
HAL Id: hal-01503064
https://hal.science/hal-01503064

Submitted on 6 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Result graphs for an abstract interpretation-based static
analyzer

Pascal Cuoq, Raphaël Rieu-Helft

To cite this version:
Pascal Cuoq, Raphaël Rieu-Helft. Result graphs for an abstract interpretation-based static analyzer.
28èmes Journées Francophones des Langages Applicatifs, Jan 2017, Gourette, France. �hal-01503064�

https://hal.science/hal-01503064
https://hal.archives-ouvertes.fr

Result graphs for an abstract interpretation-based

static analyzer

Pascal Cuoq1 & Raphaël Rieu-Helft2

1: Trust-In-Soft
cuoq@trust-in-soft.com

2: École Normale Supérieure
raphael.rieu-helft@ens.fr

Abstract

TIS-Analyzer is a static analysis platform based on Frama-C. It integrates C analyzers in a plugin
architecture and can be used to soundly detect unde�ned behaviors in C programs. The plugins
communicate with each other to increase their precision. The Value analysis plugin uses data�ow
analysis to produce a sound representation of the memory state at each control point of the program.
Its abstract domain allows to represent disjunctions of non-relational value states. Further plugins
then use this information to conduct derived analyses (operational inputs, dependencies...) However,
the disjunctions alone are not su�cient: they do not allow the derived analyses to know which disjuncts
of the representation of an abstract state can be reached from each disjunct of the state at the previous
statement. We present a representation of the end result of the Value analysis as a graph that re�nes
the program's control �ow graph. In this �result graph�, each separate non-relational abstract state
occurring at a particular statement is represented as a distinct node. We argue that this representation
is what derived analyses should work on by default. It is also a way to formalize the Value analysis in
terms of abstract interpretation. Finally, result graphs are suited for human review and allow users
to �nd the root cause of alarms raised by the analysis. When implemented naively, the propagation
of the disjunctions of abstract states requires a quadratic number of potentially costly inclusion tests
between abstract states. We present an e�cient algorithm that takes advantage of the hash-consed
representation of abstract states as Patricia trees to reduce the cost of testing the inclusion of a state
in a set of states to amortized constant time. We also justify the correctness of this algorithm in a
more general setting.

1. Context

1.1. C and unde�ned behaviors

Some erroneous actions in C, such as dividing an integer by 0 or dereferencing an uninitialized pointer
are de�ned by the C standard as having an unde�ned behavior. When present in a C program, these
actions cause the behavior of the entire program to be unspeci�ed as far as the standard is concerned.
The C FAQ1 de�nes the notion of unde�ned behavior like this:

This work was partially supported by ANR-14-CE28-0014 AnaStaSec.
1Steve Summit. C FAQ on unde�ned behaviors. http://c-faq.com/ansi/undef.html

5

Cuoq & Rieu-Helft

Anything at all can happen; the Standard imposes no requirements. The program may fail
to compile, or it may execute incorrectly (either crashing or silently generating incorrect
results), or it may fortuitously do exactly what the programmer intended.

The main advantage of such a loose speci�cation for incorrect actions is that C compilers may �trust�
the programmer and assume that their input does not have an unde�ned behavior. Not only do they
not have to check for them, but this assumption also gives them more information to implement more
powerful optimizations. In the event that their input does yield an unde�ned behavior, then whatever
binary they output is correct by default.

For example, signed integer over�ow is unde�ned in C; compilers therefore do not have to worry about
the case where a variable in a loop over�ows, which leads to signi�cant speed-ups in performance-
critical loops.

However, an important drawback of unde�ned behaviors is that programmers cannot be trusted
to reliably avoid them. This leads to programs silently exhibiting an incorrect behavior. This
problem is compounded by the compilers' aggressive optimizations: debugging optimized code can
prove challenging. Consider this code extracted from an erroneous bug report for the compiler gcc [1]:

1 void foo(int a) {

2 assert(a+100 > a);

3 printf("%d %d\n",a+100,a);

4 }

5

6 void main() {

7 foo(0 x7fffffff);

8 }

The programmer's expectation is that the program can never output two decreasingly ordered numbers
(otherwise the assertion would fail). On the particular input given by main to foo, there is an integer
over�ow (in a 32-bit architecture). A natural outcome is that a + 100 wraps around to a large
negative integer and that the assertion fails. However, when compiled with the usual command gcc

-O2 (for gcc version 4.8.4), the output is:

> ./a.out

-2147483549 2147483647

The explanation is that signed integer over�ow is unde�ned in C. Therefore, when considering the
assertion at line 2, the compiler may assume that a + 100 does not exceed the maximum integer.
Therefore, the assertion is always veri�ed, and it is optimized away! The assembly output is the same
as if the assertion was not in the code in the �rst place. This causes the program to silently fail
even though the programmer included an assertion speci�cally to avoid this. Instead, the programmer
should either implement a di�erent check or tell the compiler to use a wrap-around semantics for
integer over�ow with the �ag -fwrapv, at a potential performance cost.

This sort of compiler behavior pressures programmers to be particularly careful to avoid unde�ned
behaviors. However, they can be hard to spot, and the C standard lists over a hundred di�erent kinds
of unde�ned behaviors.

1.2. TIS-Analyzer overview

Frama-C and its derivative TIS-Analyzer are static analysis platforms for C programs, and are
developed in OCaml. They integrate several C static analyzers in a plugin architecture: they
share information through interfaces with a common kernel that conducts the analysis. Each plugin
can access the results that previous plugins computed to increase precision and avoid redundant

6

Result graphs for an abstract interpreter

computations. This architecture also allows advanced users to develop their own plugins and integrate
them into the platform, accessing the results of the other plugins for their own analyses with relatively
little e�ort. This makes it possible for the platform to detect most kinds of unde�ned behavior as well
as to operate program transformations such as slicing.

In addition to the kernel interfaces, Frama-C and TIS-Analyzer use the ANSI/ISO C Speci�cation
Language (ACSL) to express function speci�cations and proof obligations [2]. Users may annotate
the source code with ACSL annotations and function contracts, and plugins may emit alarms in the
form of proof obligations that are preconditions to the source program's correctness. Conversely, the
WP plugin uses Hoare-style weakest precondition calculus to prove ACSL properties by leveraging the
results of other plugins as well as external theorem provers such as Alt-Ergo [4] or Why3 [5].

1.3. The Value analysis

Overview The Value analysis plug-in is central to TIS-Analyzer. It is an abstract interpreter
that uses data�ow analysis to compute the values of each variable at each program point, and detects
related unde�ned behaviors along the way. When the analysis cannot prove the absence of an unde�ned
behavior, an alarm is emitted as an ACSL proof obligation. The analysis then continues under the
assumption that the proof obligation is satis�ed (that is, that no unde�ned behavior occurred). It
would be desirable to predict what happens after the unde�ned behavior, but as the example from 1.1
shows, it is folly to attempt to predict what happens in an execution that contains unde�ned behavior.

Semantic unrolling The Value plugin performs a forward data�ow analysis, which means that it
computes a �xpoint on the control �ow graph of the source program starting at the initial statement.
The state of the program's memory along an execution trace is represented as an element of a non-
relational abstract domain. Possible values for integers are represented as sets when the number of
possible values is small. When there are many possible values, they are abstracted in a compact
representation as intervals with congruence information (e.g. �all the values between -6 and 34 that
are congruent to 2 modulo 4�). Floating-point values are always abstracted as intervals. Both these
abstractions obviously pollute the feasible values with unfeasible ones. This should not distract the
reader from the loss of information intrinsic to the choice of a non-relational representation where
the values of each variable, array element and struct member is represented without regard to its
correlation to other variables, array elements and struct members.

Using the simple data�ow analysis algorithm [10] with the above non-relational representation
generates spurious alarms for many programs. Here is an example:

1 int x,y,s;

2 x = rand() % 18 - 9

3 // x = [-9,8]

4 if (x >= 0)

5 s = 1;

6 else {

7 s = -1;

8 }

9 //s={-1; 1}, x=[-9,8]

10 y = x*s;

11 //s={-1; 1}, x=[-9,8], y=[-9,9]

12 assert (y>=0); //alarm!

In this example, the assertion is always veri�ed during real execution, but this cannot be proved with
a non-relational abstract domain. After the conditional, the memory states at the end of lines 4 and
6 are joined and the possible values for s are −1 and 1, while x can be anything between −9 and 8.

7

Cuoq & Rieu-Helft

While there is in fact a relation between these values (they have the same sign), the domain is unable
to express this.

To mitigate this loss of information, the Value analysis o�ers the possibility to represent the values
of variables x, y, s as a disjunction of several non-relational memory states originating from di�erent
traces. For if-then-else constructs, this means that the state coming out of the �then� branch
is propagated separately from the state from the �else� branch. In the example, the two states
(x ∈ [0, 8], s = 1, y ∈ [0, 8]) and (x ∈ [−9,−1], s = −1, y ∈ [1, 9]) reach and pass the assertion
independently, and the analysis validates it. More precisely, the disjunctions allow the analysis to
be more precise on the value of y and to discover that y ∈ [0, 9] at the end of the program. Loops
can be unrolled through the same mechanism: the values in memory after two iterations are stored
separately from the values after one iteration, etc. limiting the confusion between how the values are
correlated as the loop progresses in a real execution.

Obtaining a �xpoint In order for a �xpoint to be guaranteed to be produced in �nite time, it
is necessary to limit the number of states that can be maintained in the disjunction associated to a
statement. This is done with the option -slevel, which sets the maximum cardinal of the disjunctions.
When a new state is added to a disjunction and the slevel is reached, the disjuncts are all merged and
the algorithm reverts to the simple forward data�ow analysis behavior. This is e�ectively a widening.

Setting the slevel to 2 or more allows to analyze the previous example precisely: before the
assignment at line 9, the state is a disjunction of the states coming from the then and else branch.
The assignment is applied to both states independently, and both resulting states satisfy the assertion.

For e�ciency, techniques taking inspiration from explicit-state model-checking are applied. This is
similar to �Con�gurable Software Veri�cation� [3] but was developed independently. The present
article documents implementation aspects that are not covered in Beyer, Henzinger and Théoduloz's
article.

When an additional non-relational state is propagated to a statement, this state is �rst tested for
inclusion against all the non-relational states that have already been associated to this statement. If
the new memory state is included in a state previously associated to the statement, then it does not
add any new information and can be discarded. This saves time in the sense that the memory state
does not need to be propagated. This also gains precision as it avoids inserting a non-informative
disjunct in the disjunction, and thus delays the join. An example where time and precision are gained
is for (char i=0, j=1; i!=j; i++,j++);, where the analyzer discovers that the program state
after 256 iterations, in which i is 0 and j is 1, is included in the initial state, and thus concludes that
the loop is in�nite without reaching the slevel limit at which it would have merged all states and lost
the opportunity to conclude that the loop condition is always true.

In a naïve implementation of the propagation algorithm, a quadratic number of inclusion tests would
be necessary. Section 4 shows how this quadratic behavior of the analyzer is avoided in practice,
building on top of previous e�orts for e�cient representation of memory states with hash-consing[7].

1.4. Derived analyses: a motivating example

The results of the value analysis may then be used by other plugins. The operational inputs (or inout)
plugin is one of them. It is a derived analysis of Value, and computes the operational inputs and sure
outputs of each function call in a C program. The operational inputs of a function are de�ned as the
memory zones that may be read by the function without having been previously overwritten, and the
sure outputs are the memory zones that are written to for sure. The inout plugin runs a data�ow
analysis on the control �ow graph, with knowledge of the results of Value. The following example
shows why expressing the results of Value in terms of a disjunction of abstract memory states per
program statement is not su�ciently precise.

8

Result graphs for an abstract interpreter

1 char t[3];

2 void f() {

3 int i,x;

4 for (i=0; i<3; i++)

5 {

6 t[i] = i;

7 }

8 x = t[1];

9 }

10

11 int main(void) {

12 f();

13 }

for (i=0; i<3; i++) i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3

t[i] = i; i = 0 ∨ i = 1 ∨ i = 2

x = t[1]; i = 3

Control �ow graph of f, decorated with Value results

Figure 1: Initializing an array with a for loop

Consider the function in Figure 1. It initializes an array with a for loop and then reads from a cell.
The most precise result for the inout analysis is that the whole array is in the sure outputs of f, and
that the operational inputs are empty: the only location we read from has been written to beforehand
in the function.

However, if the inout analysis only had access to the information in the decorated control �ow graph
from the �gure, the results would be less precise. The explanation is that the control �ow graph of the
program is not expressive enough to enforce that the program goes through the full three iterations of
the for loop. The inout analysis would therefore conclude that the program might read t[1] without
having assigned to it, which would make it an operational input.

What is missing here is that the only way to reach the assignment is from the i = 3 disjunct of the
for loop, which is itself only reachable after having gone through three iterations, during one of which
t[1] was set to the value of an expression, i, itself without dependencies. The transitions between
states are available to Value. It is important that these transitions be made available to derived
analyses, as the example shows. We argue that the graph of states, with the transitions between
them, should be considered the result of the analysis, and should be the form that derived analyses
work on by default.

2. Result graphs

2.1. Principle

The nodes of the value analysis' result graph are (statement, abstract state) pairs. The disjunction of
possible abstract memory states at a statement is represented by as many nodes as the statement has
disjuncts. Edges of the result graph track which disjunct at a statement can reach which disjuncts at
the successor statements.

When a statement's transfer function is applied to a state and results in new states at the successor
statements, the value analyzer creates new nodes for the resulting states at these statements. Edges
are inserted between the original node and each of the new nodes.

For example, on the program from Figure 1, the result graph at the end of the value analysis would
be the one in Figure 2. The graph shows that the only way to reach the assignment at the end of the
program is after three iterations of the for loop. Running the inout analysis on this graph instead of
the control �ow graph of the program �xes the imprecision we warned about in Section 1.4.

The graph representation is also a good �t to represent the other features described in Section 1.3.

9

Cuoq & Rieu-Helft

for (i=0...) i = 0 t[i] = i; i = 0

for (i=0...) i = 1 t[i] = i; i = 1

for (i=0...) i = 2 t[i] = i; i = 2

for (i=0...) i = 3

x = t[1]; i = 3

Figure 2: Result graph for f in Figure 1

When a new state is discovered, if a greater state already exists, we can simply add an edge to the
corresponding node instead of creating a new node. Similarly, when the slevel is reached and a
disjunction is merged, we can create a node for the joined state and add it as a successor of all the
states that had a successor in the disjunction.

The approach is similar to trace partitioning [12] in the sense that it increases precision by delaying
joins and tracking where each disjunct of the abstract state comes from in terms of control �ow. One
key di�erence is that in trace partitioning, states produced by di�erent execution paths are considered
di�erent by virtue of coming from di�erent paths, even if they assign the same values to all the
program's variables. However, as outlined in Section 1.3, result graphs merge states when possible at
the same program point: the second state to reach the junction point is considered to be subsumed
by the �rst one. Even a state that is not equal to, but merely included in a previously encountered
state is never propagated. This feature is closer to model checking [3].

2.2. Formalization

We de�ne a framework to enhance an existing abstract interpreter and adapt it to compute result
graphs, with some simple assumptions on the underlying abstract domain. This formalizes the
approach we used on the Value analysis and proves its soundness. This also provides a formal
de�nition of the semantic unrolling strategy in terms of abstract interpretation, which had never
been done before to the best of our knowledge.

Notations We introduce a few notations. Let:

� X a set of variables

� V the set of values

� M = X→ V the set of memory states

� L the set of control states (program counter)

� S = L×M

A program is represented by a tuple (X,L,Si,→) where Si is the set of initial states, and the transition
relation (→) ⊆ S× S describes how the execution goes from one state to another.

We assume here that the programs have no function calls in order to simplify the notations. When
they do, we have to add a notion of callstacks but there is no conceptual di�culty. We also do some
simple rewriting on the analyzed programs so that they have exactly one entry point l` and one exit
point la.

10

Result graphs for an abstract interpreter

Concrete semantics We de�ne a trace semantics for programs:

De�nition 1. Trace semantics

A trace is a �nite sequence of states in S. We write S∗ for the set of traces. For a program P =
(X,L,Si,→), we de�ne its trace semantics JP K as the set of traces that start at a state in Si and are
valid under the relation →: JP K =

{
〈s0, . . . , sn〉

∣∣ ∃m0 ∈M, s0 ∈ Si ∧ (l`,m0) = s0 → . . .→ sn
}
.

Note that un�nished executions (that do not end at la) are accepted by the former de�nition. However,
in�nite traces are not.

Abstract domain We assume that an abstract domain for memory states (D],v) is de�ned, along
with a concretization function γM : D] → P(M). We write S] for L×D].

We also require that D] be equipped with an abstract join operator t that soundly approximates the
union in P(M), and sound and monotone transfer functions for all the instructions in the language.
We also require for D] to have a least element ⊥ such that γM(⊥) = ∅.
We de�ne the elements of a new abstract domain D] as tuples of the form (X,L, S]i ,→],Φ]) as

elements, where S]i ⊆ { l` } ×D] is a set of abstract initial states, (→]) ⊆ S] × S] is the transition
relation, and Φ] : L→ P(D]) is such that if (l, σ]) appears in (→]), σ] ∈ Φ](l). Φ represents the set
of possible stores at each control state. The order v on D] is pointwise inclusion.

An element of D] can be concretized into a set of traces by applying γM pointwise on Φ] and →] and
then looking at paths in the resulting transition relation:

γ]D(X,L, S]i ,→],Φ]) =
{
〈s0, . . . , sn〉

∣∣ ∃m0 ∈M, s0 ∈ Si ∧ (l`,m0) = s0 → . . .→ sn
}

with:

{
Si =

⋃
d∈S]i γM(d)

→ =
⋃

d1→]d2
{ (s1, s2) | s1 ∈ γM(d1) ∧ s2 ∈ γM(d2) }

Elements of D] should be seen as re�ned versions of the control �ow graph. The semantics of statements
are transfer functions in D] → D] that enrich the graph by adding new edges.

Semantic unrolling We maintain a unicity invariant: if σ] ∈ S], no new state included in σ] can
be added to S]. This is the strategy discussed at the end of Section 1.3.

To enforce this, we need to check for inclusion each time a new abstract store is computed. We de�ne
an operator to denote this inclusion check:

greater(d, S) =

{
d if ∀d′ ∈ S, d 6v d′

d′ if d′ ∈ S ∧ d v d′

This means that instead of adding an edge to a new state d to S, we can add an edge to greater(d, S).
This is sound because for all d, S, d v greater(d, S). The operator is non-deterministic: the choice
of the greater state to return is arbitrary if several exist. However, this choice has no in�uence on the
rest of the analysis: if it has to be made, there is no new information to propagate anyway.

We can now de�ne an operator that merges a new edge into an element of D] while maintaining the
unicity invariant:

add : (S] × S])× D] → D]

(((l1, d1), (l2, d2)), (X,L, S]i ,→],Φ])) 7→ (X,L, S]i , (→] ∪((l1, d1), (l2, d))),Φ′])

11

Cuoq & Rieu-Helft

where 
d = greater(d2,Φ

](l2))

Φ′] =

{
l2 7→ { d } ∪ Φ](l2)

l 6= l2 7→ Φ](l)

By abuse of notation, we extend add to take a set of new edges as its �rst parameter and add them
to a graph in an arbitrary order.

Transfer functions Let us now de�ne transfer functions for statements. We require, for each
control point l ∈ L, a function JlK]D : S] → P(S]). This transfer function is then extended into

JlK]D : D] → D]

g = (X,L, S]i ,→],Φ]) 7→ add(
⋃

d∈Φ](l)

JlK]D(d), g)

JlK]D is a sound approximation of the concrete semantics JlK of the statement s at the control point l

provided JlK]D is.

Slevel limitation Lastly, we need to guarantee that the analysis terminates in a �nite number of
iterations. We assume that D] is equipped with a widening operator ∇M. We set a maximum number
Nl of abstract states in each Φ(l), l ∈ L. Upon adding a new abstract store at a control point l
where Nl abstract stores or more are already present, we merge them: in the new state, there is only
one abstract store at control point l, which is the join of the previous ones. This corresponds to the
maximum number of states in the disjunctions of Section 1.3. From that point on, new abstract stores
at this control point are merged into that one with ∇M instead of being added to the disjunction. As
∇M guarantees that we cannot encounter an in�nitely increasing sequence of states, this guarantees
that the �xed point is reached after a �nite number of iterations. This is a widening operator on D].

More precisely, we de�ne an operator add∇ : (S] × S]) × D] → D] that adds an edge to an abstract
state while maintaining this invariant:

add∇(((l1, d1), (l2, d2)), (X,L, S]i ,→],Φ]))) =
add(((l1, d1), (l2, d2)), (X,L, S]i ,→],Φ]))) if |Φ](l2)| < Nl2

add({ ((l1, d1), (l2, d0)) } ∪
{

((l, d), (l2, d0))
∣∣ ∃d′, (l, d)→] (l2, d

′)
}
, (X,L, S]i ,→],Φ]))

otherwise, with d0 =
⊔{

d
∣∣ d ∈ Φ](l2)

}
∇M d2

We then de�ne the widening operator for D] as a fold of add∇ in an arbitrary order on all the edges
of its second argument:

∇(x], (X,L, S]i ,→]
2,Φ

]
2)) = add∇(

 ⋃
l1,l2∈L

{
(d1, d2)

∣∣∣ d1 →]
2 d2, d1 ∈ Φ]

2(l1), d2 ∈ Φ]
2(l2)

} , x])

We only de�ne ∇ when its two arguments have the same �rst three �elds (it is always the case for a
given program).

Theorem 1. ∇ is a widening operator.

� ∀x], y], x] v x]∇y] and y] v x]∇y].

12

Result graphs for an abstract interpreter

� For any sequence (x]n)n∈N, the following sequence (y]n)n∈N is not strictly increasing:{
y]0 = x]0

∀n ∈ N, y]n+1 = y]n∇x
]
n+1

Proof.

� Let x], y] ∈ D]. Clearly x] v x]∇y] as add is monotone, and y] v x]∇y] because each edge in
y] was added to x]∇y] (and the contents of Φ] was adjusted accordingly by add).

� Let (x]n)n∈N a sequence in D and let us de�ne (yn)n∈N as previously and (Φ]
n)n∈N the sequence

of the Φ] functions of the (yn). If (yn) is strictly increasing, then for some l, (Φ]
n(l))n∈N must

be strictly increasing. After a certain rank, |Φ](l)| > Nl. After this, (Φ](l))n is a subsequence
of sequence of iterates of ∇M, so it cannot be strictly increasing, which is a contradiction.

The strategy that consists in merging all the abstract stores at a control point when the slevel is
reached is sound, but is not always the most precise. For example, one could imagine privileging a
particular variable and trying to merge together the states that associate the same abstract value to
it, so as to not lose precision for this particular variable. The exploration of other possible merging
strategies is left for future work.

Abstract semantics We now de�ne the abstract semantics of a program (X,L,Si,→) as the least

solution x] = (X,L, S]i ,→],Φ]) of the following equation system de�ned from the transfer functions:


Si ⊆

⋃
d∈S]i

γM(d) (1)

S]i ⊆ Φ](l`) (2)

∀l ∈ L, x] = x]∇JlK]D(x]) (3)

Theorem 2. Soundness.

If x] is a solution of the equation system above for an input program P, then JP K ⊆ γ]D(x]).

Proof. By induction on the length of the trace in JP K. Traces in JP K of length 1 are in γ]D(x]) because
of (1).

Let us remark that JP K is pre�x-closed. Let 〈s0, s1, . . . , sn−1, sn〉 ∈ JP K. Then 〈s0, . . . , sn−1〉 ∈ JP K,
and 〈s0, . . . , sn−1〉 ∈ γ]D(x]) by induction hypothesis. Let (l,m) = sn. The soundness of the transfer

function JlK]D and (3) mean that sn ∈ Φ](l) and 〈s0, . . . , sn〉 ∈ γ]D(x]) (using the monotonicity of ∇),
which concludes the proof.

In our implementation, the solution is computed using a worklist algorithm [9]. We can guarantee
that the execution terminates in a �nite number of steps thanks to the use of widening, by adapting
the proof of Theorem 1.

13

Cuoq & Rieu-Helft

3. Applications

3.1. Precision gains in derived analyses

We adapted some TIS-Analyzer plugins to take advantage of the result graph domain instead of
working on disjunctions of abstract memory states. This led to precision gains in numerous ways.
First and foremost, control �ow imprecisions due to the derived analyses not being aware of the edges
of the result graph disappeared (see section 1.4). Another precision gain is that dead paths are now
properly ignored when computing the state at the end of a function. Indeed, when Value �nds a
potential unde�ned behavior, it emits an alarm and a proof obligation and then reduces the abstract
state by assuming that the alarm is a false positive: in the case where it's not, it has already emitted
an alarm, so this is always correct.

Consider the program in Figure 3. If cond is true, it attempts to read the cell 12 of an array of size
10. This is an out-of-bounds read, which is an unde�ned behavior. Therefore, the state in the �then�
branch is reduced to bottom (the program must yield an unde�ned behavior if the �then� branch is
taken, so it is not worth propagating further). Since the state is bottom, it is not propagated. The
state at line 6 is therefore the state from the �else� branch. Therefore, the abstract state at the end of
the program contains cond = 0. This is visible in the result graph (Figure 4): since the state at the
�then� branch is not propagated (no outgoing edges), the only way to a return is through the �else�
branch (which has cond = 0).

Therefore, the dependency analysis (see section 3.2) is now aware that x does not depend on cond.

1 int x,T[10];

2

3 void main(int cond) {

4 x = 42;

5 if (cond) x = T[12]; //UB

6 return; //cond must be 0

7 }

Figure 3: Dead path due to an invalid read

x=42;

if(cond) x=T[12]; x = T[12]; cond 6= 0

return; cond = 0

Figure 4: Dead path in the result graph

3.2. Whole-program dependencies

A previous version of the dependency analysis is implemented by the �From� TIS-Analyzer plugin. For
each variable in a function, the dependency analysis computes from which variables it depends at the
end of the function. This is computed by a forward data�ow analysis on the program's control �ow
graph using simple syntaxic rules. It keeps track both of data dependencies (which values were used
to compute the value of the variable) and control �ow dependencies (which variables the control �ow
choices made to reach that program point depend on). This dependency analysis only works within

14

Result graphs for an abstract interpreter

the scope of a function: it computes the dependencies of each variable in the function with respect to
the variables that were initialized at the beginning of the function call (parameters, globals...)

The result graph domain allowed us to develop a whole-program dependency analysis. It operates
similarly to the existing From plugin, but the data�ow analysis is computed on the result graph
instead of the control �ow graph, and on the whole program rather than on each function separately.
The dependencies are thus expressed in terms of the inputs of the program, which has a number of
useful applications. A whole-program analysis would have theoretically been possible without using
result graphs, but on the scale of a whole program, control �ow imprecisions such as in Section 1.4
were impactful enough to make it useless in practice. We were able to use our analysis on two real-life
libraries: libksba and mbed TLS.

3.3. Investigating a bug in libksba

Libksba is a X.509 certi�cate parser. The functions we investigated take a certi�cate as input, parse
it, and check the validity of its signature. The input is typically a binary �le of around 1 kB in size.
The dependency analysis of section 3.2 allows us, for any program point, to express the dependencies
of any variable in terms of speci�c bytes of the input certi�cate. As the analysis is sound, modifying
a byte of the input that is not in the dependencies will not change the value of the variable.

We used this to investigate a known bug on an input obtained by fuzzing (see Section 3.4). This input
is an invalid certi�cate of around 1 kB in size, and libksba did reject it, but took over a minute and
a half to do it [6] when it should have been almost instantaneous. This is a security vulnerability: an
attacker could perform a denial-of-service attack on a server using libksba by sending this certi�cate
repeatedly.

Pro�ling revealed that most of the time was spent in a call to the C builtin calloc, which allocates
a block in memory and initializes it to 0, which is time-consuming when the block is large. The size
of the block was determined during the parsing of the certi�cate, but what exactly controlled it was
unclear in the code. However, the data dependencies of the length variable happened to be exactly a
block of six bytes in the input certi�cate. Furthermore, the length of the block to allocate was exactly
the value written in the six-byte block seen as a 48-digit number.

Testing con�rmed that writing an arbitrary length in these six bytes and not changing the rest of the
certi�cate made libksba allocate a block with that exact length. This also means that the attacker
could optimize the denial of service by requiring a block of the largest possible size that the server
has available (asking for more would make the call to calloc fail immediately).

This was a good example of precise information obtained with our new dependency analysis. While
someone with good knowledge of X.509 certi�cates may have been able to know or �nd where the
block size was written in the certi�cate without the help of static analysis, we were able to do it in a
matter of minutes and with no prior knowledge of X.509 certi�cates.

3.4. Fuzzing the mbed TLS library

Fuzzing is a testing technique that involves providing many randomized inputs to a program to �nd
bugs in it. The fuzzer we used2 is mutation-based, which means it randomly modi�es bytes of a
starting input. It uses genetic algorithms to learn which parts of the input are most interesting to
modify to increase code coverage, but the process is still largely random.

We used our dependency analysis in conjunction with the fuzzer to investigate the cryptographic
library mbed TLS more e�ciently. The analysis keeps track of the control �ow dependencies, which
are the dependencies of all the conditionals that are still open at the current statement (in the sense

2Michaª Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/

15

Cuoq & Rieu-Helft

that there is a path from the conditional to the end of the program that does not go through the
current statement). Again, these dependencies are expressed in terms of the inputs of the program.

The soundness of the dependency analysis implies that for a given statement that is reached during the
execution on an input, if we fuzz only zones of the input that are not in its control �ow dependencies,
we can guarantee that the statement is still covered by the fuzzed input. This is extremely useful in
the context of fuzzing: when we are interested in investigating a speci�c function of the library, we
can ensure that all inputs generated by the fuzzer will cover it by forbidding it to change the bytes of
the input that are in the control �ow dependencies at the entry point of the function. In our case, the
fuzzer only very rarely generated an input that reached a particular function of mbed TLS. Locking
in the control �ow dependencies, which comprised around 20% of the input, allowed us to generate
only test cases that reached that function and gain coverage much more rapidly.

4. Detecting inclusion of a state in a set of states

Implementing the slevel option requires e�cient detection that a state newly propagated to a
statement is included in any of the states that have already been propagated to that statement
earlier. This step is necessary in order to detect that a �xpoint has been reached during the analysis
of a loop that does not obviously terminate, and saves time that would have been wasted propagating
the abstract states originating from both the then-branch and the else-branch of a conditional, if it
happens that one is included in the other.

4.1. Principle

Analogously with the notion of �nite elements, we call singleton elements of a lattice (D,v) with
minimal element ⊥ the non-bottom elements of D such that no non-bottom element of D is strictly
smaller than them: x is a singleton if and only if x 6= ⊥ and for all y ∈ D, y @ x =⇒ y = ⊥.
In other words, the singleton elements of D are the minimal elements of the partially ordered set
(D \⊥,v). The intuition is that for a set X, the singleton elements of the powerset lattice (P (X),⊆)
are the sets that are singletons.

Let (D,v) be the lattice of abstract memory states with a minimal element ⊥, and (D],v]) another
lattice with a minimal element ⊥]. Let π : D → D] be a monotone function. We also require that for
all x ∈ D, x 6= ⊥ =⇒ π(x) 6= ⊥].

Let us now assume that x ∈ D is such that π(x) is a singleton of (D],v]). Then for all non-bottom
y ∈ D, y v x =⇒ π(y) = π(x).

E�ciently testing whether a new state is included in one of the previous states during the value
analysis relies on the contraposition of this implication: if π(s1) 6= π(s2), there is no need to test
whether s1 v s2 because it cannot be true. In the value analysis, memory states are represented
as Patricia trees and the function π consists in selecting the subtree located at a well-chosen path
P . Among the previously seen states s2, those such that π(s2) is singleton have been indexed in a
hash-table, using each respective π(s2) as key. Out of these previous states, only the states such that
π(s1) = π(s2) need to be tested to see if they include s1.

4.2. Implementation

The value analysis' states are represented as Patricia trees [11]. A subtree of the representation of an
abstract state is itself the representation of an abstract state (the restriction of the former to a subset
of the variables it de�nes). We call singleton subtrees the subtrees that characterize the variables
that they de�ne so precisely that their concrete values are known precisely. They are the singleton

16

Result graphs for an abstract interpreter

elements (in the sense of Section 4.1) of the lattice of Value states.

Let us provide a description of the data structures involved using Ocaml syntax.

type variable

type value

type path

type tag = int

type state =

| Empty

| Leaf of variable * value * tag * bool

| Branch of int * int * state * state * tag * bool

type subtree = state

type superposition =

{ table : (subtree, state) Hashtbl.t;

path : path;

others : state list }

The state type represents the Patricia trees used to describe the abstract state. The tag of each
non-empty subtree is a unique hash-consing identi�er[8]: two subtrees are equal i� the tags of their
roots are equal. This means that they can be used as hashes and as a total order on the nodes. The
two integers in the Branch constructor are part of the usual metadata of Patricia trees. Hashing
and comparisons on trees are constant-time as a result. The boolean �ag, which indicates whether a
subtree is singleton, is computed from the children's own �ags each time a new node is created (only
a join of singleton subtrees is a singleton subtree). This helps to make it quicker to pick a suitable
path (see next paragraph) and allows other optimizations3.

States are indexed in the superposition structure. The path �eld stores a well-chosen path P . The
table stores in a hashtable all the states with a singleton subtree at P , the keys being their subtrees
at P . Finally, the others list stores all the states that do not have a singleton as subtree at P .

Example trees are given in Figure 5 (the �rst two integer �elds of Branch nodes are omitted).

1, false

2, false

3, true

x = 1

4, false

y = [0, 2]

5, false

z = [1..5]

6, false

7, false

3, true

x = 1

8, false

y = [1, 2]

5, false

z = [1..5]

Figure 5: An example. The second tree is included in but not equal to the �rst one.

Assume for now that all the abstract states being handled have singleton subtrees at a certain path
P . Under these ideal circumstances, each state's subtree at P can be used as a key according to which
the entire state can be classi�ed. A new state, candidate for being included in one of the previously
seen states, only needs to be tested for inclusion against the states that have the exact same subtree
at P .

3In the implementation of the inclusion test between states s and t, if t is singleton, then the answer can be computed

immediately as s == t without having to recurse.

17

Cuoq & Rieu-Helft

Ideally, all the states that eventually need to be handled at a given statement have di�ering singleton
subtrees at P : this makes the inclusion test of a new state N into the set of previous states amortized
constant-time. Speci�cally, the steps that occur are these:

� The bucket number for N is computed. This is very cheap because subtrees are numbered at
creation and the number of a subtree is used as its hash.

� For each binding present in the bucket, an equality test is made between the subtree N has
at P and previous subtrees from the bucket. This equality test again is very cheap thanks to
hash-consing.

� For each state in the set of states associated to the subtree identical to that of N , a full inclusion
test is made.

We have hitherto ignored the case where the new state N does not have a singleton subtree at P . In
this case it is certain that N is not included in any of the states that have a singleton subtree at P .
The issue is that of states that will arrive after N : a state M arriving after N may have singleton
subtree at P . M will thus need to be tested for inclusion in N , even though N will not be present, in
the hashtable, associated to the same singleton subtree as M . In order to avoid this failure, the state
N , and all states that do not have a singleton subtree at P , are placed in a special bucket against
which all arriving states are tested for inclusion. This is the others �eld of the superposition record.

To sum up, in order to check if a new state is included in a set of previous states s, it is su�cient to
hash it (by taking the tag of its subtree at P) and check it for inclusion against the states the same
bucket of s.table, as well as all the states in s.others.

Choice of P . A good choice of the path P is paramount to the e�ciency of the algorithm. If a P
is chosen such that a majority of states have non-singleton subtrees at P , or have the same singleton
subtree, the algorithm essentially reverts to the naïve (and quadratic) systematic inclusion test of
each new state in all previous states.

The current implementation chooses the path on the basis of the �rst two states. The chosen path P
is simply the �rst encountered path at which the subtrees are singleton in both the available states,
and the subtrees are di�erent between the two available states. This may seem casual considering
the importance of choosing a good function π, and improvements could be considered (in particular
re-indexation using a new path P ′ chosen on the basis of all already available states when the initial
choice turns out not to work well). The simple version currently implemented works well in practice.

In most loops, the value of the loop index is known precisely and di�erent in each state, so the subtrees
that contain only the loop index are often a good choice.

Conclusion

We have formalized an abstract interpreter on graphs that re�ne the control-�ow graph of the input
C program, with inspirations from trace partitioning [12] and model-checking [3]. This idea is
implemented in TIS-Analyzer, as an improvement over a previous representation of value analysis
results as a map from statements to abstract memory states.

The derived analyses that depend on the value analysis' results are in the process of being adapted to
take advantage of result graphs. Where this transition has already been made, it has led to noticeable
precision gains. Result graphs also enable new derived analyses that were previously di�cult to
conceptualize, such as a whole-program dependency analysis, with applications when studying software
security.

18

Result graphs for an abstract interpreter

It should be pointed out that thanks to semantic unrolling, the value analysis can be used as an
ordinary interpreter: when used to analyze a program's behavior for speci�c, known inputs, unrolling
all loops amounts to emulating the execution from beginning to end (to that end, it helps that
internal sources of non-determinism, such as "foo" == "foo", are treated as undesirable errors). In
this interpreter mode, the value analysis does not emit any false positives: any warning it emits is for
an error that really happens, and in particular that happens for the speci�c inputs that were used.
The result graph allows this local optimality property to be transmitted from the value analysis to
the derived analysis built on top of it, so that these analyses too can provide results without false
positives when applied to speci�c inputs.

The result graph is much larger than the control �ow graph when the slevel is high, but remains
within a constant factor of the per-statement storage of memory states that was previously used.

Bibliographie

[1] Erroneous GCC bug report. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475.
Accessed: 2016-08-18.

[2] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Speci�cation Language. http://frama-c.
com/download/acsl.pdf. Version 1.11. Accessed: 2016-08-19.

[3] Dirk Beyer, Thomas A Henzinger, and Grégory Théoduloz. Con�gurable software veri�cation:
Concretizing the convergence of model checking and program analysis. In International
Conference on Computer Aided Veri�cation. Springer, 2007.

[4] François Bobot, Sylvain Conchon, E Contejean, Mohamed Iguernelala, Stéphane Lescuyer, and
Alain Mebsout. The Alt-Ergo automated theorem prover, 2008, 2013.

[5] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd Your Herd of Provers. In Boogie 2011: First International Workshop on Intermediate
Veri�cation Languages, pages 53�64, Wroclaw, Poland, 2011.

[6] Pascal Cuoq. libksba memory issue disclosure. http://seclists.org/oss-sec/2016/q3/343.
Accessed: 2016-08-20.

[7] Pascal Cuoq and Damien Doligez. Hashconsing in an incrementally garbage-collected system:
a story of weak pointers and hashconsing in OCaml 3.10.2. In Proceedings of the 2008 ACM
SIGPLAN workshop on ML, pages 13�22. ACM, 2008.

[8] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-consing. In Proceedings
of the 2006 Workshop on ML, ML '06, pages 12�19, New York, NY, USA, 2006. ACM.

[9] Atsushi Kanamori and Daniel Weise. Worklist management strategies for data�ow analysis.
Technical report, 1994.

[10] Gary A Kildall. A uni�ed approach to global program optimization. In Proceedings of the
1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
194�206. ACM, 1973.

[11] Chris Okasaki and Andy Gill. Fast mergeable integer maps. In Workshop on ML, pages 77�86,
1998.

[12] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Transactions
on Programming Languages and Systems (TOPLAS), 29(5):26, 2007.

19

Cuoq & Rieu-Helft

20

