
HAL Id: hal-01503094
https://hal.science/hal-01503094v1

Submitted on 6 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Interference through Annotated Multisemantics
Gurvan Cabon, Alan Schmitt

To cite this version:
Gurvan Cabon, Alan Schmitt. Non-Interference through Annotated Multisemantics. 28ièmes Journées
Francophones des Langages Applicatifs, Jan 2017, Gourette, France. �hal-01503094�

https://hal.science/hal-01503094v1
https://hal.archives-ouvertes.fr

Non-Interference through Annotated Multisemantics

G. Cabon1 & A. Schmitt2

1: inria

gurvan.cabon@inria.fr

2: inria

alan.schmitt@inria.fr

Abstract

Non-interference can be de�ned as a program property that give guaranties on the
independence of speci�c (public) outputs of a program from speci�c (secret) inputs. The notion
of non-interference does not depend on one particular execution of the program (unlike illegal
memory access for example), but on its global behavior.

To develop a certi�ed system verifying information �ows, such as non-interference, we propose
to only rely on the execution of the program, and thus investigate such properties using directly
the derivation tree of an execution.

Considering a single execution is clearly not su�cient to determine if a program has the non-
interference property. Surprisingly, studying every execution independently is also not su�cient.
This is why we propose a formal approach that builds, from a given semantics, a multisemantics
that allows to reason on several executions at once. Adding annotations in this multisemantics
lets us capture the dependencies between inputs and outputs of a program.

To motivate and demonstrate our approach, we provide a concrete example where it is clear
that reasoning on all the executions at once is required, and we show that our approach works on
this example.

This is a work in progress, partially formalized in Coq. Ultimately, our goal is to automatically
build the multisemantics from the semantics, and to prove that the method correctly approximate
non-interference, i.e., if a pair of input and output are independent according to the annotations,
then changing the input does not result in a di�erent output.

1. Introduction and motivation

Suppose we have a programming language in which variables can be private or public, and where the
programs can take variables as parameters. We say a program is non-interferent if, for any pair of
execution that di�ers only on the private parameters, the values of the public variables are the same.
In other words, changing the value of the private variables does not in�uence the public variables.
Or in yet other word, the public variables do not depend on the private variables: there is no leak
of private information. In all this work, we only consider �nite program executions. This property
is crucial in terms of privacy and security. As a simple �rst example, the naive program in Figure
1, where public is a public parameter and secret is a private variable, is clearly interferent (or not
non-interferent). Changing the value of secret changes the value of public. We call this a direct

�ow of information because the value of secret is directly assigned into public.

public := secret

Figure 1: Example of naive interference

149

Cabon & Schmitt

But catching non-interference is not always that easy, because it does not simply consist of the
transitive closure of direct �ows. It may also depend on the context in which a particular instruction
is executed. For example in Figure 2 we have a program that has an indirect �ow. The value of
secret is not directly stored into public but the condition in the if statements ensures that in each
case secret receives the value of public.

if secret

then public := true

else public := false

Figure 2: Example of indirect �ow

Another source of interference is the fact that not executing a part of the code can give information
(masking). For example Figure 3 shows a program with a mask. In the case where secret is false, the
variable public is not modi�ed. It gives us the information that the �rst branch of the if statement
has not been executed and that secret is false. Nevertheless the value of secret always ends up in
the variable public.

public := false

if secret

then public := true

else skip

Figure 3: Example of indirect �ow with a mask

This last example shows that we cannot look at a single execution of the program to determine
non-interference because in the one where secret is set to false we do not even modify public after
the initialization.

The situation is even more dire. In the example shown in Figure 4, we can see that there exists no
execution where the �ow can be inferred. In the �rst execution (in the center), public depends on y,
which is not touched by the execution. In the second execution (on the right), public still depends
on y, which itself depends on x, which is not touched by the execution. Hence in both cases there
seems to be no dependency on secret. Yet, we have public = secret at the end of both execution,
so the secret is leaked. Looking at every execution independently is not su�cient.

x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

secret = true

x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

public = true

secret = false

x := true

y := true

if secret

then x := false

else skip

if x

then y := false

else skip

public := y

public = false

Figure 4: Running Example (executed code, non-executed code)

To recover the inference of information �ow only by looking at executions, we propose to look at

150

Annotated multisemantics

every executions at once, and to combine the information gathered by several executions. In the case
of Figure 4, we can see that x depends on secret in the �rst execution at the end of the �rst if.
Hence, in the second execution, x must also depend on secret, as the fact that not modifying it is
an information �ow. We can similarly deduce that y depends on x in both executions, hence public
transitively depends on secret.

To formally de�ne this approach, we �rst describe how to simultaneously execute the same program
with di�erent inputs, then show how annotations let us soundly capture the dependencies between
variables and inputs for this program. We then formalize this work in the Coq proof assistant letting
us state the correctness of our method.

Related Work Studies about non-interference take their roots in 1977 with E. Cohen [6] and D.
E. Denning & P. J. Denning [7]; and then formalized in 1982 by J. A. Goguen & J. Meseguer [8] as
following:

One groups users, using a certain set of commands, is noninterfering with another group
of users if what the �rst group does with those commands has no e�ect on what the second
group of users can see.

There are actually many formalization of non-interference, and in particular non-interference
can depend on the termination or not of the program executions as termination-insensitive non-

interference [1], termination-aware non-interference [3], timing- and termination-sensitive non-

interference [10].

More recently, in 2003, A. Sabelfeld & A. C. Myers [13] give an overview of the information-�ow
techniques and show the many sources of potential interference. Later G. Le Guernic [11] published
his PhD thesis in which he proposes and proves a precise dynamic analysis for non-interference. A.
Sabelfeld and A. Russo [12, 14] also proved several properties comparing static and dynamic approaches
of non-interference. G. Barthe, P.R. D'Argenio & T. Rezk [2] reduce the problem of non-interference
of a program into a safety property of a transformation of the program. S. Hunt & D. Sands [9]
presented a family of semantically sound type system for non-interference. In 2010, M.R. Clarkson &
F.B. Schneider studied the hyperproperties, properties (like non-interference for example) that do not
depend on only one program execution [5].

Outline In Section 2, we give the foundation of our work: the WHILE language we work on and its
Pretty-Big-Step semantics. In Section 3, we describe how the multisemantics works and we give the
property we want it to have with respect to the Pretty-Big-Step semantics. In Section 4, we extend
the multisemantics with annotations and show that this approach correctly captures the interference
of our running example. We conclude with the future works and a look back at the work presented in
this paper in Section 5.

2. Pretty-big-step (PBS)

Before describing how our multisemantics works, we need to introduce a language and its Pretty-Big-
Step semantics. We use the toy language WHILE :

〈expression〉 e ::= Const n | Var x | Op e e | MEM n

〈statement〉 s ::= Skip | Seq s s | If e s s | While e s | Assign x e | OBS e n

We consider a set of values Val and a set of variables Var . Our language is �rst of all composed of
expressions : constants, variables, an operator of arity 2 and an expression MEM able to read a value

151

Cabon & Schmitt

σ, t→ σ′ Axiom
σ1, t

′ → σ′
1

σ, t→ σ′
1

Rule1
σ1, t1→ σ′

1 σ2, t2→ σ′
2

σ, t→ σ′
2

Rule2

Figure 5: The 3 types of rules in Pretty-Big-Step

from an external memory. This memory is �xed at the beginning of the execution and the program
cannot write in it. One should see this memory as the arguments or the inputs of the programs. Then,
we also have statement in the WHILE language: a skip statement, the sequence, a conditional jump, a
while loop, a statement to assign an expression to a variable and a statement OBS, the dual of MEM,
able to output an expression in some channels that can be observed by an external observer. When
speaking of either an expression or a statement, we will refer to it as a term and usually denoted by t.
In our semantics, a memory M ∈ Mem will be a triplet, generally noted (F,E,C), where F ∈ fixMem
is the �xed memory giving for each memory cell a value, E ∈ Env the environment that associates a
value to each variable and C ∈ Chan the set of channels represented by a function from indexes to
lists of values.

Cell := N

fixMem := Cell 7→ Val

Env := Var 7→ Val

Index := N

Chan := Index 7→ Val list

Mem := fixMem × Env × Chan

The Pretty-Big-Step semantics, introduced by Charguéraud [4], is inspired by the Big-Step
semantics with some constraints on the premises of the rules. In Pretty-Big-Step, there are at most
two inductive premises for each rule. Therefore, we can categorize the rules in 3 groups shown in
Figure 5: the rules with no inductive premise (axioms), the rules with one inductive premise (rules 1)
and the rules with two inductive premises (rules 2).

where σ, σ′, σ1, σ
′
1, σ2, σ

′
2 ∈ State are states, either a memory or a pair of a memory and a value or

a triplet of a memory and two values.

State := Mem ∪ (Mem ×Val) ∪ (Mem ×Val ×Val)

In the rule σ, t→ σ′ we call the state σ the semantic context because it represents the memory and
it gives information on potential values that have already been evaluated and we call σ′ the result of
the rule because it shows how is the memory after computation and it may give some values with it.

The restriction to such rules allows to de�ne them as a set of transfer functions, depending on their
kind, as depicted in below. Axioms have a single transfer function ax relating a semantic context to a
result, rules 1 have a single transfer function up relating a semantic context to a new semantic context,
and rules 2 have two transfer functions: up as in rules 1, and next relating a result and a semantic
context to a new semantic context.

σ1 , t1 → σ2

σ4 , t4 → σ5

σ3 , t3 → σ5

σ0 , t0 → σ5

ax

ax

up

up

next

152

Annotated multisemantics

σ, c→ σ, c
Cst

E[x] = v

(F,E,C), x→ (F,E,C), v
Var

σ, e1 → σ′ σ′, op
1
e2 → σ′′

σ, e1 op e2 → σ′′ Op

σ, e2 → σ′ σ′, op
2
→ σ′′

σ, op
1
e2 → σ′′ Op1

v = v1 op v2

M,v1, v2, op
2
→M,v

Op2

F [n] = v

(F,E,C), MEM n→ (F,E,C), v
Mem

Figure 6: Expression rules of the Pretty-Big-Step semantics

In Pretty-Big-Step, the intermediate steps of evaluation are made explicit through extended terms,
de�ned as follows.

〈extended_expression〉 e_ext ::= Basic e | op1 e | op2

〈extended_statement〉 s_ext ::= Basic s | Seq1 s | If1 s s | While1 e s | While2 e s | Assign1 x |
OBS1 n

These statements and expressions cannot be used by a programmer, but they are used in the
Pretty-Big-Step semantics rules shown in Figures 6 and 7. The operator op is here evaluated as the
addition without losing generality.

To simplify the reading of the rules, we use some notations.

c for Const c

x for Var x

e1 op e2 for Op e1 e2

s1; s2 for Seq s1 s2

;1 s2 for Seq1 s2

x = e for Assign x e

x =1 for Assign1 x

if e then s1 else s2 for If e s1 s2

while e do s for While e s

f [x 7→ v] denotes the function y 7→
{

v if x = y
f(y) otherwise

x :: A for the set containing all the elements of A plus the element x.

Besides the many advantages given in Charguéraud's paper about Pretty-Big-Step, we rely on the
strict structure of the rules to make the creation of our multisemantics easier (and, as future work, to
automatize this creation).

153

Cabon & Schmitt

σ, skip→ σ
Skip

σ, s1 → σ′ σ′, ;1 s2 → σ′′

σ, s1; s2 → σ′′ Seq
σ, s→ σ′

σ, ;1 s→ σ′ Seq1

σ, e→ σ′ σ′, if1(s1, s2)→ σ′′

σ, if e then s1 else s2 → σ′′ If
M, s1 → σ

(M, true), if1(s1, s2)→ σ
IfTrue

M, s2 → σ

(M, false), if1(s1, s2)→ σ
IfFalse

σ, e→ σ′ σ′, while1(e, s)→ σ′′

σ, while e do s→ σ′′ While

M, s→ σ σ, while2(e, s)→ σ′

(M, true), while1(e, s)→ σ′ WhileTrue1
σ, while e do s→ σ′

σ, while2(e, s)→ σ′ WhileTrue2

(M, false), while1(e, s)→M
WhileFalse

σ, e→ σ′ σ′, x =1 → σ′′

σ, x = e→ σ′′ Asg

E′ = E[x 7→ v]

((F,E,C), v), x =1 → (F,E′, C)
Asg1

σ, e→ σ′ σ′, OBS1(n)→ σ′′

σ, OBS(e, n)→ σ′′ Obs

C ′ = C[n 7→ v :: C[n]]

((F,E,C), v), OBS1(n)→ (F,E,C ′)
Obs1

Figure 7: Statement rules of the Pretty-Big-Step semantics

3. Multisemantics

Now we have our Pretty-Big-Step semantics, we can build the multisemantics. A rule will have this
structure :

P1 . . . Pn

t ⇓ µ

where P1, . . . , Pn are premises, s is a statement and µ is a relation between states. Informally
µ relates semantic contexts to results, if two states σ1 and σ2 are in relation by µ then with the
Pretty-Big-Step semantics, s transforms the semantic context σ1 into the result σ2. µ represents the
set of all the executions we are considering in the multiderivation.

We give the rules of the multisemantics in Figures 8 and 9. Each rule of the multisemantics
(except MltMergeExpr and MltMergeStmt) precisely follows the corresponding rule in the Pretty-Big-
Step semantics. For intelligibility concerns we omit some useless (in terms of understanding the rules)
identi�ers using the character ”_”.

In order to evaluate a constant c with a relation µ, the rule MltCst just has to ensure that every
pair of states in relation by µ is composed of a �rst state σ and a second state σ′ of the form (σ, c).
The rule MltVar does the same thing but makes sure that the value v in the result of each pair in
relation by µ is actually the value of x in the environment E of the semantic context. The rule MltOp
�rst evaluates the �rst expression e1, lets MltOp1 take care of the evaluation of the second expression
e2 and adds a condition ensuring that for every pair of states (σ, σ′′) in relation by µ, there exists
an intermediate state σ′ which is the result associated to σ in the relation µ′ (the relation used to

154

Annotated multisemantics

∀ σ σ′, σ µ σ′ ⇒ σ′ = (σ, c)

c ⇓ µ
MltCst

∀ σ σ′, σ µ σ′ ⇒ ∃ v E, σ′ = (σ, v) ∧ σ = (_, E,_) ∧ E[x] = v

x ⇓ µ
MltVar

e1 ⇓ µ′ op
1
e2 ⇓ µ′′ ∀ σ σ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

e1 op e2 ⇓ µ
MltOp

e2 ⇓ µ′ op
2
⇓ µ′′ ∀ σ σ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′µ′′ σ′′

op
1
e2 ⇓ µ

MltOp1

∀ σ σ′, σ µ σ′ ⇒ ∃ M v1 v2, σ = (M,v1, v2) ∧ σ′ =M, (v1 op v2)

op
2
⇓ µ

MltOp2

∀ σ σ′, σ µ σ′ ⇒ ∃ F v, σ = (F,_,_) ∧ F [n] = v ∧ σ′ = (σ, v)

MEM n ⇓ µ
MltMem

e ⇓ µ1 e ⇓ µ2 ∀σσ′, σ µ σ′ ⇒ σµ1σ
′ ∨ σµ2σ

′

e ⇓ µ
MltMergeExpr

Figure 8: Expression rules of the multisemantics semantics

evaluate e1) and the semantic context associated to σ′′ in the relation µ′′ (the relation used to delay
the evaluation of e2). MltOp1 evaluates the second expression e2, postpones the operation between the
two values and gives the same insurance concerning µ. The operation is �nally computed in the rule
MltOp2 where, similar to the �rst two rules, the premise only guarantees that the states in relation
are coherent to the operation (here the addition). The MEM expression is handled by the rule MltMem
by doing the same thing as MltVar but looking in the �xed memory F . The last rule MltMergeExpr
is explained later, after the explanation of the rules for the statements.

The rule MltSkip checks that every pair of states in relation by µ is of the form (σ, σ). The rule
MltSeq �rst evaluates the left statement s1 and let MltSeq1 de�ne what to do with s2, which is simply
evaluate it in the new state. As always, when two inductive premises are used, there is the condition
ensuring that for every pair of states in relation by µ we can legitimately do both inductive steps.
MltIf is analogous to the previous rules, but MltIfTrue introduces a new behaviour: here, for every
pair (σ, σ′) of states in relation by µ, σ must carry the value true (σ = (M, true)) and then M and
σ′ are in relation by µ1, the relation used to evaluate s1. The rule MltFalse takes care of the case
when every state σ in relation to a state σ′ by µ carries the value false (σ = (M,false)) and then M
and σ′ are in relation by µ2, the relation used to evaluate s2. The rules MltWhile, MltWhileTrue1,
MltWhileTrue2 and MltWhileFalse do a similar thing to the rules MltIf, MltIfTrue and MltIfFalse

with the di�erence that in the case of MltFalse, we have no inductive premise and the only needed
guarantee is that the memory does not change. When evaluating an assignment statement the rule
MltAsg evaluates the expression e and then the rule MltAsg1 handles the requirement that each pair
in relation by µ is a pair of two identical states, except that the result is an updated version of the
semantic context according to the corresponding variable and value. In a similar way, MltObs and
MltObs1 update the channels by adding the value carried by every semantic context of µ in the channel
n.

155

Cabon & Schmitt

∀σσ′, σ µ σ′ ⇒ σ = σ′

skip ⇓ µ
MltSkip

s1 ⇓ µ′ ;1 s2 ⇓ µ′′ ∀Sσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

s1; s2 ⇓ µ
MltSeq

s ⇓ µ
;1 s ⇓ µ

MltSeq1

e ⇓ µ′
if1(s1, s2) ⇓ µ′′ ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

if e then s1 else s2 ⇓ µ
MltIf

s1 ⇓ µ1 ∀σσ′, σ µ σ′ ⇒ ∃ M, (σ = (M, true) ∧M µ1 σ
′)

if1(s1, s2) ⇓ µ
MltIfTrue

s2 ⇓ µ2 ∀σσ′, σ µ σ′ ⇒ ∃ M, (σ = (M, false) ∧M µ2 σ
′)

if1(s1, s2) ⇓ µ
MltIfFalse

e ⇓ µ′
while1(e, s) ⇓ µ′′ ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

while e do s ↓ µ
MltWhile

s ⇓ µ1

while2(e, s) ⇓ µ′
1 ∀σσ′′, σ µ σ′′ ⇒ ∃ M σ′, (σ = (M, true) ∧ σ µ1 σ

′ ∧ σ′µ′
1 σ

′′)

while1(e, s) ⇓ µ
MltWhileTrue1

while e do s ⇓ µ
while2(e, s) ⇓ µ

MltWhileTrue2

∀σσ′′, σ µ σ′′ ⇒ ∃ M, (σ = (M, false) ∧ σ′′ =M)

while1(e, s) ⇓ µ
MltWhileFalse

e ⇓ µ′
x =1 ⇓ µ′′ ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

x = e ⇓ µ
MltAsg

∀σσ′, σ µ σ′ ⇒ ∃ E E′ F C v,E′ = E[x 7→ v] ∧ σ = ((F,E,C), v) ∧ σ′ = (F,E′, C)

x =1 ⇓ µ
MltAsg1

e ⇓ µ′ OBS1(n) ⇓ µ′′ ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

OBS(e, n) ⇓ µ
MltObs

∀σσ′, σ µ σ′ ⇒ ∃ E F C C ′ v, C ′ = C[n 7→ v :: C[n]] ∧ σ = ((F,E,C), v) ∧ σ′ = (F,E,C ′)

OBS1(n) ⇓ µ
MltObs1

s ⇓ µ1 s ⇓ µ2 ∀σσ′, σ µ σ′ ⇒ σµ1σ
′ ∨ σµ2σ

′

s ⇓ µ
MltMergeStmt

Figure 9: Statement rules of the multisemantics semantics

156

Annotated multisemantics

if Mem 1

then Obs (Mem 2) 1

else Obs (Mem 3) 1

Figure 10: A program needing the merge rule

n := Mem 1

i := 0

While (i<=n) do

i := i + 1

Figure 11: Counter example to the reciprocal of the �rst theorem

Finally we have special rules MltMergeExpr and MltMergeStmt to manage expressions and
statements for which di�erent Pretty-Big-Step rules can be applied, depending on the states. Let us
consider a multiderivation of the program in Figure 10 with a µ relating at least one state containing
true in the �rst memory cell with another state, and one state containing false in the �rst memory
cell with another state. The derivation tree starts with the rule MltIf: one premise is the evaluation
of the guard and the other one is the evaluation of if1(s1, s2) with a relation µ′ where the �rst states
of the pairs carry two di�erent values. Neither the rule MltIfTrue, nor the rule MltIfFalse can be
applied since all the pairs of state in relation µ′ do not contain the same value in the �rst state. But
we can use the rule MltMergeStmt to separate those pairs of state into two µ1 and µ2 in which all
the values carried are respectively the sames. And then, we can continue the derivation tree with the
rules MltIfTrue and MltIfFalse.

One property we expect from this multisemantics is that for every term, �nding a derivation in the
multisemantics for a relation µ implies that we can �nd a derivation in the Pretty-Big-Step semantics
for every pair of states in relation by µ. The reciprocal is not true: let us consider a in�nite number
of Pretty-Big-Step derivation of the program in Figure 11 for which the WHILE language has been
extend with the lower or equal ⇐ operator. In the semantic context of the nth derivation, the �rst
memory cell is set to n. A multiderivation contain all those semantic contexts would be endless
because for every n, the Pretty-Big-Step derivation in the (n+1)th state takes at least one step more
than the derivation in the nth state. We can not derive a multisemantics derivation with all those
states because it would require an in�nite derivation, which is not possible in our case. We formalize
this in the Coq proof assistant in Figure 12. We still prove that for a �nite number of Pretty-Big-Step
derivation, we can derive a multisemantics derivation by the second and third theorem.

multisemantics_statement s mu and pretty_big_step_statement st1 s st2 are inductive
predicate respectively describing the multisemantics and the Pretty-Big-Step semantics, and they
are respectively equivalent to s ⇓ µ and st1, s→ st2. sum mu1 mu2 is the relation containing exactly
the pairs of states present in mu1 or mu2. The proof of the �rst theorem is conducted by induction
on the inductive predicate ⇓, and the second on by induction on the inductive predicate →. The last
theorem is just the use of the rule MltMergeStmt.

The three theorems are proved for expressions too.

4. Annotations

We can now introduce annotations to track information �ows. To achieve this, the annotations record
the memory cells from which each variable and each channel depends in a dependency generally noted
D of type Dep. Additionally, we de�ne the context dependency CD of type ConDep by a set of memory

157

Cabon & Schmitt

Theorem Correct_statement :

forall s mu,

multisemantics_statement s mu

->

(forall st1 st2, mu st1 st2 -> pretty_big_step_statement st1 s st2)

.

Theorem Correct_statement2 :

forall s st1 st2,

pretty_big_step_statement st1 s st2

-> multisemantics_statement s (fun a b => a = st1 /\ b = st2)

.

Theorem Correct_statement3 :

forall s mu1 mu2,

multisemantics_statement s mu1

-> multisemantics_statement s mu2

-> multisemantics_statement s (sum mu1 mu2).

Figure 12: Correctness theorem in coq

cells : it represents the dependency of the context in which the current expression or statement is
evaluated and is used to track indirect �ows. For example, when entering the evaluation of one branch
of an if statement we need to know the dependency given by the condition.

Dep := (Var ∪ Index) 7→ Cell set

ConDep := Cell set

The rules will look like the multisemantics rules but with the information before and after evaluating
the term:

P1 . . . Pn

(D,CD), t ⇓ µ, (D′, CD′)

where P1, . . . , Pn are premises, t is a term, µ is a relation between states, D andD′ are dependencies
and CD and CD′ are context dependencies. A context dependency CD on the left means that the
context in which the term is evaluated depends on the cells of CD, but a context dependency CD′ on
the right means that the term itself depends on the cell of CD′: it is the set of dependencies used to
evaluate the term.

One example of where the multisemantics clearly shows its role is on the rule AnnotMergeState

in which we merge the annotations obtained in each branch.

(D,CD), s ⇓ µ1, (D1, CD1)
(D,CD), s ⇓ µ2, (D2, CD2) ∀σσ′, σ µ σ′ ⇒ σµ1σ

′ ∨ σµ2σ
′

(D,CD), s ⇓ µ, (D′, CD1 ∪ CD2)
MltMergeStmt

where D′ is the function de�ned for all variables or channels by D′(x) = D1(x) ∪D2(x).

158

Annotated multisemantics

∀ σ σ′, σ µ σ′ ⇒ σ′ = (σ, c)

(D,CD), c ⇓ µ, (D,CD)
AnnotMltCst

∀ σ σ′, σ µ σ′ ⇒ ∃ v E, σ′ = (σ, v) ∧ σ = (_, E,_) ∧ E[x] = v

(D,CD), x ⇓ µ, (D,x :: CD)
AnnotMltVar

∀σσ′, σ µ σ′ ⇒ σ = σ′

(D,CD)skip ⇓ µ, (D,CD)
AnnotMltSkip

(D,CD), e ⇓ µ′, (De, CDe)
(De, CDe), if1(s1, s2) ⇓ µ′′, (D′, CD′) ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

(D,CD), if e then s1 else s2 ⇓ µ, (C ′, CD′)
MltIf

(C,CD), s1 ⇓ µ1, (C1, CD1) ∀σσ′, σ µ σ′ ⇒ ∃ M, (σ = (M, true) ∧M µ1 σ
′)

(C,CD), if1(s1, s2) ⇓ µ, (C1, CD1)
MltIfTrue

(C,CD), s2 ⇓ µ2, (C2, CD2) ∀σσ′, σ µ σ′ ⇒ ∃ M, (σ = (M, false) ∧M µ2 σ
′)

(C,CD), if1(s1, s2) ⇓ µ, (C2, CD2)
MltIfFalse

(D,CD), e ⇓ µ′, (D′, CD′)
(D′, CD′), x =1 ⇓ µ′′, (D′′, CD′′) ∀σσ′′, σ µ σ′′ ⇒ ∃ σ′, σ µ′ σ′ ∧ σ′ µ′′ σ′′

(D,CD), x = e ⇓ µ, (D′′, CD′′)
AnnotMltAsg

∀σσ′, σ µ σ′ ⇒ ∃ E E′ F C v,E′ = E[x 7→ v] ∧ σ = ((F,E,C), v) ∧ σ′ = (F,E′, C)

(D,CD), x =1 ⇓ µ(D[x 7→ CD], CD)
AnnotMltAsg1

Figure 13: Some rules of the annotated multisemantics

Rules are easy to annotate, thus we give in Figure 13 only the few rules we use in the example
below. Notice that in the rule AnnotMltAsg1 we strongly update the dependencies of the variable
because when assigning the value, there is no other dependencies than what is currently in the context
dependency.

We have re-written the running example of Figure 4 in the WHILE language in Figure 14 with
the value of secret stored in the �rst cell of the �xed memory and the public variable being the �rst
channel. Let us go back to this example and see how our method captures the dependency.

Consider two executions, one which sets the �rst cell to false and one which sets it to true. Both
environments Ee are empty at the beginning (formally, each variable is set to a special value Unbound).
The dependencies and the context dependency are also empty: we write De the empty dependency, a
function returning an empty set for every variable and index. We note Fv the �xed memory in which
the �rst cell is set to the value v , Ev the empty environment except that x is set to v and y is set to
true, and Ce the set of channels where each is empty.

When evaluating the �rst if statement, we have to evaluate the condition MEM 1 and then evaluate
each block with a smaller relation (due to the rule MltMergeStmt) depending on the condition. The

159

Cabon & Schmitt

x = true;

y = true;

if Mem 1

then x = false

else skip;

if x

then y = false

else skip;

Obs y 1

Figure 14: The running example in the WHILE language

reader can easily verify that the �rst part is evaluated into

. . .

(De, {1}), if1(x = false, skip) ⇓ µ1, (De[x 7→ {1}], {1})
AnnotMltIfTrue

and the second one into

. . .

(De, {1}), if1(x = false, skip) ⇓ µ2, (De, {1})
AnnotMltIfFalse

where µ1 is the relation only verifying ((Ftrue, Etrue, Ce), true) µ1 (Ftrue, Efalse, Ce) and µ2 the relation
only verifying ((Ffalse, Etrue, Ce), false) µ2 (Ffalse, Etrue, Ce).

It leads us to evaluate the statement if1(x = false,skip) as follow

(De, {1}), if1(x = false, skip) ⇓ µ1, (De[x 7→ {1}], {1})
(De, {1}), if1(x = false, skip) ⇓ µ2, (De, {1})
∀σσ′, σ µif1 σ

′ ⇒ ∃ M, (M µ1 σ
′) ∨ (M µ2 σ

′)

(De, {1}), if1(x = false, skip) ⇓ µif1, (De[x 7→ {1}], {1})
AnnotMltMergeStmt

where µif1 is the relation only verifying
((Ftrue, Etrue, Ce), true) µif1 (Ftrue, Efalse, Ce) and
((Ffalse, Etrue, Ce), false) µif1 (Efalse,Mtrue, Ce).

And the full if statement is evaluate by

(De, ∅), MEM 1 ⇓ µmem1(De, {1})
(De, {1}), if1(x = false, skip) ⇓ µif1, (De[x 7→ {1}], {1})
∀σσ′′, σ µif σ

′′ ⇒ ∃ σ′, (σ µmem1 σ
′) ∧ (σ′ µif1 σ

′′)

(De, ∅), if MEM 1 then x = false else skip ⇓ µif , (De[x 7→ {1}], {1})
AnnotMltIf

where µmem1 is the relation only verifying
(Ftrue, Etrue, Ce) µmem1 ((Ftrue, Efalse, Ce), true) and
(Ffalse, Etrue, Ce) µmem1 ((Ffalse, Etrue, Ce), false)
and µif is the relation only verifying
(Ftrue, Etrue, Ce) µif (Ftrue, Efalse, Ce) and
(Ffalse, Etrue, Ce) µif (Ffalse, Etrue, Ce).

We see that, without even going further, we already know that x depends on the �rst cell of the
�xed memory. The second if statement has the same behaviour: at the end we know that y depends

160

Annotated multisemantics

Theorem Correctness :

forall s,

forall S1 S1',

forall S2 S2',

forall D D' C C' mu,

forall cell,

forall index,

pretty_big_step_statement S1 s S1' (*a*)

/\ pretty_big_step_statement S2 s S2' (*b*)

/\ annotated_multi_pretty_big_step_statement (D,C) s mu (D',C') (*c*)

/\ mu S1 S1' /\ mu S2 S2' (*d*)

/\ statesDifferOnlyOnCell cell S1 S2 (*e*)

/\ channelsDifferOnIndex index S1' S2' (*f*)

-> In (cell) (D' index) (*g*)

.

Figure 15: Theorem of correctness of the annotation

on the �rst cell of the �xed memory. Finally, when observing y, the dependency �ows into the �rst
channel. If we call our program runningExample we will have

(De, ∅), runningExample ⇓ µRE , (D, {1})

where D = De[x 7→ {1}][y 7→ {1}][1 7→ {1}] and µRE is the relation only verifying
(Ftrue, Ee, Ce) µRE (Ftrue, Efalse, Ce[1 7→ [true]]) and
(Ffalse, Ee, Ce) µRE (Ffalse, Etrue[y 7→ false], Ce[1 7→ [false]])

We see that we e�ectively have 1 ∈ D(1) = {1}.
To express the correctness of the annotation, we want that, for any term, if a channel depends on

a cell, this cell should appear in the dependency associated to the channel. The Coq theorem we want
to prove is shown in Figure 15. An analogous theorem can be established for expressions.

Suppose we have two Pretty-Big-Step executions of a statement s (lines a & b) with the semantic
contexts S1 and S2 and the respective results S′

1 and S′
2 and an annotated multiexecution of the

same statement annotated by (D,C) on the left and (D′, C ′) on the right (line c) with a relation µ
containing at least (S1, S

′
1) and (S2, S

′
2) (line d). If we add the constraints that the semantic contexts

S1 and S2 have the same environment, the same set of channels, the same potential value carried and
the same �xed memory except for the cell cell (line e) and that the channel indexed by index of the
results S′

1 and S
′
2 are di�erent (line f) (without any constraint on the �xed memory, the environment,

the other channels and the potential values carried), then the cell cell is e�ectively in the dependencies
of the channel index (line g).

Another important property of our method is that it is more precise than syntactic methods, i.e.,
methods where annotations are collected on the syntax of a program. We suppose that our language
has been extended with the operators =< and == which are respectively the lower or equal operator
and the equal operator. We also use the in�x operator + instead of the pre�x operator Op. In the
example of Figure 16, the annotations will say that x depends only on cell 1 (because of n) and not on
cell 2 because in every execution, the loop will end up overwriting the value of x by the constant false.
We end up with a channel 1 depending on cell 1 but not on cell 2. In the other hand, any syntactic
method (for example we could adapt one from Sabelfeld and Myers approach [13]) approximates the
dependencies after the if statement saying that x always depends on cells 1 & 2, and then the channel
1 also depends on cells 1 & 2.

161

Cabon & Schmitt

i = 0;

n = Mem 1;

x = true;

while i =< n

if i == n

then x = false

else x = Mem 2;

i = i + 1;

Obs x 1

Figure 16: An example where the annotations do not overapproximate

5. Conclusion and Future Work

We have presented a new semantics, the multisemantics, built from a Pretty-Big-Step semantics and
able to evaluate a term of a WHILE language with di�erent inputs all at once. We have built an
annotation system for this semantics to track information �ows. We expressed in Coq the correctness
theorems we want to prove and we showed with examples the precision of this method compared to
syntactic analyses.

Our next step is to prove the correctness of the annotations for arbitrary programs.

In the longer term, we want to build a framework to automatically derive a multisemantics from
a semantics in Pretty-Big-Step. We also want to investigate the existence of local conditions on
annotations, which would be checked for each rule independently, that would ensure the global
correctness of the annotations, i.e., correctly capture �ows.

References

[1] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive
noninterference leaks more than just a bit. In Computer Security - ESORICS 2008, 13th European

Symposium on Research in Computer Security, Málaga, Spain, October 6-8, 2008. Proceedings,
pages 333�348, 2008.

[2] Gilles Barthe, Pedro R. D'Argenio, and Tamara Rezk. Secure information �ow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207�1252, 2011.

[3] Nataliia Bielova and Tamara Rezk. A taxonomy of information �ow monitors. In Principles

of Security and Trust - 5th International Conference, POST 2016, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The

Netherlands, April 2-8, 2016, Proceedings, pages 46�67, 2016.

[4] Arthur Charguéraud. Pretty-big-step semantics. In Programming Languages and Systems -

22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings, pages 41�60, 2013.

[5] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157�1210, 2010.

[6] Ellis Cohen. Information transmission in computational systems. In Proceedings of the Sixth

ACM Symposium on Operating Systems Principles, SOSP '77, pages 133�139, New York, NY,
USA, 1977. ACM.

162

Annotated multisemantics

[7] Dorothy E. Denning and Peter J. Denning. Certi�cation of programs for secure information �ow.
Commun. ACM, 20(7):504�513, July 1977.

[8] Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11�20, 1982.

[9] Sebastian Hunt and David Sands. On �ow-sensitive security types. In Proceedings of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006,

Charleston, South Carolina, USA, January 11-13, 2006, pages 79�90, 2006.

[10] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and termination-sensitive
secure information �ow: Exploring a new approach. In 32nd IEEE Symposium on Security and

Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA, pages 413�428, 2011.

[11] Gurvan Le Guernic. Con�dentiality Enforcement Using Dynamic Information Flow Analyses.
PhD thesis, Kansas State University, 2007.

[12] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static �ow-sensitive security analysis. In
Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh,

United Kingdom, July 17-19, 2010, pages 186�199, 2010.

[13] Andrei Sabelfeld and Andrew C. Myers. Language-based information-�ow security. IEEE Journal

on Selected Areas in Communications, 21(1):5�19, 2003.

[14] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back: Riding the roller coaster
of information-�ow control research. In Perspectives of Systems Informatics, 7th International

Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia, June 15-19, 2009. Revised

Papers, pages 352�365, 2009.

163

Cabon & Schmitt

164

