therefore
of available measures) on electro-location sensors is fairly
limited. As a result, the inverse problem (of estimating the
impedance map in the sensor’s surroundings as a function
of electric measures performed) is generally ill-posed ([10]).
To reduce the dimension of the solution being estimated, it
has in some instances been assumed that, in the sensor’s
direct environment, a significant portion of the volume is
occupied by the surrounding fluid, whereas only a discrete
number of obstacles are present. Therefore, the problem can
be simplified by estimating the position of these obstacles,
rather than attempting to construct a detailed impedance map
of the environment. Such approaches have been very suc-
cessful, with in particular techniques based on probabilistic
estimation methods ([11]), or stochastic approaches ([12]).

In the following, we pursue a similar approach, in which
we attempt to reconstruct the position of a given obstacle,
present in the sensor’s environment. The methods builds
upon the technique used in [13], [14] to estimate relative
positions in a group of robotic swimmers using the electric
sense. In a first step, a forward map, from relative position of
an obstacle with respect to the sensor to the electric measures
performed by the sensor, is constructed. This forward map
can assume a variety of forms, such as an analytical model
(as that in [7] or in [15]), or a numerical model (e.g. based on
Boundary Element Methods, BEM, [16], [17], such as that
in [18]). In the following, we use experiments to collect data
descriptive of this forward map. Then, we train a polynomial
neural network ([19], [20]) to learn this forward map. In a
second step, when attempting to localize an obstacle, series
of candidate (or prospective) obstacle positions are presented
as inputs to the trained neural net. The computed neural
outputs (which correspond to predicted electric measures
for each considered candidate positions) are then compared
with the actual electric measures. The comparison allows to
discern likelier positions of the obstacle.



The main contribution of the paper lies in presenting a
novel electro-location technique for obstacle localization,
technique which had to this day only been applied to the
relative position estimation problems for two mobile systems
equipped with the electric sense (or, equivalently, to two
electric sensors). One of the main strengths of the approach
lies in its expected generalizability. In particular, the problem
of developing analytic models describing the effect of the
presence of simple (in a geometrical sense, e.g. spherical)
obstacles on electric measures has been addressed (see [7],
[21]). However, that same problem remains open for more
complex object geometries, be it for localized obstacles of
arbitrary shape, or continuous, non-homogeneously curved
walls. The corresponding analytical derivations are likely
to be rapidly become untractable, and computing numeri-
cal BEM models of arbitrarily detailed scenes can prove
prohibitively time-consuming. Yet, the electric sense is,to
a large extent, a rather myopic sense. Specifically, if the
presence of an obstacle can be discerned from available
measures at a given range, distance to the object must be
reduced to close-to-zero to distinguish geometrical features.
For example, presence of a cube or of a sphere produces
electric measures which are essentially identical at a rea-
sonable range (see [22]). In other words, from far enough,
most objects look alike from an electric point of view.
Accordingly, one could expect to be able to successfully
address a large number of localization problems (i.e. local-
ization for a large class of different objects) by exploring
similarities between the electric measures correspondingto a
number of generic shapes. This library of measures could be
constructed using analytical or numerical models. However,
following the approach used hereafter and collecting data
experimentally instead, one is able to circumvent issues
stemming from complexity of derivation or computation, and
achieve greater flexibility in terms of the types of shapes
considered. Establishing one such library and using it to
estimate geometry of a complex scene is however beyond
the scope of the present paper. Instead, in the following, we
show that the proposed approach can be used to localize a
spherical obstacle using experimental data.

In Section II, we provide a rapid description of the
experimental setup and compare collected measures to values
obtained from an analytical model. Then, in Section III, we
use a neural approach to capture the map going from relative
position of the obstacle to electric measures. Inverting this
forward map, we are able to localize a sphere as a function
of performed electric measures, as discussed in Section
IV. Results obtained using experimental data are provided.
Section V concludes this paper.

II. EXPERIMENTAL SETUP AND COLLECTED MEASURES

In later sections, we address the problem of localizing
an object of interest, underwater, through manipulation of
electric fields. The setting in which we have developed and

Fig. 1. Experimental setup, top down perspective. The system is shown
with a pair of electric probes, visible as cylindrical objects in white and grey.
The probe in the foreground is mounted on a three DoF actuation system,
allowing to control its position and orientation in the horizontal plane.

tested the approach is described hereafter. At later stages
of development, the technology is intended to equip mobile
underwater vehicles. However, at this early developmental
stage, the principles are tested on a dedicated experimental
setup, shown in Figure 1.

A. Experimental Setup

The physical principle behind the object localization pro-
cedure is the following. A set of electrodes are used to
generate an electric field and measure relevant electrical
quantities. Specifically, in the setup used in the following,
these electrodes are integrated within a slender cylinder (of
length 21.6cm, diameter2.5cm, probes seen in Figure 1
and Figure 2, see [7] for greater details). The electrodes
are made of steel, the body of the cylinder itself is plastic
and non-conductive. This cylinder is hereafter referred to
as theprobe or the electric probe. These probes are used
within a 1m×1m×1m glass tank, filled with fresh water.
They are affixed at the extremity of a perch, rigidly connected
to a three Degree of Freedom (DoF) actuation system,
allowing movements in a horizontal plane (two translations,
one rotation). A top-down view of the setup is provided in
Figure 1. In the following, we will consider localization of
a single object, a metallic sphere of radius1cm.

The probe used features four pairs of electrodes. Two of
these pairs form the probe’s hemispheric extremities (see
Figure 1 or Figure 2), the other two pairs are located on the
fore part of the probe, their centers at6.8cm and3cm from
the probe center, respectively. Each pair follows a strict left-
right symmetry (see [7], [23]). A signal generator is used to
apply a sinusoidal signal of frequency22.5KHz to the aft-
most hemispherical pair of electrodes. The (peak-to-peak)
value of the current flowing through the three fore-most pairs,
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Fig. 2. Schematics of the experimental setup, the origin of thexy–frame of
reference is placed at the center of the tank, a conductive (metallic) sphere
of radius1cm is located at(xo, yo) = (0m, 0.25m), the position(x, y)
of the probe may span the area in a darker shade of blue.

which are connected to a common ground, is measured. For
a more detailed description of the setup, the interested reader
is referred to [23], [24].

Position of the obstacle and of the probe in the horizontal
plane is described using anxy–frame of reference, the origin
of which is located at the center of the setup (see Figure 2).
To collect data to construct a forward map (from relative
position to collected measures), we dispose the obstacle
and probe as follows. The spherical obstacle remains fixed,
its center located at(xo, yo) = (0m, 0.25m). The probe
is free to move about the horizontal plane. However, for
security purposes (in particular to prevent collisions with
walls or the spherical obstacle), we will in general constrain
its movement to the darker blue area in Figure 2; that is, to
(x, y) ∈ [−0.4m, 0.4m]×[−0.4m,0.23m]. More specifically,
to collect data the probe was made to travel along series
of straight lines parallel to thex-axis in Figure 2, from
y = 0m to y = 0.225m with 5mm steps (further measures
in the direction ofy decreasing are of limited use, as the
effect of the obstacle’s presence is not seen in the measures).
For each suchy–position, the probe is made to travel from
x = −0.37m to x = 0.37m, with a speed of travel and a
sample frequency such that we obtain a sample every1.2mm
traveled in thex direction. To isolate the contribution of the
obstacle and eliminate influence of the walls, we repeated
the same procedurewithout obstacle, and subtracted that
reference value from the measures collected with the obstacle
present. An example of the obtained measures is shown in
Figure 3.

B. Analytical Model

For completeness and to offer additional insights into the
manner in which presence of the obstacle impacts performed

measures, we briefly present the analytical model of the
currents measured, whose derivation is presented is detail
in [7] (alternately, see [15] for fewer details and a higher
level of abstraction). It is convenient to consider each pair
of electrodes along the probe’s body separately, and for
any such pair to estimate (or measure) the total currents
flowing through it, and the difference between the current
flowing into the left electrode and that flowing into the
right one. The former (the sum) produces signals of greater
magnitude, which facilitates detection of a perturbation of the
electric field. The latter (the lateral difference) provides more
detailed information regarding the detected object’s relative
position with respect to the probe, in particular allowing
to straightforwardly assess whether it is located port or
starboard. For ease of presentation, we group the four current
sums withinilo ∈ R4, wherelo stands for longitudinal and
in which current sums are included from fore-most to aft-
most pair. Similarly, we group the lateral current differences
within ila ∈ R4 (la stands for lateral) in the same front-to-
back order. In practice, we are interested in the perturbation
due to the presence of an obstacle. Accordingly, we typically
subtract fromilo the values obtained in the absence of any
obstacle (which serve as reference). That operation is not
necessary forila, due to the sensor’s left-right symmetry.
The value ofilo (due to the presence of a spherical obstacle)
can be computed as follows ([7]),

ilo = C0KC0u, (1)

whereC0 ∈ R4×4 is a conductance matrix whose expression
depends on the probe’s geometry,u ∈ R4 is the vector of
electrical potentials applied to the four pairs of electrode (in
our caseu =

[

0 0 0 u0

]T
, whereu0 represents the

signal applied to the aft-most electrode pair), andK ∈ R4×4

is a matrix whose entries are of the form

kij = −
1

4πγ

rTi χa
3rj

‖ri‖3‖rj‖3
, i = 1, . . . , 4, j = 1, . . . , 4, (2)

wherekij is the ith line– jth column entry ofK, γ ∈ R
is the conductivity of the surrounding fluid,a ∈ R is the
spherical obstacle’s radius,χ ∈ R its relative conductivity,
and ri ∈ R

3, i = 1, . . . , 4, is the vector going from the
obstacle’s position to the center of theith pair of electrodes.

Similarly, theith entry of ila can be computed as follows,

ilai = S⊥

γχa3Āi

‖ri‖5
(

2(nT

i ri)ri + (nT

i ri⊥)ri⊥
)

E0,

i = 1, . . . , 4, (3)

whereS⊥ ∈ R is a scaling factor,Āi ∈ R characterizes the
surface of electrode pairi, ni ∈ R

3 is a vector characterizing
the direction of the surface of theith electrode pair,ri⊥ ∈ R3

is a vector of same magnitude as and perpendicular tori,
and E0 ∈ R3 is the electric field produced by the sensor,
evaluated at the position of the obstacle, which can be
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Fig. 3. Comparison between experimental measures (represented using a
linearly interpolated surface) and model predictions (marked with red dots).

computed as

E0 =
1

4πγ

4
∑

i=1

C0ui

‖ri‖3
ri, (4)

whereui is the ith entry of vectoru.
We used the model given by (1)–(4) to compute the

currents expected in a configuration identical to the one for
which we collected experimental data. Experimental mea-
sures (shown as a linearly interpolated surface) are compared
to model values (represented with red dots) in Figure 3.
Represented is the first component ofilo, with the position
of the obstacle kept constant at(xo, yo) = (0m, 0.25m),
and values of current shown for the sensor traveling over
(x, y) ∈ [−0.3m, 0.3m]× [−0.20m, 0.225m]. The current is
represented on thez-axis as a function of thexy-position
of the probe.We note that the exact position of the peaks
is slightly different between model and experiment, and the
background current value (away from the peaks) is not as
uniform on the experimental data as it is in the case of the
analytical model. The latter is certainly to a large extent due
to imperfect compensation of the walls’ influence on exper-
imental measures. Nevertheless, we note that general trends
are a good match, which tends to confirm that measures are
representative of the phenomenon investigated, as described
by the above analytical model.

III. F ORWARD NEURAL MODEL

The experimental data collected, as discussed in the pre-
vious section, is descriptive of the forward mapf(·) going
from relative position of the sensor with respect to that of
the obstacle, to the current measures obtained for that relative
position,

f : Dx ×Dy → Di,

x, y → i,
(5)

whereDx, Dy ⊂ R, Di ⊂ R
6, x, y, represent the position

of the probe in the frame of reference shown in Figure
2 (position which, assuming the obstacle remains fixed at
(xo, yo), is representative of the sensor’s relative position
with respect to the obstacle), andi represents the vector of
useful current measures obtained for a sensor position of
(x, y). Note that the analytical model’s formulation leads,
for the type of probe considered (featuring four pairs of
electrodes) to eight different current measures available.
However, measures obtained on the fourth pair are typicallya
linear combination of that obtained from the other electrode
and are thus non-informative. In the measure vectori(x, y),
we therefore only include the first three values inilo(x, y)
andila(x, y) (corresponding to values obtained from the fore-
most three pairs of electrodes).

Following the approach proposed in [13], [14], we use
a neural formalism to capture the input-output map (5) as
described by the experimental data collected. Specifically,
from the form of model (1)–(4), we note that so long as
the obstacle’s position differs from that of the center of
any electrode pair (which in practice is always verified),
then f(x, y) as given in (5) is a continuous function of its
arguments. Hence, from Weierstrass’ approximation theorem
([25]), we can conclude that for anyε > 0 there exists a
polynomial functionf̂(x, y) on Dx ×Dy such that

‖f(x, y)− f̂(x, y)‖ < ε, (x, y) ∈ Dx ×Dy. (6)

Hereafter, we use the following structure forf̂(x, y) (which
corresponds to that of a Single Hidden Layer Neural Net-
work, SHL-NN, [26]),

f̂(x, y) , ϕ(x, y)W, (x, y) ∈ Dx ×Dy, (7)

where we chooseϕ(x, y) ∈ R
p as a row vector of poly-

nomial functions ofx, y, and W ∈ R
p×6 is a matrix

of neural weights to be selected. The learning (of the
forward map (5)) task is accomplished by selectingW in
such a manner that (7) becomes descriptive of (5) and of
the experimental data collected. A wide range of methods
can be used to achieve that goal. Specifically, number-
ing the experimental measures discussed in the previous
section from 1 to n, let X ,

[

x1 . . . xn

]T
∈

R
n, Y ,

[

y1 . . . yn
]T

∈ R
n, I(X,Y ) ,

[

iT1 = fT(x1, y1) . . . iTn = fT(xn, yn)
]T

∈ R
n×6,

and define

Φ(X,Y ) ,
[

ϕT(x1, y1) . . . ϕT(xn, yn)
]T

∈ Rn×p.

Then consider

W ∗ , Φ†(X,Y )I(X,Y ), (8)

where ·† denotes the usual pseudo-inverse. The particular
choice of weightsW = W ∗ minimizes in the Least Mean
Square (LMS) sense the reconstruction errorf(xi, yi) −
f̂(xi, yi), i = 1, . . . , n. That choice of weights is used in



the following. Note that, alternately, one could use Bayesian
inference in the parameter space to estimate the maximum
(a posteriori) likelihoodW matrix, as a function of available
measures (as in [27]). Such an approach presents the advan-
tage of allowing to explicitly account for measurement noise
when estimatingW . However, in the case considered here,
comparisons show that the accuracy of the obtained forward
map is not noticeably improved over the LMS solution.

IV. I NVERSION OF THEFORWARD MODEL:
LOCALIZATION

Inverting the forward model identified in the previous
section can be accomplished by considering the distance
between different sample points in the measurement space
Di. Specifically, for a given measurei(t), performed at time
instantt > 0, consider the reconstruction error

e(i(t), ηc) , ‖i(t)− f̂(ηc)‖, t > 0, (9)

whereηc ,
[

xc yc
]T

∈ Dx ×Dy represents a candidate
position of the sensor. Then, consider the relative position
estimate chosen as

η̂(t) , argmin
ηc∈Dx×Dy

e(i(t), ηc), t > 0, (10)

whereη̂ ,
[

x̂ ŷ
]T

, η ,
[

x y
]T

∈ Dx ×Dy, are the
estimated and actual positions, respectively. It can be shown
(see [13]) that, assuming the inverse map is sufficiently
smooth, the more accurate our neural model (i.e. the smaller
ε in (6)), and the more closelŷf(η̂) matches the actual
measurei, the closer our estimatêη is to the actual relative
positionη.

In practice, the approach only works if the sensor is within
detection range of the object; that is, if it is close enough
that the perturbation to the electric field due to the object’s
presence is important enough to be registered (which depends
on measurement noise levels, magnitude of the electric field
produced by the sensor, and geometry of the object). When
outside of this detection range, the object’s presence has no
influence on measures. The approach however, generalizes
elegantly to such cases. In particular, to exploit the above
insights to perform localization, we use grids of candidate
positions. Computing the reconstruction error (9) over the
entire grid, it becomes straightforward to assess likelier
areas. Specifically, in the case that the information mea-
sured is sufficiently informative (i.e. if close enough), the
approach yields results that explicitly discriminate the most
likely candidate position (for which the error is minimal),
from unlikely candidates (with high error). In the case that
the measured information is not sufficient, the ambiguity
is made apparent by the results. Typically, large swaths
appear as being good possible candidates. In that manner,
considering how specifically the method is discriminating
a likelier candidate position, it becomes possible to not
only estimate the obstacle’s position, but also assess the

degree of confidence we can have in the estimate produced.
The results can be represented in a manner that is visually
intuitive. In particular, considering the contour plot of the
reconstruction error over an area of interest, assessing likely
and unlikely positions can be done by distinguishing areas of
low reconstruction errors from areas of higher reconstruction
error. One such contour plot is provided in Figure 4.

In the case considered, a metallic sphere of radius1cm
is present in position(xo, yo) = (0m, 0.25m). The probe is
made to travel on a straight line, parallel to thex-axis. The
probe’s actual trajectory is shown in green (with initial and
final positions marked with an× and a·, respectively). As
the probe moves along the green trajectory, samples ofilo
and ila are measured. Using the forward map discussed in
Section III and the above inversion procedure, we estimate
the position of the probe with respect to that of the obstacle.
These estimates are marked with×’s in Figure 4. They were
obtained using an iterative procedure. Specifically, for each
sample we began with a candidate grid spanning(x, y) ∈
[−0.3m, 0.3m] × [0m, 0.22m] with steps of10mm in the
x-direction and5mm in y. Then, we used a second grid,
centered on the most likely candidate of the previous grid
(chosen according to (10)), with a grid width of60mm in x

and y, and 1mm steps. A third gird is then used, centered
on the estimate obtained from the second grid, with widths
of 10mm in x and y, and 0.1mm steps. We note that the
obtained estimates are reasonably faithful, as they remain
close to the actual trajectory. The contour levels shown in
Figure 4 are those of the reconstruction error (9) for the
final position shown (marked with a· ). The lower the error
(dark blue), the more similar the reconstructed measures are
to the available set of measures. The greater the error (bright
red), the more dissimilar. Accordingly, positions appearing
in dark blue are likely candidate positions, while positions
appearing in other colors (from green, to yellow and red)
are unlikely. This information can be exploited in different
manners. In particular, the candidate of least error represents
in some sense the most likely candidate position (marked
with ×’s). However, in cases that there are vast areas of low
error (such as is the case in Figure 4, with a swath of low
values at aboutx = 100mm, from y = 0mm to 200mm,
approximately), the specific position of this minimum is not
necessarily very informative, and it is useful to consider
the gradient of the error (or slope of the corresponding
error surface, if representinge as a surface overx–y). Both
aspects can be combined using a Luenberger-form estimator
([28]). In black, we show the result obtained following one
such approach. The model used is limited to kinematics and
is descriptive of the fact that the probe is traveling in a
direction parallel to thex-axis, at an a priori known speed
(of 5mm/s). Within this model, we included system noise
on speed and heading (additive Gaussian noises, with means
0deg and0.1mm/s, standard deviations20deg and0.75mm/s)
to reflect movement uncertainty. In addition, we exploited



0.05

0.05

0.05

0.05

0.05

0.05

0.
1

0.1

0.1

0.2

0
.2

0.2

0.
3

0
.3

0.3

0
.3

0
.1

0
.1

0.1

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.2

0
.2

0.20
.6

0
.6

0
.6 0

.3
0
.3

0
.30

. 7
0
. 7

0
.7 0

.4
0
.4

0
.40.40.5

0.6 0.10.20.30.4
0.50.7

0.1

x [mm]

y
[m

m
]

−300 −200 −100 0 100 200 300

50

100

150

200

Fig. 4. Level curves of the reconstruction errore(x, y), indicating likelier
(blue, low error) and less likely (in red, high error) positions of the probe;
actual probe trajectory in green, instantaneous estimatesmarked with cyan
×’s, Luenberger observer trajectory in black.

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Lateral distance to object [mm]

P
o
si
ti
o
n
in
g
er
ro
r
[m

m
]
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red, values obtained with the probe traveling fromx = −300mm to300mm,
in blue, with the probe traveling fromx = −300mm to 0mm.

the information inferred from electric measures to design
corrective terms. A first term is chosen proportional to the
difference between currentxy-position of the Luenberger
observer and that of the position of least reconstruction error.
A second term (akin to a derivative term in a Proportional
Derivative controller) is chosen proportional to the gradient
of e(x, y) evaluated at thexy-position of the observer.
While the probe travels along the liney = 175mm with
an initial x-position atx = −296mm, the initial condition
of the observer is chosen as(x, y) = (−270mm, 40mm), to
illustrate convergence of the estimate produced to the actual
trajectory of the probe. As seen in Figure 4, the information
is sufficiently accurate for the observed trajectory (in black)
to converge to a neighborhood of the actual one (in green).

Finally, note that, as previously discussed, the closer the
probe is to the obstacle, the greater the amplitude of the
measures and the easier the estimation of the position. To
quantify the impact of range, we made the probe travel in
straight lines parallel to thex-axis (from x = −300mm
to 300mm), and increasing lateral distance progressively,
starting aty = 220mm (lateral distance of30mm from the
obstacle), up toy = 150mm (lateral distance of100mm).
The mean positioning error for each trajectory is represented

with a · in Figure 5, and the standard deviation is represented
with a bracket (in red). Note that, as seen for instance in
Figure 2, the probe is dissymmetric, with three pairs of
electrode on the fore part, and only one located aft. The
idea behind that specific design choice is that, if the probe
figuratively represents a mobile vehicle, it is more interested
in discerning what lies ahead (in the probable direction of
movement) than what is behind. As a result, as the probe
travels fromx = −300mm to x = 300mm, information
collected (and therefore localization), is significantly better
when the obstacle (situated inx = 0mm) lies in front of the
probe. To verify this, we show in blue in Figure 5 the same
error means and standard deviations, but only accounting for
travel from x = −300mm to x = 0mm. As expected, the
localization errors are noticeably smaller.

V. CONCLUSION

The work presented concerns the localization of spherical
objects using electrolocation; that is, through the process of
applying an electric field to the sensor’s direct environment,
measuring perturbations of this field due to the presence of
foreign objects, and inferring information relative to these
objects based on measured information. The approach uses
experimental data to capture, using a SHL-NN, the forward
map from obstacle relative position to the corresponding ex-
pected electric measures. Then, when detecting the presence
of an obstacle and attempting to reconstruct its position, the
neural forward map is inverted using an iterative procedure.
A series of grids of candidate positions are presented to
the neural map, which outputs the corresponding expected
current measures. Comparing measures associated to dif-
ferent candidate positions to the actual measure performed
allows to discern likelier candidate positions. We show, using
experimental data, that the approach allows to estimate the
obstacle position when within range, with a mean positioning
error that is function of the distance between sensor and
obstacle (the closer the sensor, the better the estimate).
The main contribution of the paper lies in presenting a
new solution to this electrolocation problem. In addition,
this solution presents a number of interesting features when
compared to existing alternate techniques. In particular,the
approach is readily generalizable to any particular shape of
obstacle, provided the corresponding data can be collected
(to build the forward map). Conversely, typical methods rely
on either analytical or numerical models, which, for com-
plex geometries may become either untractable or require
prohibitive computational efforts. In addition, the approach
provides a clear map of space around the sensor, which
allows to intuitively discern(a) what is the obstacle’s likeliest
position (if any), (b) what degree of confidence one may
place on the estimate, and(c) if the estimate is uncertain,
what areas of space are likelier to be occupied and which
ones are likelier to be free. In the future, the approach
will be extended to consider scenes composed of several



objects. Specifically, the approach presented here will be
supplemented by a neural classifier ([29]) and rely on a
library of captured neural models corresponding to different
generic objects’ forward maps (such as the one used here,
which corresponds to spheres of a given radius). When
presented with a new scene, in a first stage, the approach
will use the neural classifier to classify the type of scene
perceived (in terms of number and type of objects). Then, the
localization approach proposed here will exploit the available
library of forward maps to compose an estimate of the scene
under consideration.

VI. REFERENCES

[1] C. Thorpe and H. Durrant-Whyte, “Field robots,” in
Proc. of the 10th Int. Symp. of Robotics Research,
(Lorne, Australia), 2001.

[2] W. C. Knight, R. G. Pridham, and S. M. Kay, “Digital
signal processing for SONAR,”Proc. of the IEEE,
vol. 69, no. 11, pp. 1451–1506, 1981.

[3] H. W. Lissmann and K. E. Machin, “The mechanism
of object location inGymnarchus niloticus and similar
fish,” Journ. of Experimental Biology, vol. 35, no. 2,
pp. 451–486, 1958.

[4] W. Heiligenberg and J. Bastian, “The electric sense
of weakly electric fish,”Annual review of physiology,
vol. 46, no. 1, pp. 561–583, 1984.

[5] G. von der Emde, M. Amey, J. Engelmann, S. Fetz,
C. Folde, M. Hollmann, M. Metzen, and R. Pusch,
“Active electrolocation inGnathonemus petersii: Be-
haviour, sensory performance, and receptor systems,”
Journal of Physiology-Paris, vol. 102, no. 4, pp. 279–
290, 2008.

[6] M. A. McIver and M. E. Nelson, “Towards a biorobotic
electrosensory system,”Autnomous Robots, vol. 11,
pp. 263–266, 2001.

[7] F. Boyer, P.-B. Gossiaux, B. Jawad, V. Lebastard, and
M. Porez, “Model for a sensor inspired by electric fish,”
IEEE Trans. on Robotics, vol. 28, no. 2, pp. 492–505,
2012.

[8] M. Cheney, D. Isaacson, and J. C. Newell, “Electrical
impedance tomography,”SIAM review, vol. 41, no. 1,
pp. 85–101, 1999.

[9] J. Snyder, Y. Silverman, Y. Bai, and M. A. MacIver,
“Underwater object tracking using electrical impedance
tomography,” in2012 IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), pp. 520–525, 2012.

[10] A. P. Calderón, “On an inverse boundary value prob-
lem,” Comp. Appl. Math, vol. 25, no. 2-3, 2006.

[11] J. R. Solberg, K. M. Lynch, and M. A. McIver, “Active
electrolocation for underwater target localization,”The
International Journal on Robotic Research, vol. 27,
no. 5, pp. 529–548, 2008.

[12] V. Lebastard, C. Chevallereau, A. Girin, N. Servagent,
P.-B. Gossiaux, and F. Boyer, “Environment reconstruc-
tion and navigation with electric sense based on a
kalman filter,”Int. Journ. of Robotics Research, vol. 32,
no. 2, pp. 172–188, 2013.

[13] Y. Morel, M. Porez, and A. J. Ijspeert, “Estimation of
relative position and coordination of mobile underwater
robotic platforms through electric sensing,” inProc.

2012 IEEE Int. Conf. on Rob. and Aut., (St. Paul, MN),
pp. 1131–1136, 2012.

[14] Y. Morel, M. Porez, and A. J. Ijspeert, “Action-
perception trade-offs for anguilliform swimming
robotic platforms with an electric sense,” inProc. 2012
IFAC Workshop on Navigation, Guidance and Contr. of
Underwater Vehicles, (Porto, Portugal), 2012.

[15] F. Boyer and V. Lebastard, “Exploration of objects by
an underwater robot with electric sense,” inBiomimetic
and Biohybrid Systems, pp. 50–61, 2012.

[16] P. K. Banerjee,The Boundary Element Methods in
Engineering. McGraw-Hill College, 1994.

[17] L. C. Wrobel and M. H. Aliabadi,The Boundary
Element Method. New Jersey: Wiley & Sons, 2002.

[18] M. Porez, V. Lebastard, A. J. Ijspeert, and F. Boyer,
“Multi-physics model of an electric fish-like robot: Nu-
merical aspects and application to obstacle avoidance,”
in Proc. 2011 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, (San Francisco, CA), 2011.

[19] Y. Shin and J. Ghosh, “Approximation of multivariate
functions using ridge polynomial networks,” inProc.
IEEE Int. Joint Conf. on Neural Networks 1992, vol. 2,
(Baltimore, MD), pp. 380–385, 1992.

[20] C. K. Chak, G. Feng, and C. M. Cheng, “Orthogonal
polynomials neural network for function approximation
and system modeling,” inProc. IEEE Int. Joint Conf.
on Neural Networks 1992, vol. 1, (Beijing, China),
pp. 594–599, 1995.

[21] B. Rasnow, “The effect of simple objects on the electric
field of Apteronotus,” Journal of Comparative Physiol-
ogy, vol. 178, no. 3, pp. 397–411, 1996.

[22] V. Lebastard, C. Chevallereau, A. Girin, F. Boyer, and
P.-B. Gossiaux, “Localization of small objects with
electric sense based on Kalman filter,” inIEEE Int.
Conf. on Robotics and Automation (ICRA), pp. 1137–
1142, 2012.

[23] V. Lebastard, C. Chevallereau, A. Girin, F. Boyer, and
P. B. Gossiaux, “Localization of small objects with
electric sense based on kalman filter,” inProc. 2012
IEEE Int. Conf. on Rob. and Aut., (St. Paul, MN),
pp. 1137–1142, 2012.

[24] F. Boyer, P. B. Gossiaux, B. Jawad, V. Lebastard, and
M. Porez, “Model for a sensor inspired by electric fish,”
IEEE Transactions on Robotics, vol. 52, no. 2, pp. 492–
505, 2012.

[25] H. Jeffreys and B. S. Jeffreys,Methods of Mathematical
Physics, 3rd Ed. Cambridge, England: Cambridge
University Press, 2000.

[26] J. T. Spooner, M. Maggiore, R. Ordòñez, and K. M.
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