
HAL Id: hal-01503030
https://hal.science/hal-01503030

Submitted on 6 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CODECAST: An Innovative Technology to Facilitate
Teaching and Learning Computer Programming in a C

Language Online Course
Rémi Sharrock, Hamonic Ella, Mathias Hiron, Sebastien Carlier

To cite this version:
Rémi Sharrock, Hamonic Ella, Mathias Hiron, Sebastien Carlier. CODECAST: An Innovative Tech-
nology to Facilitate Teaching and Learning Computer Programming in a C Language Online Course.
Learning at Scale 2017, Apr 2017, Cambridge,MA, United States. �10.1145/3051457.3053970�. �hal-
01503030�

https://hal.science/hal-01503030
https://hal.archives-ouvertes.fr

CODECAST: An Innovative Technology to Facilitate
Teaching and Learning Computer Programming

in a C Language Online Course

Rémi Sharrock

Ella Hamonic

Telecom ParisTech

LTCI, IMT, Paris Saclay

Paris, France

first.last@imt.fr

Mathias Hiron

France-IOI

Paris, France

mathias.hiron@gmail.com

Sebastien Carlier

Epixode

Paris, France

s.carlier@epixode.fr

ABSTRACT

This paper introduces the CODECAST tool: an in-browser

C language interpreter, paired with an event and voice

recorder and player that facilitates teaching and learning to

program by synchronizing audio with source code edition,

visualization, step by step execution and testing.

Author Keywords

teaching; programming; code edition; audio; code

visualization; code execution; code testing; mooc; online

learning.

INTRODUCTION

The CODECAST tool offers an innovative approach to

teaching and learning C programming using an online code

editor and interpreter that runs in the browser and doesn’t

require any software installation. The teacher is able to

orally explain the entire code creation process while his

interaction with a code editor and interpreter is recorded.

He can also explain different aspects of the coding process

like testing, running, debugging and optimising, with the

help of several data and algorithms visualization modules.

The learner can play back the explanation and can take

control over it anytime he wishes. This means the learner

can interact directly with the code and try different ideas he

may have while listening to the teacher’s explanation:

making his own changes to the code, testing with his own

inputs, running the code step-by-step to better understand

its behaviour, visualizing other parts of the algorithm or the

data. CODECAST lets learners go back and forth between

the teacher’s explanation and their own ideas at any point

during the explanation. This facilitates the understanding by

easily switching from the teacher’s contexts and examples

to the learner’s ones.

CODECAST: MOOC USE CASES

This tool has been created for MOOCs with the help of

France-ioi, a french non-profit that offers online contents

and tools to teach programming to young students and

prepares students for the international Olympiads in

Informatics. It has been successfully used with more than

30.000 learners within two MOOCs (Massive Online Open

Courses) dedicated to the C Language, available in French

on the FUN platform (France Université Numérique) in

2016. Designed for early beginners in computer

programming, the C Language ABC MOOC made it easier

for learners to get onboard with computer programming. It

is worth noting that this MOOC had a remarkable

completion rate: 16,7% of enrolled learners got an “Honor

Certificate”. Through a facilitated process of self-

appropriation of code uses logic and autonomous testing,

the CODECAST tool may be a significant explanatory

factor.

CODECAST: THE FEATURES

While developing this tool, the team aimed to combine a

“tutorial style video” and an Integrated Development

Environment. If online tutorials are traditionally made with

screencast technologies, video content has many limitations

for the students (e.g.impossibility to copy-paste parts of the

code). CODECAST enables online tutorials to be fully

interactive.

The CODECAST tool consists of a C language interpreter,

integrated with visualization tools, a code editor and an

event and voice recorder for the teacher and a player for the

learner, all directly accessible on the web within a browser.

The recorder: recording audio and coding events
simultaneously.

The recorder is accessible on a single web page that

displays, in its most simple configuration, a record/stop

button and a source code editor as seen in Figure 1. Other

configurations may include a display of some specific

programming teaching modules like algorithm and data

structure visualizations, a variable inspector, a memory

monitor, compilation and step-by-step execution controls, a

program input editor and program output display. The

default code editor supports source code color syntax

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other
uses, contact the Owner/Author. Copyright is held by the

owner/author(s).

L@S 2017, April 20-21, 2017, Cambridge, MA, USA.
ACM 978-1-4503-4450-0/17/04.

http://dx.doi.org/10.1145/3051457.3053970

http://dx.doi.org/10.1145/3051457.3053970

highlighting and is also configurable (text font, color,

background, line numbering…)

 Figure 1. The CODECAST tool in its most simple

configurable interface: a recording button and a code editor

area.

Clicking the record button starts the capture of audio as

well as keyboard and mouse interactions with the active

modules, including key presses, mouse clicks, drag-and-

drops and text selection. The teacher is able to explain a

complete “coding from scratch” process by starting the

recording with a blank source code editor and typing the

code one letter at a time. He may also copy/paste some

existing code then modify it, and orally explain his changes

while he is performing them. Another approach is for the

teacher to pre-fill the code before starting the recording,

then focus his explanation on the step-by-step execution of

this code. Portions of the code may be highlighted to point

out some of its aspects, and multiple visualization modules

may be activated to help the teacher introduce specific

concepts, algorithms or other relevant runtime information.

Once the teacher stops the recording, the recorded files are

compressed and uploaded to a cloud service. A unique URL

link is then generated for the recording to be shared or

integrated in online learning platforms.

The player: playing audio and coding events and
interacting with code.

The player is accessed or displayed integrated in a website,

using the URL link generated during the recording process.

It presents exactly the same graphical user interface as was

configured during the recording (enabled modules, colors)

except that the record/stop button becomes a play/pause

button and a timeline appears right next to the play button.

When the play button is pressed, the playback starts and the

audio is played in synchronisation with all the keyboard and

mouse events. The CODECAST player shows every action

performed by the teacher during the recording, and displays

the same screen. By dragging the timeline cursor, the

learner may rapidly seek a relevant part of the recording;

the state of the interface is updated instantaneously while

the cursor is moved. The learner may also pause and take

control of CODECAST at any time, then modify the code,

test it with his own use cases, run it step-by-step, change

the inputs or the code itself or use all the modules in the

same conditions as the teacher. When the learner clicks the

play button again, all the modifications made are discarded

and the screen goes back to the state it was in when the

pause button was previously clicked.

CODECAST: TECHNICAL DETAILS

The CODECAST tool is developed mostly in Javascript.

The code is open source and available on the github

platform. It has to be installed on a web server and a cloud

service has to be configured to upload the recordings (such

as Amazon Web Services). When compiling a C program, a

server-side service uses clang to generate an abstract tree,

which is then used for the in-browser interpretation of the

code. During the recording process, both the audio and the

events are stored in the browser memory. The audio is

recorded using specific browser audio APIs (Application

Programming Interfaces) that interfaces with the system

audio and enables to use the computer’s external or

integrated microphones. When the recording is finished, the

audio is compressed to the MP3 format inside the browser,

and uploaded to a server. All the events are stored using a

JSON based format [1] and uploaded to a server. The player

only needs a unique identifier to download the MP3 and the

corresponding JSON file from the server before playing

then in sync.

CODECAST: THE DEMO

The audience will be able to test the CODECAST tool,

directly on their own computer, loading both the recorder

and the player within a browser. To test the recorder, the

computer has to have a microphone. Many existing

“CODECASTS” were created for MOOCs and will be

directly accessible from a page of collected URLs. A

website will be available to centralize the demonstrations.

ACKNOWLEDGMENTS

We thank France-ioi and Epixode for helping us designing

and developing the CODECAST tool. We acknowledge the

Patrick and Linda Drahi foundation for providing the

funding.

REFERENCES

1. France-IOI website Retrieved January, 2, 2017 from

http://www.france-ioi.org/

http://www.france-ioi.org/

