
HAL Id: hal-01503027
https://hal.science/hal-01503027

Submitted on 6 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GXcast: generalized explicit multicast routing protocol
Ali Boudani, Alexandre Guitton, Bernard Cousin

To cite this version:
Ali Boudani, Alexandre Guitton, Bernard Cousin. GXcast: generalized explicit multicast routing
protocol. Ninth IEEE International Symposium on Computers and Communications (ISCC’04), Jul
2004, Alexandrie, Egypt. pp.1012 - 1017, �10.1109/ISCC.2004.1358673�. �hal-01503027�

https://hal.science/hal-01503027
https://hal.archives-ouvertes.fr

GXcast: Generalized Explicit Multicast
Routing Protocol

Ali BOUDANI, Alexandre GUITTON and Bernard COUSIN

Irisa/University of Rennes I
Campus de Beaulieu, 35 042 Rennes Cedex, France

Email:
�
ali.boudani,alexandre.guitton,bernard.cousin � @irisa.fr

Abstract— Recently several multicast mechanisms were
proposed that scale better with the number of multicast
groups than traditional multicast does. These proposals
are known as small group multicast (SGM) or explicit
multicast (Xcast). Explicit multicast protocols, such as the
Xcast protocol, encode the list of group members in the
Xcast header of every packet. If the number of members in
a group increases, routers may need to fragment an Xcast
packet. Fragmented packets may not be identified as Xcast
packets by routers. In this paper, we show that the Xcast
protocol does not support the IP fragmentation. We show
also that avoiding fragmentation limits the group size that
can be handled by the Xcast protocol. First, we describe the
Xcast protocol, the Xcast+ protocol (which is an extension
of Xcast) and we compare these two protocols with tradi-
tional multicast protocols. We propose then a generalized
version of the Xcast protocol, called GXcast, intended to
permit the Xcast packets fragmentation and to support
the increasing number of members in a multicast group.
The behavior of the GXcast protocol is analyzed according
to several criteria. Finally, we present and evaluate with
simulations an improvement to GXcast and we conclude
that GXcast is a feasible and promising protocol.

I. INTRODUCTION

Multicast, the ability to efficiently send data to a
group of destinations, has become increasingly important
with the emergence of network-based applications like
IP telephony, video-conferencing, distributed interactive
simulation and software upgrading. A multicast routing
protocol should be simple to implement, scalable, ro-
bust, use minimal network overhead, consume minimal
memory resources, and inter-operate with other multicast
routing protocols.

Most of proposed multicast protocols like DVMRP [1]
and MOSPF ([2], [3]) perform well if group members
are densely packed. However, the fact that DVMRP
periodically floods the network and the fact that MOSPF
sends group membership information over the links,
make these protocols not efficient in cases where group
members are sparsely distributed among regions and the
bandwidth is not plentiful.

To address these issues, the Protocol Independent
Multicast (PIM) routing protocols are being developed
by the Inter-Domain Multicast Routing (IDMR), working

group of the IETF. PIM contains two protocols: PIM-
Dense Mode (PIM-DM) [4] which is adapted to groups
where members are densely distributed, and PIM-Sparse
Mode (PIM-SM) [5] which is adapted to group where
members are sparsely distributed. Although these two
protocols share similar control messages, they are essen-
tially proposed for two different kinds of applications.

Traditional multicast protocols [6] can be used to
minimize bandwidth consumption by using a delivery
tree. However, a router has to keep a forwarding state for
every multicast tree passing through it. Thus, traditional
multicast protocols suffer from a scalability problem
with the number of concurrently active multicast groups.
Indeed, the number of forwarding states grows with the
number of groups.

There seem to be two kinds of multicast that are
important: a broadcast-like multicast that sends data to a
large number of destinations and a narrow-cast multicast
that sends data to a fairly small group. An example of the
first kind of multicast is the audio and video multicasting
of a presentation to all employees in a corporate intranet.
An example of the second kind of multicast is a video-
conference involving three or four parties [6]. Thus,
a one-size-fits-all protocol will be unable to meet the
requirements of all applications [7]. Providing for many
groups of small conferences (a small number of widely
dispersed people) with global topological scope scales
badly given the current multicast model [8].

Recently several multicast mechanisms were proposed
that scale better with the number of multicast groups than
traditional multicast does. These proposals are known as
small group multicast (SGM) [9] or explicit multicast
(Xcast) [10]. Explicit multicast protocols, such as the
Xcast protocol, encode the list of group members in the
Xcast header of every packet. Xcast assumes that there
is no packet fragmentation. However, if fragmentation
occurs (e.g. if the group size or the data is too large) the
fragmented packets will not be identified as Xcast pack-
ets by routers. In this paper we propose a generalized
Xcast protocol to support the group size increasing and
to overcome the fragmentation problem.

In Section II, we describe the Xcast [10] protocol,
the Xcast+ [11] protocol (which is an extension of
Xcast) and we present the Xcast packets fragmentation
problem. In Section III, we describe the GXcast protocol
and we study the effect of its parameter on several
criteria. In Section IV, we propose an improvement
of the GXcast protocol and we evaluate the gain in
performance. Finally, we conclude in Section V that the
GXcast protocol is feasible and promising.

II. THE XCAST AND THE XCAST+ PROTOCOLS

To solve the problems of traditional multicast proto-
cols, Boivie et al. propose the Explicit Multicast protocol
(Xcast). In this section, we describe the Xcast protocol
[10], the Xcast+ protocol [11] (which is an extension of
Xcast) and we compare them with traditional multicast
protocols.

A. The Xcast protocol

The Xcast protocol [10] is a newly proposed multi-
cast protocol to support a very large number of small
multicast groups. To send data to a given group, the
source first explicitly encodes the list of destinations in
the Xcast header of the packet. Then, the source parses
the header, partitions the destinations based on each next
unicast hop and forwards a packet with an appropriate
header to each of the next hops. Each router along
the path to destinations repeats the same processing on
receiving an Xcast packet. If a router detects that there is
only one destination in the destination list of a packet, the
packet is converted to unicast. The algorithm realizing
the conversion of an Xcast packet to a unicast packet
is called Xcast-to-Unicast (X2U). This packet is then
forwarded in unicast along the remainder of the route.

G

G

G

G

G

G

G

Source (S)

R1 R2 R3

R4 D2

D1

D3

D4

D5

D6

Xcast
dst = All_

D5

R5 R6 R7

R8

R9

Xcast
dst = All_

Xcast
dst = All_

src =S src = S

src =S

Xcast
dst = All_

D1, D2

src =S

X2U

src =S
dst =D1

Payload Payload
Payload

Payload

Payload

Xcast packet

Router

Unicast packet

Group member

D1, D2,
D3, D4,
D5, D6

D3, D4,

 D5, D6

D3, D4,

UDP

IP

Xcast

IP

Xcast

UDP UDP
IP

UDP

Xcast

IP

UDP

Xcast

IP

Fig. 1. The forwarding of data in the Xcast protocol.

Example: consider the network represented by Fig-
ure 1 and the group � formed from the source � and

the six destinations ��� , ��� , ��� , ��	 , ��
 and ��� . The
source � generates an Xcast packet with the destination
list ���������������������	�����
�������� . � proceeds the packet
and remarks that ��� is the next unicast hop for all the
destinations. Consequently, � sends the Xcast packet to
��� . ��� receives the packet and proceeds it similarly. It
forwards the packet to the � � router which also forwards
it to � � . While proceeding the packet, the � � router
remarks that � 	 is the next unicast hop for the two
destinations � � and � � and that �
 is the next unicast
hop for the remaining destinations � � , � 	 , �
 and
� � . � � sends to � 	 an Xcast packet containing the
destination list ������������ and to ��
 an Xcast packet
containing the destination list ����������	�����
�������� . Upon
receiving the Xcast packet, the ��	 router detects that ���
and ��� are two separated stations. ��	 then generates two
unicast packets using the X2U algorithm and sends them
to ��� and ��� . Upon receiving the packet, � � extracts
from the packet the data. The process is similar for
routers ��
 to ��! and for the five remaining destinations.

B. The Xcast+ protocol

Xcast+ is an extension of Xcast for a more efficient
delivery of multicast packets [11]. Every source or
destination is associated to a Designated Router (DR).
Instead of encoding in the Xcast packet header the set
of group members, Xcast+ encodes the set of their DRs.
When a new member wants to join the group � of
source � , it sends an IGMP-join message [12] to its
DR. The DR will send a join-request message to the
source � . The DR of the source intercepts this message
and analyzes it in order to keep track of all concerned
DR addresses. When the source � wants to send a
message to the group � , it sends a multicast packet. This
packet is received by its DR and converted to an Xcast
packet using the Multicast-to-Xcast algorithm (M2X).
The packet is then forwarded as in Xcast to the DRs,
since the destination list in the Xcast header contains
the DR addresses instead of the member addresses. Then,
each DR converts the Xcast packet to a multicast packet
using the Xcast-to-Multicast protocol (X2M) and sends
it in its subnetworks.

Example: consider the same network represented by
Figure 2 and the group formed from the source � and
the five destinations ��� , ��� , ��� , ��	 and ��
 . The
figure shows where the M2X and X2M algorithms are
used. Between the DR of the source and the DRs of the
destinations, the packets are forwarded as normal Xcast
packets. Suppose that � � is a new member which wants
to join the group � . � � initiates the join of the group
by sending an IGMP message for the group �"�#���$� . The
DR of � � , � ! , receives the join request and sends a
registration request message toward � . When the DR
of � , ��� , receives the registration request message, it

G

G

G

G

G

G

Source (S)

R1 R2 R3

R4 D2

D1

D3

D4

D5

D6
R6 R7

R8

R9

R5

M2X X2M

src = S
dst = All_
Xcast

src = S
dst = All_
Xcast

Xcast
dst = All_
src =S

R4 X2MX2M

src =S
dst = G

R9

Xcast
dst = All_
src = S

src =S
dst = G

src =S
dst = G

Xcast
dst = All_
src =S

R8

src =S
dst = G

UDP
Xcast

IP

UDP
IP

UDP

UDP
IP

UDP

IPXcast

UDP

IP

IP

Xcast
UDP

Xcast
UDP

IP

UDP
IP

Payload

Payload

Payload

Payload

PayloadPayload

Payload

Payload

Payload

Xcast

IP
Channel=G Channel=G

Channel=G
Channel=G

Channel=G
R9

R8, R9

R4, R8,

G

Router

Group member

Fig. 2. The forwarding of data in the Xcast+ protocol.

sends back to � ! a registration reply message and does
not forward the registration request message to � . Thus,
��� is able to know dynamically the set of DRs of the
receivers and can fill the destination list of Xcast packets
on receiving multicast packet from � .

C. The IP fragmentation mechanism

Due to physical reasons, every link can transfer only
a limited volume of information in each packet. The
Internet protocol (IP) [13] contains a mechanism called
fragmentation which makes this limitation transparent
for end stations.

The fragmentation mechanism allows a packet to be
cut into fragments in order to be suitably transferred
on a link. Suppose that a router receives a packet.
After having decided on which link this packet should
be forwarded, the router checks the maximum capacity
of this link which is the Maximum Transmission Unit
(MTU). If the packet is too large and unless it is
explicitly forbidden, the router cuts out it in order to
respect the following constraints: each resulting fragment
is an autonomous IP packet, with a valid IP header, each
resulting fragment has a size less than or equal to the
MTU, and the data is distributed between the fragments.

The algorithm used to fragment IPv4 packets is ex-
plained in [13]. The IPv6 protocol also have a fragmen-
tation mechanism, described in [14]. Note that one goal
of IPv6 is to avoid fragmentation. This will be discussed
later.

D. Xcast packet fragmentation

Let us consider the Xcast packet fragmentation in
a router. Since the Xcast packet header may be large,
two cases can be considered: either the whole Xcast
packet header is short enough to be kept in the first

fragment, or the Xcast header has to be cut out. In both
cases, the second fragment is not a valid Xcast packet
since it has no Xcast header. Thus, these packets cannot
be forwarded to receivers and the data they contain is
lost. Moreover, in the second case the first fragment
contains only a subset of receivers and no data. The first
fragment may however be forwarded up to the mentioned
receivers, inducing meaningful traffic.

These problems show that the fragmentation of an
Xcast packet should be forbidden. This can be done in
IPv4 by setting the appropriate flag (Don’t Fragment,
DF) in the IP header. In order to reach the receivers, the
source has to limit the size of its packets to

�����
bytes

which is the minimum MTU guaranteed by IPv4 on any
link. This size limits the number of receivers in an Xcast
group to ���
	 (see Section III-B.1). However, the number
of members of the group in Xcast is stored using a

�

bits field, which leads to group containing no more than
��� � members. We consider that these two limits are too
restrictive. What we propose is a simple mechanism to
cancel these limitations in the size of Xcast groups. The
performance and the scalability of our proposition will
be analyzed.

III. THE GXCAST PROTOCOL

As explained in the previous section, the Xcast proto-
col can not support large groups due to its incompatibil-
ity with the IP fragmentation mechanism. In this section,
we propose a generalized Xcast routing protocol, the
GXcast protocol, which is designed basically to avoid
the fragmentation. Moreover, the GXcast protocol can be
parameterized in order to improve the Xcast behavior.

A. The GXcast protocol

The GXcast protocol is a simple generalized version of
the Xcast protocol: instead of sending a message to the
destinations, the source limits the number of destinations
in a packet to �� . Thus, the list of destinations is cut
into sub-lists of at most �� destinations. Each sub-list
corresponds to a destination list for an Xcast packet.
Several packets may have to be sent in order to deliver
data to all the destinations.
 � is the parameter of the GXcast protocol and it

impacts the protocol performance in terms of several
criteria. The choice of � is justified in section III-B.
GXcast packets are similar to Xcast packets: they have
the same header and are treated in the same way by
intermediate routers, DR destinations and destinations.
The only difference between the Xcast protocol and the
GXcast protocol is the packet process at the source or at
the DR of the source. The Xcast protocol and the GXcast
protocol can therefore inter-operate easily.

Example: consider the same network represented by
Figure 2 and the group formed from the source � and

the six members ��� , ��� , ��� , � 	 , ��
 and ��� . As in the
Xcast+ protocol, the DR of the source keeps track of only
the three DRs representing the subnetworks that contain
all the destinations: ��	 , ��� and ��! . For this example,
 � is fixed to � 1. The source sends a multicast packet
to its DR, ��� . � � translates it from a multicast packet
to an Xcast packet using the M2X algorithm. � � notices
that there are three destinations in the list for the next
hop. Since �� equals to � , this list is cut into two sub-
lists: one contains the first two destinations � 	 and � �
and the second contains the last destination, � ! 2. Each
generated packet is treated as a normal Xcast packet as
shown on Figure 2.

B. Study of the GXcast parameter

The behavior of the GXcast protocol greatly depends
on the value of the �� parameter. Indeed, as we will
see in this subsection, there is a number of criteria
that are directly influenced by the chosen value. In
the following, we denote by

�����
the value of the

minimum guaranteed MTU which depends on the IP
version used, by � the size of the IP header plus the
size of the Xcast header and by �
	 the size of an IP
address. will represent the number of destinations in
the group and � the volume in bytes of data to transfer.

1) Simple behavior: As we have seen in subsec-
tion II-C, since a packet has to contain at least
one byte of data, the maximum number of destina-
tions ����� allowed in an Xcast packet is defined as:

���������
������� � � �

�
	
�
�

The values ������� ���
	 and ������� �
�
correspond

respectively to the IPv4 and to the IPv6 specifications.
The simplest behavior GXcast can have is to fix the �
value to the ����� value. However, this is not efficient
for groups having a lot of members (typically more
than �����). For example, suppose that IPv6 is used
and suppose that �� ���

members have joined the
group. Each message can contain only � � 	 bytes of
information3. In order to send a volume of � ���
��� bytes, �

packets are needed. However, less packets would be
the result of a better choice of � . Choosing � equals
to ��! allows

� � � bytes per packet, which results into the
emission of only �
	 packets to reach the destinations.
This is approximately three times less.

2) The number of members influenced by a fault: If a
drop occurred on a GXcast packet, every member having
its address in the member list will be concerned by the

1This assumption is done to make the example easier. In real cases,"$# will usually have larger values.
2An improvement to better choose the sub-lists will be described in

section IV.
3We consider that %'&)(+*-,/.10 for IPv6, 2�354)&'.16�7�* and8+9 &:.10 . For IPv4, we would have taken %;&<6�*�,=.10 , 2�354�&�>+?@0

and
8+9 &�(.

drop. To reduce the number of destinations concerned
by such errors, small values of � should be chosen.

3) Number of generated packets: Considering a group
of destinations and a volume of � bytes to transmit
to these members, the number of packets A � �B� � � �
sent by the GXcast protocol with a parameter of � is
defined as:

A � �C� � �� �D�FE
 �

G E ����H�I� � � �J	 �1KMLON � � � �
G
�

Recall that in the GXcast protocol, the list of destina-
tions is cut into sub-lists of size at most � . The left
part of the expression of A represents the number of sub-
lists that will be generated by the GXcast protocol. The
right part of the expression of A represents the number
of packets needed to transmit � bytes of data. In order to
study the behavior of A in terms of � , we will consider
two cases: QP � and ��R . In the first case, we

have: A � �C� � �� �S�TE �������� � �
� �J	

G
�
This expression of A does not depend on � . The

GXcast protocol behaves in this case in the same way
than the Xcast protocol. In the second case where � R
 , we assume the following approximation:

UA � �C� � � �S�
��

������I� � � �J	 � ��WV A � �C� � � �
�

The
UA function admits a minimum value for:

 � �
������� �

�
� �
	 V

�X�+�
�
�

Since this optimal value does not depend neither on
nor on � , it is very simple to calculate and provides good
results in terms of the number of generated packets, we
propose it as a default value for the GXcast protocol.

4) Global processing time: To send a fixed amount
of data, several packets are generated. The global pro-
cessing time Y[Z � �� � of the GXcast protocol is the sum
of the header processing times of these packets. The
global processing time for a GXcast packet having �
destinations is approximately Y1\
]^�`_��Sab_ �� � , where_�� is the processing time of the IP and the GXcast header
and _ � is the processing time for an entry in the list
of destinations (lookup in routing table, generation of
packets per outgoing interface, etc.). We have then:

Y Z � � �D�FE
��

G Y[\�] V
c_��
�� a c_ � �

The Y[Z � �� � function is strictly decreasing and admits a
minimum for ��F� ����� . Meanwhile, choosing ��T�
 ����� is not realistic as shown in section III-B.1. On
the other side, choosing a small value for � greatly
increases the global processing time. The default value
of � , \�dfe1g� , leads to a global processing time which is
close to the optimal and is therefore a good compromise.

5) Total delay added by the GXcast protocol: Packets
generated at the source or at branching routers may
be delayed. At the source, packets destinated to at
most � members are sent successively. Therefore, the
last generated packet experiences a larger delay than
all previous packets. At a branching router, generated
packets per outgoing interface are different and cannot
be sent simultaneously. In the same way, latest packets
are also delayed.

������������������������
������������������������

������������������������ ������������������������ 	�		�		�		�	
�

�

�

�

��������������������������������

���������������� ������������������������ ������������������������
������������������������

������������������������ ������������������������

PSfrag replacements

���

���������
��������� � �� �� �

�!��!��!� �#"�#"�#" �%$�%$�%$
&](' $ &](' � &](' �

Fig. 3. Delay added by the GXcast protocol.

Let us consider the network represented by Figure 3,
where the source is called � and the)� 	 members
are respectively � � , � � , � � and � 	 . Let

) ���� be the
added delay experienced by a destination � . In a first
time, we consider that �� � 	 . � sends a message
to ��� ����� � ��� � ��� 	 � . The branching router � � sends a
first message to �� ��� and a second message (slightly
different) to �� � ��� � ��� 	 � . Thus,

) �� ��� � �
and the

three destinations � � , � � and � 	 will experience a
small delay. Since the branching router � � sends a first
message to �� ��� , a second to ��� � � and a third to ��� 	 � .
The added delay for the destination � 	 will be the time
for the router � � to do a copy plus the time for the
router � � to do two copies, i.e., three units of time
(
) ��� 	 � � �). The total added delay for � � 	 is� a ��a � a � � �

. For information, when �� � � ,) ��� ��� � �
,
) ��� ���M� � ,

) ��� ��� � � and
) ��� 	 � � � ,

which yields a total added delay of 	 . When ��� � ,) ��� ��� � �
,
) ��� ���M� � ,

) ��� ��� � � and
) ��� 	 � � � ,

which yields a total added delay of
�
.

The choice of � has an impact on the total delay
added by the protocol. We have seen that

) ���+* � is due
to the time for the source to send several packets and
to the time for branching node routers to send several
packets. Destination �+* is in the � �,* � ���.- ��a �

�
-th

packet sent by the source. The time for the source to send
the previous packets is � �/* � ���0-� � � units of time. The
number of branching nodes is harder to compute since
this number depends on the topology, which is unknown
by the protocol. However, in the worst-case, the packet
to �1* may be delayed �,* � ��� mod � times. Thus, we
have:

) ���+* � R �32/4 �\�] � a �/* � ��� mod � .
Let 5 be such as � � 6-75 . For every member �+* ,

we have: � �/* � ���.- � � R 5 � � and �/* � ��� mod � R

6-85 � � . Finally, we obtain
) ��+* � R 5Ha 6-75 � � . This

function admits a minimum value for 5 �:9 , thus, for
 � � 6-85��;9 , the total added delay is limited to a
minimum value interval.

We propose to choose � � 9 ����� for applications
that are delay-sensitive. For IPv4, the value for � is
11 and for IPv6, the value for �� is 8.

C. Using Path MTU instead of minimum MTU

In Section III-B, we defined
���H�

as the minimum
MTU guaranteed by IP. However, the value of the Path
MTU (PMTU) can also be used since we do not make
any assumptions on the stability of the

�����
value in

our study. The PMTU is the minimum value of the MTU
on the links of a path. It can be noticed that the PMTU
value is easy to obtain in GXcast, since unicast paths are
used. Moreover, the IPv6 protocol stores the PMTU for
unicast paths to every destinations.

IV. PROPOSED IMPROVEMENT

However, a certain locality can be deduced from the
longest common prefix of two IP addresses [13]. What
we propose is to sort the destination list in the source in
order to increase the chance of having a good regrouping.
In order to analyze the computation time induced by this
sort, three operations have to be considered: the join of a
new member to the group, the leave of a member of the
group, and the send operation, i.e., the cutting operation.

To reduce the complexity of the proposed sort, we
choose to store the set of members as a red-black tree
[15]. Inserting, searching or deleting a node in a red-
black tree can be done in logarithmic time. In such a
tree, the cutting operation can be realized in linear time
with two steps: first, an infix walk of the tree produces a
sorted list, and then, this sorted list is cut into sublists of
�� elements. Thus, managing a sorted list of members
can be done in an efficient way.

To evaluate the impact of the members list sort, we
simulate the GXcast protocol on the Abilene topology
[16]. The Abilene topology is an experimental Internet2
backbone for educational and research purposes. It con-
sists of � � nodes and � 	 edges.

Figure 4 shows the average cost of the trees for
�� � � � destinations, divided in packets of � � � �
destinations, on � ����� simulations. The number of LAN
per node varies from � to � � . Class C IP subnetworks
were randomly attributed to each LAN, which ensures
that two IPs in the same LAN are close. There is no
relation between two IPs of different LANs, even if these
two LANs are connected to the same node. Since the
IP are randomly chosen and uniformly distributed, the
cost of the trees is � � (since 6-���T� � , three trees are
generated. Without sorting, each tree spans all the � �
nodes of the Abilene topology, covering � � edges; the

total cost of the three trees is therefore � �) for every
simulation. Indeed, for each of the three trees, every
node is represented at least once in the destination list
and therefore, the eleven edges of the Abilene topology
are used by each tree. When there are few LANs per
node, sorting the destination list greatly reduces the cost
of the trees. Indeed, some locality can be deduced: for
example, a node that contains LAN having only high IP
adresses is not represented in the destination list for the
first tree.

without sorting
with sorting22

23

24

26

27

28

29

30

0 2 4 6 8 10 12 14 16 18 20

21

20

C
os

t o
f

th
e

tr
ee

s

25

Number of LANs per nodes

Fig. 4. The sorting performs better when there are few LANs per
node.

Figure 5 shows the average cost of the trees on the
same topology when the number of packets increases and
when there are

�
LANs per node, for � �
��� simulations.

The number of packets varies from � to � � . As the
number of packets increases, the cost of the trees without
sorting grows linearly (each tree covers all nodes).
The more packets are generated, the better the sorting
performs. For � � generated packets, the gain of sorting
is close to 50%. Therefore, sorting the destination list is
very important in the GXcast protocol.

without sorting
with sorting

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

C
os

t o
f

th
e

tr
ee

s

Number of packets

Fig. 5. The more packets are generated, the better the sorting
performs.

V. CONCLUSIONS

The Xcast and Xcast+ protocols permit to manage
efficiently a large number of small multicast groups.

A major drawback of these protocols is that they are
incapable to manage packet fragmentation. In addition,
there is a limit for the multicast group size. In this paper,
we proposed an extension to these protocols, named
GXcast. GXcast solves the fragmentation problem of
the Xcast protocol. We studied optimization criteria like
sending less packets or minimizing the header processing
time in routers. We showed that sorting the destination
list using the IP adresses enhances the performance of
the GXcast protocol. Finally, we deduced that the GXcast
protocol could manage a large number of small size
groups, with members in different sub-networks.

REFERENCES

[1] D. Waitzman, C. Partridge, and S. Deering. Distance Vector
Multicast Routing Protocol. IETF RFC 1075, 1988.

[2] J. Moy. Multicast Extensions to OSPF. IETF RFC 1584, 1994.
[3] J. Moy. MOSPF: Analysis and Experience. IETF RFC 1585,

1994.
[4] A. Adams J. Nicholas W. Siadak. Protocol Independent

Multicast-Dense Mode (PIM-DM): Protocol Specification (Re-
vised). IETF Internet Draft, 2003.

[5] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Han-
dley, V. Jacobson, C. Liu, P. Sharma, and L. Weit. Protocol
Independent Multicast-Sparse Mode (PIM-SM): Protocol Speci-
fication. IETF RFC 2362, 1998.

[6] M. Ramalho. Intra- and Inter-domain multicast routing protocols:
A survey and taxonomy. IEEE Communications Surveys and
Tutorials, 3(1):2–25, First Quarter 2000.

[7] Reliable Multicast Transport IETF Working Group Web
Site. http://www.ietf.org/html.charters/rmt-charter.html, February
2003.

[8] S. Deering, S. Hares, C. Perkins, and R. Perlman. Overview of
the 1998 IAB Routing Workshop. IETF RFC 2902, August 2000.

[9] D. Ooms. Taxonomy of Xcast/SGM proposals. IETF Internet
draft, July 2000.

[10] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and
O. Paridaens. Explicit multicast (Xcast) basic specification. IETF
Internet draft, January 2003.

[11] S. Myung-KI, K. Yong-Jin, P. Ki-Shik, and K. Sang-Ha. Ex-
plicit multicast extension (Xcast+) for efficient multicast packet
delivery. ETRI Journal, 23(4), December 2001.

[12] B. Cain, S. Deering, and A. Thyagarajan. Internet Group
Management Protocol, version 3. IETF RFC 3376, 2002.

[13] J. Postel. Internet Protocol. IETF RFC 791, 1981.
[14] S.Deering and R. Hinden. Internet Protocol, version 6 (IPv6)

Specification. IETF RFC 2460, 1998.
[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction

to Algorithms. MIT Press/McGraw-Hill, 1990.
[16] Abilene Network. http://abilene.internet2.edu/.

