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NOETHER RESOLUTIONS IN DIMENSION 2

ISABEL BERMEJO, EVA GARCÍA-LLORENTE, IGNACIO GARCÍA-MARCO, AND MARCEL MORALES

ABSTRACT. Let R := K[x1, . . . , xn] be a polynomial ring over an infinite field K , and let I ⊂ R
be a homogeneous ideal with respect to a weight vector ω = (ω1, . . . , ωn) ∈ (Z+)n such that
dim (R/I) = d. In this paper we study the minimal graded free resolution of R/I as A-module,

that we call the Noether resolution of R/I , whenever A := K[xn−d+1, . . . , xn] is a Noether nor-
malization of R/I . When d = 2 and I is saturated, we give an algorithm for obtaining this reso-
lution that involves the computation of a minimal Gröbner basis of I with respect to the weighted
degree reverse lexicographic order. In the particular case when R/I is a 2-dimensional semigroup
ring, we also describe the multigraded version of this resolution in terms of the underlying semi-
group. Whenever we have the Noether resolution of R/I or its multigraded version, we obtain
formulas for the corresponding Hilbert series of R/I , and when I is homogeneous, we obtain a
formula for the Castelnuovo-Mumford regularity of R/I . Moreover, in the more general setting
that R/I is a simplicial semigroup ring of any dimension, we provide its Macaulayfication.

As an application of the results for 2-dimensional semigroup rings, we provide a new upper
bound for the Castelnuovo-Mumford regularity of the coordinate ring of a projective monomial
curve. Finally, we describe the multigraded Noether resolution and the Macaulayfication of either
the coordinate ring of a projective monomial curve C ⊆ Pn

K
associated to an arithmetic sequence or

the coordinate ring of any canonical projection πr(C) of C to Pn−1

K
.

Keywords: Graded algebra, Noether normalization, semigroup ring, minimal graded free resolution, Cohen-

Macaulay ring, Castelnuovo-Mumford regularity.

1. INTRODUCTION

Let R := K[x1, . . . , xn] be a polynomial ring over an infinite field K, and let I ⊂ R be a
weighted homogeneous ideal with respect to the vector ω = (ω1, . . . , ωn) ∈ (Z+)n, i.e., I is
homogeneous for the grading degω(xi) = ωi. We denote by d the Krull dimension of R/I and
we assume that d ≥ 1. Suppose A := K[xn−d+1, . . . , xn] is a Noether normalization of R/I ,
i.e., A →֒ R/I is an integral ring extension. Under this assumption R/I is a finitely generated
A-module, so to study the minimal graded free resolution of R/I as A-module is an interesting
problem. Set

F : 0 −→ ⊕v∈Bp
A(−sp,v)

ψp−→ · · · ψ1−→ ⊕v∈B0
A(−s0,v) ψ0−→ R/I −→ 0

this resolution, where for all i ∈ {0, . . . , p} Bi denotes some finite set, and si,v are nonnegative
integers. This work concerns the study of this resolution of R/I , which will be called the Noether

resolution of R/I . More precisely, we aim at determining the sets Bi, the shifts si,v and the
morphisms ψi.

One of the characteristics of Noether resolutions is that they have shorter length than the min-
imal graded free resolution of R/I as R-module. Indeed, the projective dimension of R/I as
A-module is p = d − depth(R/I), meanwhile its projective dimension of R/I as R-module is
n−depth(R/I). Studying Noether resolutions is interesting since they contain valuable informa-
tion about R/I . For instance, since the Hilbert series is an additive function, we get the Hilbert
series of R/I from its Noether resolution. Moreover, whenever I is a homogeneous ideal, i.e.,
homogeneous for the weight vector ω = (1, . . . , 1), one can obtain the Castelnuovo-Mumford
regularity of R/I in terms of the Noether resolution as reg(R/I) = max{si,v − i | 0 ≤ i ≤ p,
v ∈ Bi}.
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2 I. BERMEJO, E. GARCÍA-LLORENTE, I. GARCÍA-MARCO, AND M. MORALES

In Section 2 we start by describing in Proposition 1 the first step of the Noether resolution of
R/I . By Auslander-Buchsbaum formula, the depth of R/I equals d − p. Hence, R/I is Cohen-
Macaulay if and only if p = 0 or, equivalently, if R/I is a free A-module. This observation
together with Proposition 1, lead to Proposition 2 which is an effective criterion for determining
whether R/I is Cohen-Macaulay or not. This criterion generalizes [Bermejo & Gimenez (2001),
Proposition 2.1]. If R/I is Cohen-Macaulay, Proposition 1 provides the whole Noether resolution
of R/I . When d = 1 and R/I is not Cohen-Macaulay, we describe the Noether resolution of
R/I by means of Proposition 1 together with Proposition 3. Moreover, when d = 2 and xn is a
nonzero divisor ofR/I , we are able to provide in Theorem 1 a complete description of the Noether
resolution of R/I . All these results rely in the computation of a minimal Gröbner basis of I with
respect to the weighted degree reverse lexicographic order. As a consequence of this, we provide
in Corollary 1 a description of the weighted Hilbert series in terms of the same Gröbner basis.
Whenever I is a homogeneous ideal, as a consequence of Theorem 1, we obtain in Corollary 2 a
formula for the Castelnuovo-Mumford regularity of R/I which is equivalent to the one provided
in [Bermejo & Gimenez (2000), Theorem 2.7].

In section 3 we study Noether resolutions when R/I is a simplicial semigroup ring, i.e., when-
ever I is a toric ideal and A = K[xn−d+1, . . . , xn] is a Noether normalization of R/I . We recall
that I is a toric ideal if I = IA with A = {a1, . . . , an} ⊂ Nd and ai = (ai1, . . . , aid) ∈ Nd; where
IA denotes the kernel of the homomorphism of K-algebras ϕ : R → K[t1, . . . , td]; xi 7→ tai =
tai11 · · · taidd for all i ∈ {1, . . . , n}. If we denote by S ⊂ Nd the semigroup generated by a1, . . . , an,
then the image of ϕ is K[S] := K[ts | s ∈ S] ≃ R/IA. By [Sturmfels (1996), Corollary 4.3],
IA is multigraded with respect to the grading induced by S which assigns degS(xi) = ai for all
i ∈ {1, . . . , n}. Moreover, whenever A is a Noether normalization of K[S] we may assume with-
out loss of generality that an−d+i = wn−d+iei for all i ∈ {1, . . . , d}, where ωn−d+i ∈ Z+ and
{e1, . . . , ed} is the canonical basis of Nd. In this setting we may consider a multigraded Noether

resolution of K[S], i.e., a minimal multigraded free resolution of K[S] as A-module:

0 −→ ⊕s∈Sp
A · s ψp−→ · · · ψ1−→ ⊕s∈S0

A · s ψ0−→ K[S] −→ 0,

where Si are finite subsets of S for all i ∈ {0, . . . , p} and A · s denotes the shifting of A by s ∈ S.
We observe that this multigrading is a refinement of the grading given by ω = (ω1, . . . , ωn) with
ωi :=

∑d
j=1 aij ∈ Z+; thus, IA is weighted homogeneous with respect to ω. As a consequence,

whenever we get the multigraded Noether resolution or the multigraded Hilbert series of K[S],
we also obtain its Noether resolution and its Hilbert series with respect to the weight vector ω.

A natural and interesting problem is to describe combinatorially the multigraded Noether res-
olution of K[S] in terms of the semigroup S. This approach would lead us to results for sim-
plicial semigroup rings K[S] which do not depend on the characteristic of the field K. In gen-
eral, for any toric ideal, it is well known that the minimal number of binomial generators of IA
does not depend on the characteristic of K (see, e.g., [Sturmfels (1996), Theorem 5.3]), but the
Gorenstein, Cohen-Macaulay and Buchsbaum properties of K[S] depend on the characteristic
of K (see [Hoa (1991)], [Trung & Hoa (1986)] and [Hoa (1988)], respectively). However, in the
context of simplicial semigroup rings, these properties do not depend on the characteristic of K
(see [Goto et al. (1976)], [Stanley (1978)] and [García-Sánchez & Rosales (2002)], respectively).
These facts give support to our aim of describing the whole multigraded Noether resolution of
K[S] in terms of the underlying semigroup S for simplicial semigroup rings.

The results in section 3 are the following. In Proposition 5 we describe the first step of the
multigraded Noether resolution of a simplicial semigroup ring K[S]. As a byproduct we recover
in Proposition 6 a well-known criterion forK[S] to be Cohen-Macaulay in terms of the semigroup.
When d = 2, i.e., IA is the ideal of an affine toric surface, Theorem 2 describes the second step of
the multigraded Noether resolution in terms of the semigroup S. When d = 2, from Proposition
5 and Theorem 2, we derive the whole multigraded Noether resolution of K[S] by means of S
and, as a byproduct, we also get in Corollary 3 its multigraded Hilbert series. Whenever IA a is
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homogeneous ideal, we get a formula for the Castelnuovo-Mumford regularity of K[S] in terms
of S, see Remark 1.

Given an algebraic variety, the set of points where X is not Cohen-Macaulay is the non Cohen-
Macaulay locus. Macaulayfication is an analogous operation to resolution of singularities and was
considered in Kawasaki [Kawasaki (2000)], where he provides certain sufficient conditions for X
to admit a Macaulayfication. For semigroup rings Goto et al. [Goto et al. (1976)] and Trung and
Hoa [Trung & Hoa (1986)] proved the existence of a semigroup S ′ satisfying S ⊂ S ′ ⊂ S̄ , where
S̄ denotes the saturation of S and thus K[S̄] is the normalization of K[S], such that we have an
exact sequence:

0 −→ K[S] −→ K[S ′] −→ K[S ′ \ S] −→ 0

with dim(K[S ′\S]) ≤ dim(K[S])−2. In this setting,K[S ′] satisfies the condition S2 of Serre, and
is called the S2-fication of K[S]. Moreover, when S is a simplicial semigroup, [Morales (2007),
Theorem 5] proves that this semigroup ringK[S ′] is exactly the Macaulayfication ofK[S]; indeed,
he proved that K[S ′] is Cohen-Macaulay and the support of K[S ′ \ S] coincides with the non
Cohen-Macaulay locus of K[S]. In [Morales (2007)], the author provides an explicit description
of the Macaulayfication of K[S] in terms of the system of generators of IA provided K[S] is a
codimension 2 simplicial semigroup ring. Section 4 is devoted to study the Macaulayfication of
any simplicial semigroup ring. The main result of this section is Theorem 4, where we entirely
describe the Macaulayfication of any simplicial semigroup ring K[S] in terms of the set S0, the
subset of S that provides the first step of the multigraded Noether resolution of K[S].

In sections 5 and 6 we apply the methods and results obtained in the previous ones to cer-
tain dimension 2 semigroup rings. More precisely, a sequence m1 < · · · < mn determines
the projective monomial curve C ⊂ PnK parametrically defined by xi := smitmn−mi for all
i ∈ {1, . . . , n − 1}, xn = smn , xn+1 := tmn . If we set A = {a1, . . . , an+1} ⊂ N2 where
ai := (mi, mn−mi), an := (mn, 0) and an+1 := (0, mn), it turns out that the homogeneous coor-
dinate ring of C is K[C] := K[x1, . . . , xn+1]/IA and A = K[xn, xn+1] is a Noether normalization
of R/IA.

The main result in Section 5 is Theorem 5, where we provide an upper bound on the Castelnuovo-
Mumford regularity of K[C], where C is a projective monomial curve. The proof of this bound
is elementary and builds on the results of the previous sections together with some classical
results on numerical semigroups. It is known that reg(K[C]) ≤ mn − n + 1 after the work
[Gruson et al. (1983)]. In our case, [L’vovsky (1996)] obtained a better upper bound, indeed if
we set m0 := 0 he proved that reg(K[C]) ≤ max1≤i<j≤n{mi − mi−1 + mj − mj−1} − 1. The
proof provided by L’vovsky is quite involved and uses advanced cohomological tools, it would be
interesting to know if our results could yield a combinatorial alternative proof of this result. Even
if L’vovsky’s bound usually gives a better estimate than the bound we provide here, we easily
construct families such that our bound outperforms the one by L’vovsky.

Also in the context of projective monomial curves, whenever m1 < · · · < mn is an arithmetic
sequence of relatively prime integers, the simplicial semigroup ring R/IA has been extensively
studied (see, e.g., [Molinelli & Tamone (1995), Li et. al (2012), Bermejo et al. (2017)]) and the
multigraded Noether resolution is easy to obtain. In Section 6, we study the coordinate ring of
the canonical projections of projective monomial curves associated to arithmetic sequences, i.e.,
the curves Cr whose homogeneous coordinate rings are K[Sr] = R/IAr

, where Ar := A \ {ar}
and Sr ⊂ N2 the semigroup generated by Ar for all r ∈ {1, . . . , n − 1}. In Corollary 5 we give
a criterion for determining when the semigroup ring K[Sr] is Cohen-Macaulay; whenever it is
not Cohen-Macaulay, we get its Macaulayfication in Corollary 6. Furthermore, in Theorem 7 we
provide an explicit description of their multigraded Noether resolutions. Finally, in Theorem 8 we
get a formula for their Castelnuovo-Mumford regularity.
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2. NOETHER RESOLUTION. GENERAL CASE

Let R := K[x1, . . . , xn] be a polynomial ring over an infinite field K, and let I ⊂ R be
a ω-homogeneous ideal, i.e., a weighted homogeneous ideal with respect to the vector ω =
(ω1, . . . , ωn) ∈ (Z+)n. We assume that A := K[xn−d+1, . . . , xn] is a Noether normalization
of R/I , where d := dim(R/I). In this section we study the Noether resolution of R/I , i.e., the
minimal graded free resolution of R/I as A-module:

(1) F : 0 −→ ⊕v∈Bp
A(−sp,v)

ψp−→ · · · ψ1−→ ⊕v∈B0
A(−s0,v) ψ0−→ R/I −→ 0,

where for all i ∈ {0, . . . , p} Bi is a finite set of monomials, and si,v are nonnegative integers.
In order to obtain the first step of the resolution, we will deal with the initial ideal of I +

(xn−d+1, . . . , xn) with respect to the weighted degree reverse lexicographic order >ω.
We recall that >ω is defined as follows: xα >ω x

β if and only if

• degω(x
α) > degω(x

β), or
• degω(x

α) = degω(x
β) and the last nonzero entry of α− β ∈ Zn is negative.

For every polynomial f ∈ R we denote by in (f) the initial term of f with respect to >ω.
Analogously, for every ideal J ⊂ R, in (J) denotes its initial ideal with respect to >ω.

Proposition 1. Let B0 be the set of monomials that do not belong to in (I + (xn−d+1, . . . , xn))
Then,

{xα + I | xα ∈ B0}
is a minimal set of generators of R/I as A-module and the shifts of the first step of the Noether

resolution (1) are given by degω(x
α) with xα ∈ B0.

Proof. Since A is a Noether normalization of R/I we have that B0 is a finite set. Let B0 =
{xα1 , . . . , xαk}. To prove that B := {xα1 + I, . . . , xαk + I} is a set of generators of R/I as
A-module it suffices to show that for every monomial xβ := xβ11 · · ·xβn−d

n−d /∈ in (I), one has that
xβ+ I ∈ R/I can be written as a linear combination of {xα1 + I, . . . , xαk + I}. Since {xα1 +(I+
(xn−d+1, . . . , xn)), . . . , x

αk + (I + (xn−d+1, . . . , xn))} is a K-basis of R/(I + (xn−d+1, . . . , xn)),
we have that g := xβ −∑k

i=1 λix
αi ∈ I + (xn−d+1, . . . , xn) for some λ1, . . . , λk ∈ K. Then we

deduce that in (g) ∈ in (I + (xn−d+1, . . . , xn)) which is equal to in (I) + (xn−d+1, . . . , xn), and
thus in (g) ∈ in (I). Since xβ /∈ in (I) and xαi /∈ in (I) for all i ∈ {1, . . . , k}, we conclude that
g = 0 and xβ + I = (

∑k
i=1 λix

αi) + I . The minimality of B can be easily proved. �

When R/I is a free A-module or, equivalently, when the projective dimension of R/I as A-
module is 0 and hence R/I is Cohen-Macaulay, Proposition 1 provides the whole Noether reso-
lution of R/I . In Proposition 2 we characterize the Cohen-Macaulay property for R/I in terms
of the initial ideal in (I) previously defined. This result generalizes [Bermejo & Gimenez (2001),
Theorem 2.1], which applies for I a homogeneous ideal.

Proposition 2. Let A = K[xn−d+1, . . . , xn] be a Noether normalization of R/I . Then, R/I is

Cohen-Macaulay if and only if xn−d+1, . . . , xn do not divide any minimal generator of in (I).

Proof. We denote by {ev | v in B0} the canonical basis of ⊕v∈B0
A(−degω(v)). By Proposition 1

we know that ψ0 : ⊕v∈B0
A(−degω(v)) −→ R/I is the morphism induced by ev 7→ v + I ∈ R/I .

By Auslander-Buchsbaum formula, R/I is Cohen-Macaulay if and only if ψ0 is injective.
(⇒) By contradiction, we assume that there exists α = (α1, . . . , αn) ∈ Nn such that xα =

xα1

1 · · ·xαn
n is a minimal generator of in (I) and that αi > 0 for some i ∈ {n − d + 1, . . . , n}.

Set u := xα1

1 · · ·xαn−d

n−d , since in(I + (xn−d+1, . . . , xn)) = in(I) + (xn−d+1, . . . , xn), we have that
u ∈ B0. We also set xα

′

:= x
αn−d+1

n−d+1 · · ·xαn
n ∈ A and f the remainder of xα modulo the reduced

Gröbner basis of I with respect to >ω. Then xα − f ∈ I and every monomial in f does not
belong to in (I). As a consequence, f =

∑t
i=1 cix

βi , where ci ∈ K and xβi = vix
β′
i with vi ∈ B0
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and xβ
′
i ∈ A for all i ∈ {1, . . . , t}. Hence, xα

′

eu −∑t
i=1 cix

β′
ievi ∈ Ker(ψ0) and R/I is not

Cohen-Macaulay.
(⇐) Assume that there exists a nonzero g ∈ Ker(ψ0), namely, g =

∑
v∈B0

gvev ∈ Ker(ψ0)
with gv ∈ A for all v ∈ B0. Then,

∑
v∈B0

gvv ∈ I . We write in (g) = cxαu with c ∈ K, xα ∈ A
and u ∈ B0. Since xn−d+1, . . . , xn do not divide any minimal generator of in (I), we have that
u ∈ in (I), a contradiction. �

When R/I has dimension 1, its depth can be either 0 or 1. When depth(R/I) = 1, then R/I
is Cohen-Macaulay and the whole Noether resolution is given by Proposition 1. When R/I is not
Cohen-Macaulay, then its depth is 0 and its projective dimension as A-module is 1. In this setting,
to describe the whole Noether resolution it remains to determine B1, ψ1 and the shifts s1,v ∈ N for
all v ∈ B1. In Proposition 3 we explain how to obtain B1 and ψ1 by means of a Gröbner basis of
I with respect to >ω.

Consider χ1 : R −→ R the evaluation morphism induced by xi 7→ xi for i ∈ {1, . . . , n − 1},
xn 7→ 1.

Proposition 3. Let R/I be 1-dimensional ring of depth 0. Let L be the ideal χ1(in(I)) ·R. Then,

B1 = B0 ∩ L
in the Noether resolution (1) of R/I and the shifts of the second step of this resolution are given

by degω(ux
δu
n ), where u ∈ B1 and δu := min{δ | uxδn ∈ in(I)}.

Proof. For every u = xα1

1 · · ·xαn−1

n−1 ∈ B0 ∩ L, there exists δ ∈ N such that uxδn ∈ in(I); let δu be
the minimum of all such δ. Consider pu ∈ R the remainder of uxδun modulo the reduced Gröbner
basis of I with respect to >ω. Thus uxδun − pu ∈ I is ω-homogeneous and every monomial xβ

appearing in pu does not belong to in(I), then by Proposition 1 it can be expressed as xβ = vxβnn ,
where βn ≥ 0 and v ∈ B0. Moreover, since uxδun >ω x

β, then βn ≥ δu and u >ω v. Thus, we can
write

pu =
∑

v∈B0
u>ωv

xδun muvv,

with muv = cxαuv ∈ A = K[xn] a monomial (possibly 0) for all v ∈ B0, u >ω v.
Now we denote by {ev | v in B0} the canonical basis of ⊕v∈B0

A(− degω(v)) and consider the
graded morphism ψ0 : ⊕v∈B0

A(− degω(v)) −→ R/I induced by ev 7→ v + I ∈ R/I . The above
construction yields that

hu := xδun (eu −
∑

v∈B0
u>ωv

muvev) ∈ Ker(ψ0)

for all u ∈ B0 ∩ L. We will prove that Ker(ψ0) is a free A-module with basis

C := {hu | u ∈ B0 ∩ L}.
Firstly, we observe that theA-module generated by the elements of C is free due to the triangular

form of the matrix formed by the elements of C. Let us now take g =
∑

v∈B0
gvev ∈ Ker(ψ0)

with gv ∈ A, we assume that g ∈ ⊕v∈B0
A(− degω(v)) is ω-homogeneous and, thus, gv is either

0 or a monomial of the form cxβvn with c ∈ K and βv ∈ N for all v ∈ B0. We consider ψ̄0 :
⊕v∈B0

A(− degω(v)) −→ R the monomorphism ofA-modules induced by ev 7→ v. Since ψ0(g) =
0, then the polynomial g′ := ψ̄0(g) =

∑
u∈B0

guu ∈ I and in(g′) = cxγnw for some w ∈ B0,
γ ∈ N and c ∈ K. Since in(g′) ∈ in(I), we get that w ∈ B0 ∩ L and γ ≥ δw. Hence,
g1 := g − cxγ−δwn−1 hw ∈ Ker(ψ0). If g1 is identically zero, then g ∈ ({hu | u ∈ B0 ∩ L}). If g1 is
not zero, we have that 0 6= in(ψ̄0(g1)) < in(ψ̄0(g)) and we iterate this process with g1 to derive
that {hu | u ∈ B0 ∩ L} generates Ker(ψ0). �
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The rest of this section concerns I a saturated ideal such that R/I is 2-dimensional and it is not
Cohen-Macaulay (and, in particular, depth(R/I) = 1). We assume that A = K[xn−1, xn] is a
Noether normalization of R/I and we aim at describing the whole Noether resolution of R/I . To
achieve this it only remains to describe B1, ψ1 and the shifts s1,v ∈ N for all v ∈ B1. In Proposition
4 we explain how to obtain B1 and ψ1 by means of a Gröbner basis of I with respect to >ω. Since
K is an infinite field, I is a saturated ideal and A is a Noether normalization of R/I , one has that
xn + τxn−1 is a nonzero divisor on R/I for all τ ∈ K but a finite set. Thus, by performing a mild
change of coordinates if necessary, we may assume that xn is a nonzero divisor on R/I .

Now consider χ : R −→ R the evaluation morphism induced by xi 7→ xi for i ∈ {1, . . . , n−2},
xi 7→ 1 for i ∈ {n− 1, n}.

Proposition 4. Let R/I be 2-dimensional, non Cohen-Macaulay ring such that xn is a nonzero

divisor. Let J be the ideal χ(in(I)) · R. Then,

B1 = B0 ∩ J
in the Noether resolution (1) of R/I and the shifts of the second step of this resolution are given

by degω(ux
δu
n−1), where u ∈ B1 and δu := min{δ | uxδn−1 ∈ in(I)}.

Proof. Since xn is a nonzero divisor of R/I and I is a ω-homogeneous ideal, then xn does not
divide any minimal generator of in (I). As a consequence, for every u = xα1

1 · · ·xαn−2

n−2 ∈ B0 ∩ J ,
there exists δ ∈ N such that uxδn−1 ∈ in(I); by definition, δu is the minimum of all such δ.
Consider pu ∈ R the remainder of uxδun−1 modulo the reduced Gröbner basis of I with respect to
>ω. Then uxδun−1 − pu ∈ I is ω-homogeneous and every monomial xβ appearing in pu does not
belong to in(I), then by Proposition 1 it can be expressed as xβ = vx

βn−1

n−1 x
βn
n , where βn−1, βn ≥ 0

and v ∈ B0. Moreover, we have that uxδun−1 >ω x
β which implies that either βn ≥ 1, or βn = 0,

βn−1 ≥ δu and u >ω v. Thus, we can write

pu =
∑

v∈B0
u>ωv

xδun−1fuvv +
∑

v∈B0

xnguvv,

with fuv ∈ K[xn−1] for all v ∈ B0, u >ω v and guv ∈ A for all v ∈ B0.
Now we denote by {ev | v in B0} the canonical basis of ⊕v∈B0

A(− degω(v)) and consider the
graded morphism ψ0 : ⊕v∈B0

A(− degω(v)) −→ R/I induced by ev 7→ v + I ∈ R/I . The above
construction yields that

hu := xδun−1eu −
∑

v∈B0
u>ωv

xδun−1fuvev −
∑

v∈B0

xnguvev ∈ Ker(ψ0)

for all u ∈ B0 ∩ J . We will prove that Ker(ψ0) is a free A-module with basis

C := {hu | u ∈ B0 ∩ J}.
Firstly, we prove that the A-module generated by the elements of C is free. Assume that∑
u∈B0∩J

quhu = 0 where qu ∈ A for all u ∈ B0 ∩ J and we may also assume that xn does
not divide qv for some v ∈ B0 ∩ J . We consider the evaluation morphism τ induced by xn 7→ 0
and we get that

∑
u∈B0∩J

τ(qu) τ(hu) =
∑

u∈B0∩J
τ(qu) (x

δu
n−1eu+

∑
v∈B0
u>ωv

xδun−1fuvev) = 0, which

implies that τ(qu) = 0 for all u ∈ B0 ∩ J and, hence, xn | qu for all u ∈ B0 ∩ J , a contradiction.
Let us take g =

∑
v∈B0

gvev ∈ Ker(ψ0) with gv ∈ A, we assume that g ∈ ⊕v∈B0
A(− degω(v))

is ω-homogeneous and, thus, gv is either 0 or a ω-homogeneous polynomial for all v ∈ B0.
We may also suppose that there exists v ∈ B0 such that xn does not divide gv. We consider
ψ̄0 : ⊕v∈B0

A(− degω(v)) −→ R the monomorphism of A-modules induced by ev 7→ v. Since
ψ0(g) = 0, then the polynomial g′ := ψ̄0(g) =

∑
u∈B0

guu ∈ I and in(g′) = cxγn−1w for some
w ∈ B0 and some c ∈ K, which implies that w ∈ B0 ∩ J . By definition of δw we get that γ ≥ δw,
hence g1 := g − cxγ−δwn−1 hw ∈ Ker(ψ0). If g1 is identically zero, then g ∈ ({hu | u ∈ B0 ∩ J}).
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If g1 is not zero, we have that 0 6= in(ψ̄0(g1)) < in(ψ̄0(g)) and we iterate this process with g1 to
derive that {hu | u ∈ B0 ∩ J} generates Ker(ψ0).

�

From Propositions 1 and 4 and their proofs, we can obtain the Noether resolution F of R/I by
means of a Gröbner basis of I with respect to >ω. We also observe that for obtaining the shifts
of the resolution it suffices to know a set of generators of in (I). The following theorem gives the
resolution.

Theorem 1. Let R/I be a 2-dimensional ring such that xn is a nonzero divisor. We denote by G
be a Gröbner basis of I with respect to >ω. If δu := min{δ | uxδn−1 ∈ in (I)} for all u ∈ B1, then

F : 0 −→ ⊕u∈B1
A(− degω(u)− δuωn−1)

ψ1−→ ⊕v∈B0
A(− degω(v))

ψ0−→ R/I −→ 0,

is the Noether resolution of R/I , where

ψ0 : ⊕v∈B0
A(− degω(v)) → R/I,

ev 7→ v + I

and
ψ1 : ⊕u∈B1

A(− degω(u)− δuωn−1) −→ ⊕v∈B0
A(− degω(v)),

eu 7→ xδun−1eu −
∑

v∈B0
fuvev

whenever
∑

v∈B0
fuvv with fuv ∈ A is the remainder of the division of uxδun−1 by G.

From this resolution, we can easily describe the weighted Hilbert series of R/I .

Corollary 1. Let R/I be a 2-dimensional ring such that xn is a nonzero divisor, then its Hilbert

series is given by:

HSR/I(t) =

∑
v∈B0

tdegω(v) −∑u∈B1
tdegω(u)+δuwn−1

(1− tωn−1)(1− tωn)

In the following example we show how to compute the Noether resolution and the weighted
Hilbert series of the graded coordinate ring of a surface in A4

K .

Example 1. Let I be the defining ideal of the surface of A4
K parametrically defined by f1 := s3 +

s2t, f2 := t4+st3, f3 := s2, f4 := t2 ∈ K[s, t]. Using SINGULAR [Decker et al. (2015)], COCOA
[Abbott et al. (2015)] or MACAULAY 2 [Grayson & Stillman (2015)] we obtain that whenever K
is a characteristic 0 field, the polynomials {g1, g2, g3, g4} constitute a minimal Gröbner basis of

its defining ideal with respect to >ω with ω = (3, 4, 2, 2), where g1 := 2x2x
2
3 − x21x4 + x33x4 −

x23x
2
4, g2 := x41 − 2x21x

3
3 + x63 − 2x21x

2
3x4 − 2x53x4 + x43x

2
4, g3 := x22 − 2x2x

2
4 − x3x

3
4 + x44 and

g4 := 2x21x2 − x21x3x4 + x43x4 − 3x21x
2
4 − 2x33x

2
4 + x23x

3
4. In particular,

in (I) = (x2x
2
3, x

4
1, x

2
2, x

2
1x2).

Then, we obtain that

• B0 = {u1, . . . , u6} with u1 := 1, u2 := x1, u3 := x2, u4 := x21, u5 := x1x2, u6 := x31,
• J = (x2, x

4
1) ⊂ K[x1, x2, x3, x4], and

• B1 = {u3}.

Since x3 divides a minimal generator of in (I), by Proposition 2 we deduce thatR/I is not Cohen-

Macaulay. We compute δ3 = min{δ | u3xδ3 ∈ in (I)} and get that δ3 = 2 and that r3 = −x4u4 +
(x33x4 − x23x

2
4)u1 is the remainder of the division of u3x

2
3 by G. Hence, following Theorem 1, we

obtain the Noether resolution or R/I:

F : 0 −→ A(−8)
ψ−→ A⊕A(−3)⊕A(−4)⊕

⊕A(−6)⊕ A(−7)⊕ A(−9)
−→ R/I −→ 0,
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where ψ is given by the matrix 


−x33x4 + x23x
2
4

0
x23
x4
0
0




Moreover, by Corollary 1, we obtain that the weighted Hilbert series of R/I is

HSR/I(t) =
1 + t3 + t4 + t6 + t7 − t8 + t9

(1− t2)2
.

If we consider the same parametric surface over an infinite field of characteristic 2, we obtain

that {x21 + x33 + x23x4, x
2
2 + x3x

3
4 + x44} is a minimal Gröbner basis of I with respect to >ω, the

weighted degree reverse lexicographic order with ω = (3, 4, 2, 2). Then we have that

B0 = {v1 := 1, v2 := x1, v3 := x2, v4 := x1x2},
and B1 = ∅, so R/I is Cohen-Macaulay. Moreover, we also obtain the Noether resolution of R/I

F ′ : 0 −→ A⊕ A(−3)⊕ A(−4)⊕ A(−7) −→ R/I −→ 0

and the weighted Hilbert series of R/I is

HSR/I(t) =
1 + t3 + t4 + t7

(1− t2)2
.

To end this section, we consider the particular case where I is standard graded homogeneous,
i.e., ω = (1, . . . , 1). In this setting, we obtain a formula for the Castelnuovo-Mumford regularity
of R/I in terms of in (I) or, more precisely, in terms of B0 and B1. This formula is equivalent to
that of [Bermejo & Gimenez (2000), Theorem 2.7] provided xn is a nonzero divisor of R/I .

Corollary 2. Let R/I be a 2-dimensional standard graded ring such that xn is a nonzero divisor.

Then,

reg (R/I) = max{deg(v), deg(u) + δu − 1 | v ∈ B0, u ∈ B1}

In the following example we apply all the results of this section.

Example 2. Let K be a characteristic zero field and let us consider the projective curve C of P4
K

parametrically defined by:

x1 = s3t5 − st7, x2 = s7t, x3 = s4t4, x4 = s8, x5 = t8.

A direct computation with SINGULAR, COCOA or MACAULAY 2 yields that a minimal Gröbner

basis G of the defining ideal I ⊂ R = K[x1, . . . , x5] of C with respect to the degree reverse

lexicographic order consists of 10 elements and that

in (I) = (x41, x
4
2, x

3
1x3, x1x3x

2
4, x

2
1x2, x1x

2
2, x1x2x3, x

2
2x3, x

2
1x4, x

2
3).

Then, we obtain that the set B0 is the following

B0 = {u1 := 1, u2 := x1, u3 := x2, u4 := x3, u5 := x21, u6 := x1x2, u7 := x22,
u8 := x1x3, u9 := x2x3, u10 := x31, u11 := x32, u12 := x21x3}

and the ideal J is

J = (x21, x1x3, x
2
3, x

2
2x3, x

4
2) ⊂ R.

Thus, B1 = {u5, u8, u10, u12}. For i ∈ {5, 8, 10, 12} we compute δi, the minimum integer such

that uix
δi
4 ∈ in (I) and get that δ4 = δ10 = δ12 = 1 and δ8 = 2. If we set ri the remainder of the

division of uix
δi
4 for all i ∈ {4, 8, 10, 12}, we get that

• r4 = −x4x25b1 + 2x4x5b4 + x5b6 + x5b7,



NOETHER RESOLUTIONS IN DIMENSION 2 9

• r8 = x24x5b3 + x5b11,

• r10 = x24x5b2 + 3x4x5b8 + (x25 − x4x5)b9, and

• r12 = x24x
2
5b1 + x4x5b6 + x25b7.

Hence, we obtain the following minimal graded free resolution of R/I

F : 0 −→ A(−3)⊕A3(−4)
ψ−→ A⊕ A3(−1)A5(−2)⊕ A3(−3) −→ R/I −→ 0,

where ψ is given by the matrix




x4x
2
5 0 0 −x24x25

0 0 −x24x5 0
0 0 0 0

−2x4x5 −x24x5 0 0
x4 0 0 0
−x5 0 0 −x4x5
−x5 0 0 −x25
0 x24 −3x4x5 0
0 0 x4x5 − x25 0
0 0 x4 0
0 −x5 0 0
0 0 0 x4




Moreover, the Hilbert series of R/I is

HSR/I(t) =
1 + 3t+ 5t2 + 2t3 − 3t4

(1− t)2
.

and reg(R/I) = max{3, 4− 1} = 3.

3. NOETHER RESOLUTION. SIMPLICIAL SEMIGROUP RINGS

This section concerns the study of Noether resolutions in simplicial semigroup rings R/I , i.e.,
whenever I = IA with A = {a1, . . . , an} ⊂ Nd and an−d+i = wn−d+iei for all i ∈ {1, . . . , d},
where {e1, . . . , ed} is the canonical basis of Nd. In this setting, R/IA is isomorphic to the semi-
group ring K[S], where S is the simplicial semigroup generated by A. When K is infinite, IA
is the vanishing ideal of the variety given parametrically by xi := tai for all i ∈ {1, . . . , n} (see,
e.g., [Villarreal (2015)]) and, hence, K[S] is the coordinate ring of a parametric variety. In this
section we study the multigraded Noether resolution of K[S] with respect to the multigrading
degS(xi) = ai ∈ S; namely,

F : 0 −→ ⊕s∈Sp
A · s ψp−→ · · · ψ1−→ ⊕s∈S0

A · s ψ0−→ K[S] −→ 0.

where Si ⊂ S for all i ∈ {0, . . . , p}. We observe that this multigrading is a refinement of the
grading given by ω = (ω1, . . . , ωn) with ωi :=

∑d
j=1 aij ∈ Z+; thus, IA is ω-homogeneous and

the results of the previous section also apply here.
Our objective is to provide a description of this resolution in terms of the semigroup S. We

completely achieve this goal when K[S] is Cohen-Macaulay (which includes the case d = 1) and
also when d = 2.

For any value of d ≥ 1, the first step of the resolution corresponds to a minimal set of generators
of K[S] as A-module and is given by the following well known result.

Proposition 5. Let K[S] be a simplicial semigroup ring. Then,

S0 = {s ∈ S | s− ai /∈ S for all i ∈ {n− d+ 1, . . . , n}} .
Moreover, ψ0 : ⊕s∈S0

A · s −→ K[S] is the homomorphism of A-modules induced by es 7→ ts,
where {es | s ∈ S0} is the canonical basis of ⊕s∈S0

A · s.
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Proposition 5 gives us the whole multigraded Noether resolution of K[S] when K[S] is Cohen-
Macaulay.

In [Goto et al. (1976), Theorem 1] (see also [Stanley (1978), Theorem 6.4]), the authors provide
a characterization of the Cohen-Macaulay property ofK[S]. In the following result we are proving
an equivalent result that characterizes this property in terms of the size of S0. The proof shows
how to obtain certain elements of Ker(ψ0) and this idea will be later exploited to describe the
whole resolution when d = 2 and K[S] is not Cohen-Macaulay.

Proposition 6. Let S be a simplicial semigroup as above. Set D :=
(∏d

i=1 ωn−d+i

)
/[Zd : ZS],

where [Zd : ZS] denotes the index of the group generated by S in Zd. Then, K[S] is Cohen-

Macaulay ⇐⇒ |S0| = D.

Proof. By Auslander-Buchsbaum formula we deduce that K[S] is Cohen-Macaulay if and only
if ψ0 is injective, where ψ0 is the morphism given in Proposition 5. We are proving that ψ0 is
injective if and only if |S0| = D. We define an equivalence relation on Zd, u ∼ v ⇐⇒ u− v ∈
Z{ωn−d+1e1, . . . , ωned}. This relation partitions ZS into D = [ZS : Z{ωn−d+1e1, . . . , ωned}]
equivalence classes. Since

Zd/ZS ≃
(
Zd/Z{ωn−d+1e1, . . . , ωned}

)
/ (ZS/Z{ωn−d+1e1, . . . , ωned}) ,

we get that D =
(∏d

i=1 ωn−d+i

)
/[Zd : ZS]. Moreover, the following two facts are easy to check:

for every equivalence class there exists an element b ∈ S0, and S = S0+N{ωn−d+1e1, . . . , ωned}.
This proves that |S0| ≥ D.

Assume that |S0| > D, then there exist u, v ∈ S0 such that u ∼ v or, equivalently, u +∑d
i=1 λiωn−d+iei = v +

∑d
i=1 µiωn−d+iei for some λi, µi ∈ N for all i ∈ {1, . . . , d}. Thus

xλ1n−d+1 · · ·xλdn eu − xµ1n−d+1 · · ·xµdn ev ∈ Ker(ψ0) and ψ0 is not injective.
Assume now that |S0| = D, then for every s1, s2 ∈ S0, s1 6= s2, we have that s1 6∼ s2. As a
consequence, an element ρ ∈ ⊕s∈S0

A · s is homogeneous if and only if it is a monomial, i.e.,
ρ = cxαes for some c ∈ K, xα ∈ A and s ∈ S0. Since the image by ψ0 of a monomial is
another monomial, then there are no homogeneous elements in Ker(ψ0) different from 0, so ψ0 is
injective. �

From now on suppose that K[S] is a 2-dimensional non Cohen-Macaulay semigroup ring. In
this setting, we consider the set

∆ := {s ∈ S | s− an−1, s− an ∈ S and s− an − an−1 /∈ S} .
The set ∆ or slight variants of it has been considered by other authors (see, e.g., [Goto et al. (1976),
Stanley (1978), Trung & Hoa (1986)]). We claim that ∆ has exactly |S0| − D elements. Indeed,
if we consider the equivalence relation ∼ of Proposition 6, then ∼ partitions ZS in D classes
C1, . . . , CD and it is straightforward to check that |∆∩Ci| = |S0 ∩Ci| − 1 for all i ∈ {1, . . . , D}.
From here, we easily deduce that |∆| = |S0| − D. Hence, a direct consequence of Proposition 6
is that ∆ is nonempty because K[S] is not Cohen-Macaulay. Furthermore, as Theorem 2 shows,
the set ∆ is not only useful to characterize the Cohen-Macaulay property but also provides the set
of shifts in the second step of the multigraded Noether resolution of K[S].
Theorem 2. Let K[S] be a 2-dimensional semigroup ring and let

∆ = {s ∈ S | s− an−1, s− an ∈ S and s− an − an−1 /∈ S} ,
as above. Then, S1 = ∆.

Proof. Set B0 the monomial basis of R/(in(IA), xn−1, xn), where in (IA) is the initial ideal of IA
with respect to >ω. For every u = xα1

1 · · ·xαn
n ∈ B1 we set δu ≥ 1 the minimum integer such that

uxδun−1 ∈ in(IA). Consider pu ∈ R the remainder of uxδun−1 modulo the reduced Gröbner basis of
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IA with respect to >ω, then uxδun−1 − pu ∈ IA. Since IA is a binomial ideal, we get that pu = xγ

for some (γ1, . . . , γn) ∈ Nn. Moreover, the condition xα > xγ and the minimality of δu imply that
γn > 0 and γn−1 = 0, so xγ = vux

γvu
n with vu ∈ B0. As we proved in Proposition 4, if we denote

by {ev | v ∈ B0} the canonical basis of ⊕v∈B0
A(−degS(v)) and hu := xδun−1eu − x

γvu
n evu for all

u ∈ B1, then Ker(ψ0) is the A-module minimally generated by C := {hu | u ∈ B1}. Let us prove
that

{degS(hu) | u ∈ B1} = {s ∈ S | s− an−1, s− an ∈ S and s− an−1 − an /∈ S}.
Take s = degS(hu) for some u ∈ B1, then s = degS(hu) = degS(u)+δuan−1 = degS(vu)+γvuan.
Since δu, γvu ≥ 1, we get that both s−an−1, s−an ∈ S. Moreover, if s−an−1−an =

∑n
i=1 δiai ∈

S, then xδu−1
n−1 u− xλxn+1 ∈ IA, which contradicts the minimality of δu.

Take now s ∈ S such that s−an−1, s−an ∈ S and s−an−1−an /∈ S. Since s−an−1, s−an ∈ S,
there exists s′, s′′ ∈ S0 and γ1, γ2, λ1, λ2 ∈ N such that s−an = s′+γ1an−1+γ2an and s−an+1 =
s′′+λ1an−1+λ2an. Observe that γ2 = 0, otherwise s−an−1−an = s′+γ1an−1+(γ2−1)an ∈ S,
a contradiction. Analogously λ1 = 0. Take u, v ∈ B0 such that degS(u) = s′ and degS(v) = s′′.
We claim that u ∈ J and that δu = γ1. Indeed, f := uxγ1n−1 − vxλ2n ∈ IA and in(f) = uxγ1n−1, so
u ∈ B1. Moreover, if there exists γ′ < δu, then s− an−1 − an ∈ S, a contradiction. �

One of the interests of Proposition 6 and Theorem 2 is that they describe multigraded Noether
resolutions of dimension 2 semigroup rings in terms of the semigroup S and, in particular, they
do not depend on the characteristic of the field K.

Now we consider the multigraded Hilbert Series of K[S], which is defined by

HSK[S](t) =
∑

s∈S

ts =
∑

s=(s1,...,sd)∈S

ts11 · · · tsdd ,

When d = 2, from the description of the multigraded Noether resolution of K[S] we derive an
expression of its multigraded Hilbert series in terms of S0 and S1.

Corollary 3. Let K[S] be a dimension 2 semigroup ring. The multigraded Hilbert series of K[S]
is:

HSK[S](t) =

∑
s∈S0

ts −∑s∈S1
ts

(1− t
ωn−1

1 )(1− tωn

2 )
.

Remark 1. When K[S] is a two dimensional semigroup ring and S is generated by the set A =
{a1, . . . , an} ⊂ N2, if we set ω = (ω1, . . . , ωn) ∈ Nn with ωi := ai,1 + ai,2 for all i ∈ {1, . . . , n},

then IA is ω-homogeneous, as observed at the beginning of this section. The Noether resolution of

K[S] with respect to this grading is easily obtained from the multigraded one. Indeed, it is given

by the following expression:

F : 0 −→ ⊕(b1,b2)∈S1
A(−(b1 + b2))

ψ1−→ ⊕(b1,b2)∈S0
A(−(b1 + b2))

ψ0−→ K[S] −→ 0.

In addition, the weighted Hilbert series of K[S] is obtained from the multigraded one by just

considering the transformation tα1

1 t
α2

2 7→ tα1+α2 .

When ω1 = · · · = ωn, then IA is a homogeneous ideal. In this setting, the Noether resolution

with respect to the standard grading is

F : 0 −→ ⊕(b1,b2)∈S1
A(−(b1 + b2)/ω1)

ψ1−→ ⊕(b1,b2)∈S0
A(−(b1 + b2)/ω1)

ψ0−→ K[S] −→ 0.

Thus, the Castelnuovo-Mumford regularity of K[S] is

(2) reg (K[S]) = max

({
b1 + b2
ω1

| (b1, b2) ∈ S0

}
∪
{
b1 + b2
ω1

− 1 | (b1, b2) ∈ S1

})
.

Moreover, the Hilbert series of K[S] is obtained from the multigraded Hilbert series by just con-

sidering the transformation tα1

1 t
α2

2 7→ t(α1+α2)/ω1 .
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4. MACAULAYFICATION OF SIMPLICIAL SEMIGROUP RINGS

Given K[S] a simplicial semigroup ring, the semigroup ring K[S ′] is the Macaulayfication of
K[S] if the three following conditions are satisfied:

(1) S ⊂ S ′,
(2) K[S ′] is Cohen-Macaulay, and
(3) the Krull dimension of K[S ′ \ S] is ≤ d− 2, where d is the Krull dimension of K[S].

The existence and uniqueness of aK[S ′] fulfilling the previous properties for simplicial semigroup
rings is guaranteed by [Morales (2007), Theorem 5]. In this section we describe explicitly the
Macaulayfication of any simplicial semigroup ring in terms of the set S0. For this purpose we
consider the same equivalence relation in Zd as in proof of Proposition 6, namely, for s1, s2 ∈ Zd

s1 ∼ s2 ⇐⇒ s1 − s2 ∈ Z{ωn−d+1e1, . . . , ωned}.
As we have seen, S0 ⊂ Zd is partitioned into D := ωn−d+1 · · ·ωn/[Zd : ZS] equivalence classes
S1, . . . , SD. For every equivalence class Si we define a vector bi in the following way. We
take Si = {s1, . . . , st}, where sj = (sj1, . . . , sjd) ∈ Nd for all j ∈ {1, . . . , t} and define
bi = (bi1, . . . , bid) ∈ Nd as the vector whose k-th coordinate bik equals the minimum of the k-
th coordinates of s1, . . . , st, this is, bik := min{s1k, . . . , stk}. We denote B := {b1, . . . , bD}
and

(3) S ′ := B+ N{ωn−d+1e1, . . . , ωned}.
The objective of this section is to prove that K[S ′] is the Macaulayfication of K[S]. The main

issue in the proof is to show that dim(K[S ′ \ S]) ≤ d − 2. For this purpose we use a technique
developed in [Morales & Nhan (2003)] which consists of determining the dimension of a graded
ring by studying its Hilbert function. More precisely, for L an ω-homogeneous ideal, if we denote
by h(i) the Hilbert function of R/L, by [Morales (1985), Lemma 1.4], there exist some polyno-
mials Q1, ..., Qs ∈ Z[t] with s ∈ Z+ such that h(ls+ i) = Qi(l) for all i ∈ {1, . . . , s} and l ∈ Z+

large enough. Moreover, in [Morales (2016)], the author proves the following.

Theorem 3. Let L be a ω-homogeneous ideal and denote by h : N → N the Hilbert function

of R/L. If we set h0(n) =
∑n

i=0 h(i), then there exist s polynomials f1, ..., fs ∈ Z[t] such that

h0(ls+i) = fi(l) for all i ∈ {1, . . . , s} and l ∈ Z+ large enough. Moreover, all these polynomials

f1, . . . , fs have the same leading term c tdim(R/L)/(dim(R/L))! with c ∈ Z+.

In the proof of Theorem 4, we relate the Hilbert function of K[S ′ \ S] with that of several
monomial ideals and use of the following technical lemma.

Lemma 1. Let M ⊂ K[y1, . . . , yd] be a monomial ideal. If for all i ∈ {1, . . . , d} there exist

xα ∈M such that xi ∤ x
α, then dim(K[y1, . . . , yd]/M) ≤ d− 2.

Proof. Let us prove that M has height ≥ 2. By contradiction, assume that M has an associated
prime P of height one. Since M is monomial, then so is P. Therefore, P = (xi) for some
i ∈ {1 . . . , d}. Hence we get that M ⊂

√
M ⊂ P = (xi), a contradiction. �

Now we can proceed with the proof of the main result of this section.

Theorem 4. Let K[S] be a simplicial semigroup ring and let S ′ be the semigroup described in

(3). Then, K[S ′] is the Macaulayfication of K[S].
Proof. Is is clear that S ⊂ S ′. In order to obtain the result it suffices to prove that S ′ is a semi-
group, that K[S ′] is Cohen-Macaulay and that dim(K[S ′ \ S]) ≤ dim(K[S]) − 2 (see, e.g.,
[Morales (2007)]).

Let us first prove that S ′ is a semigroup. Take s1, s2 ∈ S ′, then there exists i, j ∈ {1, . . . , D}
such that s1 = bi+ c1 and s2 = bj + c2 for some c1, c2 ∈ N{ωn−d+1e1, . . . , ωned}. Then s1+ s2 =
bi + bj + c1 + c2. We take k ∈ {1, . . . , D} such that bk ∼ bi + bj . By construction of B we have
that bk = bi + bj + c3 for some c3 ∈ {ωn−d+1e1, . . . , ωned} and, hence, s1 + s2 ∈ S ′.
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To prove that S ′ is Cohen-Macaulay it suffices to observe that B = {b ∈ S ′ | b− ai /∈ S ′ for all
i ∈ {1, . . . , d}} and that |B| = D, so by Proposition 6 it follows that S ′ is Cohen-Macaulay.

Let us prove that dim (K[S ′\S]) ≤ d−2. For all s = (s1, . . . , sm) ∈ Nm we consider the grad-
ing deg(ts) =

∑m
i=1 si and we denote h, h′ and ĥ the Hilbert functions ofK[S], K[S ′] andK[S ′ \

S] respectively, then ĥ = h′ − h. Moreover, we have that h′ =
∑D

i=1 h
′
i and h =

∑D
i=1 hi where

h′i(d) := |{s ∈ S ′ | deg ts = d and s ∼ bi}| and hi(d) := |{s ∈ S | deg ts = d and s ∼ bi}|. For
each i ∈ {1, . . . , D} we define a monomial ideal Mi ⊂ k[y1, . . . , yd] as follows: for every b ∈ S
such that b ∼ bi we define the monomial mb := yβ11 · · · yβdd if b = bi +

∑d
i=1 βiωn−d+iei and

Mi := ({mb | b ∈ S, b ∼ bi}). We consider in K[y1, . . . , yd] the grading degω(yi) = ωn−d+i and
denote by hωi the corresponding ω-homogeneous Hilbert function of K[y1, . . . , yd]/Mi. We have
the following equality hωi (λ) = h′i(

∑d
j=1 bij + λ) − hi(

∑d
j=1 bij + λ) because yβ /∈ Mi ⇐⇒

bi +
∑d

i=1 βiωn−d+iei ∈ S ′ \ S. Hence, we have expressed the Hilbert function ĥ of K[S \ S ′] as
a sum of D Hilbert functions of K[y1, . . . , yd]/Mi, for some monomial ideals M1, . . . ,MD and,
by Lemma 1, dim(K[y1, . . . , yd]/Mi) ≤ d − 2. Thus, by Theorem 3, we can conclude that the
dimension of K[S ′ \ S] equals the maximum of dim(K[y1, . . . , yd]/Mi) ≤ d − 2 and we get the
result. �

We finish this section with an example showing how to compute the Macaulayfication by means
of the set S0. Moreover, this example illustrates that even ifK[S] = R/IA with IA a homogeneous
ideal, it might happen that the ideal associated to K[S ′] is not standard homogeneous.

Example 3. We consider the semigroup ring K[S], where S ⊂ N2 is the semigroup generated by

A := {(1, 9), (4, 6), (5, 5), (10, 0), (0, 10)} ⊂ N2. Then, K[S] = R/IA and IA is homogeneous.

If we compute the set S0 we get that

S0 = {(0, 0), (1, 9), (2, 18), (3, 27), (13, 17), (4, 6), (5, 5), (6, 14), (7, 23), (8, 12), (9, 11)} .
Moreover we compute D = 100/[Zd : ZS] = 10 and get S1 = {(0, 0)}, S2 = {(1, 9)},

S3 = {(2, 18)}, S4 = {(3, 27), (13, 17)}, S5 = {(4, 6)}, S6 = {(5, 5)}, S7 = {(6, 14)},

S8 = {(7, 23)}, S9 = {(8, 12)} and S10 = {(9, 11)}. So, the Macaulayfication K[S ′] of K[S] is

given by S ′ = B+ N{(10, 0), (0, 10)}, where

B = {(0, 0), (1, 9), (2, 18), (3, 17), (4, 6), (5, 5), (6, 14), (7, 23), (8, 12), (9, 11)}.
Or equivalently, S ′ is the semigroup generated by

A′ = {(1, 9), (3, 17), (4, 6), (5, 5), (10, 0), (0, 10)}.
We observe that K[S ′] ≃ K[x1, . . . , x6]/IA′ and that IA′ is ω-homogeneous with respect to ω =
(1, 2, 1, 1, 1, 1) but not standard homogeneous.

5. AN UPPER BOUND FOR THE CASTELNUOVO-MUMFORD REGULARITY OF PROJECTIVE

MONOMIAL CURVES

Every sequence m1 < . . . < mn of relatively prime positive integers with n ≥ 2 has associated
the projective monomial curve C ⊂ PnK given parametrically by xi := smitmn−mi for all i ∈
{1, . . . , n − 1}, xn = smn , xn+1 := tmn . If we set A := {a1, . . . , an+1} ⊂ N2 where ai :=
(mi, mn − mi), an := (mn, 0) and an+1 := (0, mn), it turns out that IA ⊂ K[x1, . . . , xn+1] is
the defining ideal of C. If we denote by S the semigroup generated by A, then the 2-dimensional
semigroup ring K[S] is isomorphic to K[x1, . . . , xn+1]/IA, the homogeneous coordinate ring of
C. Hence, the methods of the previous sections apply here to describe its multigraded Noether
resolution, and the formula (2) in Remark 1 for the Castelnuovo-Mumford regularity holds in this
context (with ω1 = mn). The goal of this section is to use this formula to prove Theorem 5,
which provides an upper bound for the Castelnuovo-Mumford regularity of K[S]. The proof we
are presenting is elementary and uses some classical results on numerical semigroups. We will
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introduce now the results on numerical semigroups that we need for our proof (for more on this
topic we refer to [Rosales & García-Sánchez (2009)] and [Ramírez Alfonsín (2005)]).

Given m1, . . . , mn a set of relatively prime integers, we denote by R the numerical subsemi-
group of N spanned by m1, . . . , mn. The largest integer that does not belong to R is called the
Frobenius number of R and will be denoted by g(R). We consider the Apery set of R with respect

to mn, i.e., the set

Ap(R, mn) := {a ∈ R | a−mn /∈ R}.
It is a well known and easy to check that Ap(R, mn) constitutes a full set of residues modulo
mn (and, in particular, has mn elements) and that max(Ap(R, mn)) = g(R) +mn. We will also
use an upper bound on g(R) which is a slight variant of the one given in [Selmer (1977)] (which
was deduced from a result of [Erdös & Graham (1972)]). The reason why we do not use Selmer’s
bound itself is that it is only valid under the additional hypothesis that n ≤ m1. This is not a
restrictive hypothesis when studying numerical semigroups, because whenever m1 < · · · < mn

is a minimal set of generators of R, then n ≤ m1. In our current setting of projective monomial
curves, the case where m1 < · · · < mn is not a minimal set of generators of R is interesting by
itself (even the casem1 = 1 is interesting); hence, a direct adaptation of the proof of Selmer yields
that

(4) g(R) ≤ 2mn

⌊mτ

n

⌋
−mτ ,

for every mτ ≥ n. Note that mn ≥ n and then, such a value τ always exists..
We first include a result providing an upper bound for reg(K[S]) whenK[S] is Cohen-Macaulay.

Proposition 7. Let m1 < . . . < mn be a sequence of relatively prime positive integers with n ≥ 2
and let τ ∈ {1, . . . , n} such that mτ ≥ n. If K[S] is Cohen-Macaulay, then

reg(K[S]) ≤
⌊
(2mn

⌊mτ

n

⌋
−mτ +mn)/m1

⌋
.

In particular, if m1 ≥ n, we have that reg(K[S]) ≤
⌊
mn

(
2
n
+ 1

m1

)
− 1
⌋
.

Proof. We consider the equivalence relation ∼ of Section 4. Indeed, since now ZS = {(x, y) | x+
y ≡ 0 (mod mn)}, then we have that ∼ partitions the set S0 in exactly mn equivalence classes.
Moreover, since K[S] is Cohen-Macaulay, we have that

• each of these classes has a unique element,
• S1 = ∅, and

• reg(K[S]) = max
{
b1+b2
mn

| (b1, b2) ∈ S0

}
(see Remark 1).

Let us take (b1, b2) ∈ S0, then (b1, b2) =
∑n−1

i=1 αiai and (b1 + b2)/mn =
∑n−1

i=1 αi. Moreover,
we claim that b1 ∈ Ap(R, mn). Otherwise, b1 − mn ∈ R and there would be another element
(c1, c2) ∈ S0 such that (c1, c2) ∼ (b1, b2), a contradiction. Hence, by (4),

(
n−1∑

i=1

αi

)
m1 ≤

n−1∑

i=1

αimi = b1 ≤ g(R) +mn ≤ 2mn

⌊mτ

n

⌋
−mτ +mn.

And, from this expression we conclude that

b1 + b2
mn

=

n−1∑

i=1

αi ≤ (2mn

⌊mτ

n

⌋
−mτ +mn)/m1.

When m1 ≥ n, then it suffices to take τ = 1 to get the result. �

And now, we can prove the main result of the section.
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Theorem 5. Let m1 < . . . < mn be a sequence of relatively prime positive integers with n ≥ 2.

If we take τ, λ such that mτ ≥ n and mn −mλ ≥ n. Then,

reg(K[S]) ≤
⌊(

2mn

⌊
mτ

n

⌋
−mτ +mn

)

m1
+

(
2mn

⌊
mn−mλ

n

⌋
+mλ

)

(mn −mn−1)

⌋
− 2.

In particular, ifm1 ≥ n andmn−mn−1 ≥ n, then reg(K[S]) ≤
⌊
mn

(
4
n
+ 1

m1
+ 1

mn−mn−1

)⌋
−4.

Proof. We considerE one of the equivalence classes of ZS induced by the equivalence relation ∼.
First, assume that S0 ∩E has a unique element which we call (b1, b2). Then, S1 ∩E = ∅, and the
same argument as in the proof of Proposition 7 proves that b1+b2

mn
≤ (2mn

⌊
mτ

n

⌋
−mτ +mn)/m1.

Assume now that S0 ∩ E = {(x1, y1), . . . , (xr, yr)} with r ≥ 2 and x1 < x2 < · · · < xr. We
claim that the following properties hold:

(a) x1 ≡ x2 ≡ · · · ≡ xr (modmn),
(b) y1 > · · · > yr and y1 ≡ y2 ≡ · · · ≡ yr (modmn),
(c) x1 ∈ Ap(R, mn),
(d) yr ∈ Ap(R′, mn), where R′ is the numerical semigroup generated by mn − mn−1 <

mn −mn−2 < · · · < mn −m1 < mn,
(e) S1 ∩ E = {(x2, y1), (x3, y2), . . . , (xr, yr−1)}, and

(f) max
{
b1+b2
mn

| (b1, b2) ∈ S0 ∩ E
}
≤ max

{
b1+b2
mn

| (b1, b2) ∈ S1 ∩ E
}
− 1.

Properties (a) and (b) are evident. To prove (c) and (d) it suffices to take into account the following
facts: S ⊂ R×R′, and for every b1 ∈ R, b2 ∈ R′ there exist c1, c2 ∈ N such that (b1, c2), (c1, b2) ∈
S. To prove (e) we first observe that

S ∩ E = {b+ λ(mn, 0) + µ(0, mn) |b ∈ S0 ∩ E, λ, µ ∈ N}.
Take now (x, y) ∈ S1 ∩ E and we take the minimum value i ∈ {1, . . . , r} such that (x, y) =
(xi, yi) + λ(mn, 0) + µ(0, mn) with λ, µ ∈ N; we observe that

• λ > 0; otherwise (x, y)− (mn, 0) /∈ S,
• µ = 0; otherwise (x, y)− (mn, mn) = (xi, yi) + (λ− 1)(mn, 0) + (µ− 1)(0, mn) ∈ S, a

contradiction,
• y ≥ yr−1; otherwise i = r and, since (x, y)− (0, mn) ∈ S ∩ E, we get that µ ≥ 1,
• x ≤ xi+1; otherwise (x, y) = (xi+1, yi+1) + λ′(mn, 0) + µ′(0, mn) with λ′, µ′ ≥ 1, a

contradiction, and
• x ≥ xi+1; otherwise (x, y)− (0, mn) /∈ S.

Hence, (x, y) = (xi+1, yi) and S1 ∩ E ⊆ {(x2, y1), (x3, y2), . . . , (xr, yr−1)}. Take now i ∈
{1, . . . , r− 1}, and consider (xi+1, yi) ∈ S. Since (xi, yi), (xi+1, yi+1) ∈ E, xi ≡ xi+1 (modmn)
and yi ≡ yi+1 (mod mn), then (xi+1, yi) ∈ E. We also have that there exist γ, δ ∈ N such that
(xi+1, yi)−(mn, 0) = (xi, yi)+γ(mn, 0) ∈ S and (xi+1, yi)−(0, mn) = (xi+1, yi+1)+δ(0, mn) ∈
S. We claim that (xi+1, yi) − (mn, mn) /∈ S. Otherwise there exists j ∈ {1, . . . , r} such that
(xi+1−mn, yi−mn) = (xj , yj)+λ

′(mn, 0)+µ
′(0, mn); this is not possible since xi+1−mn < xi+1

implies that j ≤ i, and yi − mn < yi implies that j ≥ i + 1. Thus, (xi+1, yi) ∈ S1 and (e) is
proved. Property (f) follows from (e).

Moreover, since x1 ∈ Ap(R, mn), the same argument as in Proposition 7 proves that

(5)
x1 + y1
mn

≤
(
2mn

⌊mτ

n

⌋
−mτ +mn

)
/m1,

and a similar argument with yr ∈ Ap(R′, mn) proves that

(6)
xr + yr
mn

≤
(
2mn

⌊
mn −mλ

n

⌋
+mλ

)
/(mn −mn−1).
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And, since,

(7)
xi+1 + yi
mn

− 1 ≤ xr + y1
mn

− 1 ≤ x1 + y1
mn

+
xr + yr
mn

− 2,

putting together (5), (6) and (7) we get the result. If m1 ≥ n and mn −mn−1 ≥ n, it suffices to
take τ = 1 and λ = n− 1 to prove the result. �

It is not difficult to build examples such that the bound provided by Theorem 5 outperforms the
bound of L’vovsky’s. Let us see an example.

Example 4. Set n ≥ 6 and consider mi = n+ i for all i ∈ {1, . . . , n− 1} and mn = 3n, then we

can take τ = 1 and λ = n− 1 and apply Theorem 5 to prove that

reg(K[S]) ≤
⌊
3n

(
4

n
+

1

n+ 1
+

1

n + 1

)⌋
− 4 = 13,

meanwhile the result of L’vovsky provides an upper bound of 2n+ 1.

6. NOETHER RESOLUTION AND MACAULAYFICATION OF PROJECTIVE MONOMIAL CURVES

ASSOCIATED TO ARITHMETIC SEQUENCES AND THEIR CANONICAL PROJECTIONS.

Every sequence m1 < . . . < mn of positive integers with n ≥ 2 has associated the projective
monomial curve C ⊂ PnK given parametrically by xi := smitmn−mi for all i ∈ {1, . . . , n−1}, xn =
smn , xn+1 := tmn . If we set A := {a1, . . . , an+1} ⊂ N2 where ai := (mi, mn−mi), an := (mn, 0)
and an+1 := (0, mn), it turns out that IA ⊂ K[x1, . . . , xn+1] is the defining ideal of C. Moreover,
if we denote by S the semigroup generated by A, thenK[S] ≃ K[x1, . . . , xn+1]/IA is a dimension
2 semigroup ring and the methods of the previous sections apply here to describe its multigraded
Noether resolution.

In [Li et. al (2012)], the authors studied the set S0 whenever m1 < · · · < mn is an arithmetic
sequence of relatively prime integers, i.e., there exist d,m1 ∈ Z+ such that mi = m1 + (i− 1) d
for all i ∈ {1, . . . , n} and gcd{m1, d} = 1. In particular, they obtained the following result.

Theorem 6. [Li et. al (2012), Theorem 3.4]
S0 =

{(⌈
j

n−1

⌉
mn − jd, jd

)
| j ∈ {0, . . . , mn − 1}

}

From the previous result and Proposition 6 we deduce that K[S] is Cohen-Macaulay (see also
[Bermejo et al. (2017), Corollary 2.3]), we obtain the shifts of the only step of the multigraded
Noether resolution and, by Corollary 2, we also derive that reg(K[S]) = ⌈(mn−1)/(n−1)⌉ (see
also [Bermejo et al. (2017), Theorem 2.7]). In the rest of this section we are using the tools devel-
oped in the previous sections to study the canonical projections of C, i.e., for all r ∈ {1, . . . , n−1}
and n ≥ 3 we aim at studying the curve Cr := πr(C) obtained as the image of C under the projec-
tion πr from PnK to Pn−1

K defined by (p1 : · · · : pn+1) 7→ (p1 : · · · : pr−1 : pr+1 : · · · : pn+1). We
know that the vanishing ideal of Cr is IAr

, where Ar = A \ {ar} for all r ∈ {1, . . . , n− 1}. Note
that C1 is the projective monomial curve associated to the arithmetic sequence m2 < · · · < mn

and, thus, its Noether resolution can also be obtained by means of Theorem 6. Also when n = 3,
C2 is the curve associated to the arithmetic sequence m1 < m3. For this reason, the rest of this
section only concerns the study of the multigraded Noether resolution of Cr for r ∈ {2, . . . , n−1}
and n ≥ 4.

Remark 2. Denote by Cn and Cn+1 the Zariski closure of πn(C) and πn+1(C) respectively. Then,

both Cn and Cn+1 are projective monomial curves associated to arithmetic sequences and, thus,

their Noether resolutions can also be obtained by means of Theorem 6. More precisely, the corre-

sponding arithmetic sequences are m1 < · · · < mn−1 for Cn and 1 < 2 < · · · < n − 1 for Cn+1,

i.e., Cn+1 is the rational normal curve of degree n− 1.
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We denote by Pr the semigroup generated by Ar for r ∈ {2, . . . , n−1} and n ≥ 4. Proposition
8 shows how to get the semigroups Pr from S. In the proof of this result we will use the following
two lemmas, both of them can be directly deduced from [Bermejo et al. (2017), Lemma 2.1].

Lemma 2. Set q := ⌊(m1 − 1)/(n− 1)⌋ ∈ N; then,

(a) q + d+ 1 = min{b ∈ Z+ | bm1 ∈
∑n

i=2Nmi}
(b) q + 1 = min{b ∈ Z+ | bmn ∈∑n−1

i=1 Nmi}
(c) (q+d)a1+ai = al+i+qan+dan+1 for all i ∈ {1, . . . , n− l}, where l := m1−q(n−1) ∈

{1, . . . , n− 1}.

Lemma 3. For all r ∈ {2, . . . , n − 1}, we have that mr ∈ ∑
i∈{1,...,n}\{r}Nmi if and only if

r > m1.

Proposition 8. Set q := ⌊(m1 − 1)/(n− 1)⌋ and l := m1 − q(n− 1). If r ≤ m1, then

(a.1) for r = 2,

S \ P2 =

{
{µa1 + a2 + λ an+1 | 0 ≤ µ ≤ q + d− 1, λ ∈ N} , if l 6= n− 1,
{µa1 + a2 + λ an+1 | 0 ≤ µ ≤ q + d, λ ∈ N} , if l = n− 1,

(a.2) for r ∈ {3, . . . , n− 2}, S \ Pr = {ar + λ an+1 | λ ∈ N} , and

(a.3) for r = n− 1,

S\Pn−1 =

{
{an−1 + µan + λ an+1 | 0 ≤ µ ≤ q − 1 or 0 ≤ λ ≤ d− 1} , if l 6= n− 1,
{an−1 + µan + λ an+1 | 0 ≤ µ ≤ q or 0 ≤ λ ≤ d− 1} , if l = n− 1.

If r > m1, then

(b.1) for r = 2, S \ P2 = {µa1 + a2 + λan+1 | 0 ≤ µ, λ ≤ d− 1} ,

(b.2) for r ∈ {3, . . . , n− 2}, S \ Pr = {ar + λan+1 | 0 ≤ λ ≤ d− 1}, and

(b.3) for r = n− 1, S \ Pn−1 = {an−1 + µan + λan+1 | µ ∈ N, 0 ≤ λ ≤ d− 1}.

Proof. We express every s ∈ S as s = α1a1 + ǫiai + αnan + αn+1an+1, with α1, αn, αn+1 ∈ N,
i ∈ {2, . . . , n − 1} and ǫi ∈ {0, 1}. Whenever ǫi = 0 or i 6= r, it is clear that s ∈ Pr. Hence,
we assume that s = α1a1 + ar + αnan + αn+1an+1 and the idea of the proof is to characterize the
values of α1, αn, αn+1 so that s ∈ Pr in each case.

Assume first that r ∈ {3, . . . , n− 2} and let us prove (a.2) and (b.2). If α1 > 0 or αn > 0, the
equalities a1 + ar = a2 + ar−1 and ar + an = ar+1 + an−1 yield that s ∈ Pr, so it suffices to
consider when s = ar + αn+1an+1. If r ≤ m1, then by Lemma 3 we get that s /∈ Pr because the
first coordinate of s is precisely mr. This proves (a.2). If r > m1 and αn+1 ≥ d, then the equality
ar + dan+1 = da1 + ar−m1

yields that s ∈ Pr. However, if αn+1 < d we are proving that s /∈ Pr.
Suppose by contradiction that s ∈ Pr and αn+1 < d, then

(8) s = ar + αn+1an+1 =
∑

j∈{1,...,n+1}\{r}

βjaj

for some βj ∈ N, then d ≥ 1 + αn+1 =
∑

j∈{1,...,n+1}\{r} βj . Moreover, observing the first coordi-
nates in (8) we get thatmr =

∑
j∈{1,...,n}\{r} βjmj . Hence, m1+(r−1)d =

∑
j{1,...,n}\{r} βj(m1+

(j − 1)d) and, since gcd{m1, d} = 1, this implies that d divides (
∑

j{1,...,n}\{r} βj) − 1, but
0 < (

∑
j∈{1,...,n}\{r} βj)− 1 < d, a contradiction. Thus (b.2) is proved.

Since the proof of (a.1) is similar to the proof of (a.3) we are not including it here. So let
us prove (b.1). Assume that r = 2. If αn > 0 the equality a2 + an = a3 + an−1 yields that
s ∈ P2, so it suffices to consider when s = α1a1 + ar + αn+1an+1. If α1 ≥ d, then the identity
da1+a2 = a3+dan+1 yields that s ∈ P2. For α1 < d, if αn+1 ≥ d, the equalityα1a1+a2+dan+1 =
(α1 + d + 1)a1 also yields that s ∈ P2. Thus, to conclude (b.1) it only remains to proof that
s /∈ P2 when α1, αn+1 < d. Indeed, assume that α1a1 + a2 + αn+1an+1 =

∑
j∈{1,3,...,n+1} βjaj .

Observing the first coordinate of the equality we get that α1 + m2 =
∑

j∈{1,3,...,n} βjmj , but
α1 +m2 < m3 < · · · < mn, so β3 = · · · = βn+1 = 0. But this implies that β1 = α1 + d+ 1 and,
hence, βn+1 < 0, a contradiction.
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Assume now that r = n−1. If α1 > 0, the equality a1+an−1 = a2+an−2 yields that s ∈ Pn−1,
so it suffices to consider when s = an−1 + αnan + αn+1an+1. Whenever s ∈ Pn−1, then s can be
expressed as s =

∑
j∈{1,...,n−2,n,n+1} βjaj , if we consider both expressions of s, we get that

(i)
∑

j∈{1,...,n−2,n,n+1} βi = 1 + αn + αn+1, and
(ii)

∑
j∈{1,...,n−2,n} βjmj = mn−1 + αnmn.

If αn+1 < d we are proving that s /∈ Pn−1. Assume by contradiction that s ∈ Pn−1. From (ii) and
Lemma 2 we deduce that βn < αn. Moreover, if we expand (ii) considering thatmi = m1+(i−1)d
for all i ∈ {1, . . . , n} and that gcd{m1, d} = 1, we get that d divides

∑
j∈{1,...,n−2,n} βj−αn−1 =

αn+1 − βn+1, a contradiction to 0 < αn+1 − βn+1 < d.
Case 1: m1 ≥ n− 1. Assume that s ∈ Pn−1. By (ii) and Lemma 3 we have that βn < αn, so there
exists j0 ∈ {1, . . . , n− 2} such that βj0 > 0. As a consequence, if we add d− βnmn in both sides
of (ii) we get that (αn + 1 − βn)mn =

∑
j∈{1...,n−2} βjmj −mj0 +mj0+1 ∈ ∑j∈{1,...,n−1}Nmj .

Hence, by Lemma 2 we have that αn ≥ αn − βn ≥ q. If l < n − 1, for αn ≥ q, αn+1 ≥ d
the equality of Lemma 2 (q + d)a1 + an−l−1 = an−1 + qan + dan+1 shows that s ∈ Pn−1. This
proves (a.3) whenever l ≤ n − 1. If l = n − 1, for αn ≥ q + 1, αn ≥ d, again the equality
(q + d+ 1)a1 = (q + 1)an + dan+1 shows that s ∈ Pn−1. It only remains to prove that if αn = q;
then s /∈ P2. Assume by contradiction that an−1 + qan + αn+1an+1 =

∑
j∈{1,...,n−2,n,n+1} βjaj .

Then, the first coordinates of this equality yield that mn−1 + qmn =
∑

j∈{1,...,n−2,n} βjmj and
we deduce by Lemma 3 that βn < q and, hence, there exists j0 ∈ {1, . . . , n − 2} such that
βj0 > 0. We denote βn−1 := 0, λj := βj for all j ∈ {1, . . . , n} \ {j0, j0 − 1}, λj0 = βj0 − 1,
λj0+1 = βj0+1 + 1, then adding d in both sides of the equality and using Lemma 2, we get that
(q + 1)mn = (q + d + 1)m1 =

∑
j∈{1,...,n} λjmj ∈ ∑n

i=1Nmi. However, λ1 6= q + d + 1,
λn 6= q + 1, so applying iteratively the equalities ai + aj = ai−1 + aj+1 for all 2 ≤ i ≤ j ≤ n− 1
we express

∑
j∈{1,...,n} λjmj as µ1m1 + ǫkmk + µnmn with µ1, µm ∈ N, k ∈ {2, . . . , n − 1},

ǫk ∈ {0, 1}. It is clear that µ1 6= q + d + 1 and that µn 6= q + 1 and one of those is nonzero, so
this contradicts the minimality of q + d+ 1 or q + 1.

To prove (b.3) it only remains to prove that if αn+1 ≥ d, then s ∈ Pn−1, but this easily follows
from the relation an−1 + dan+1 = da1 + an−1−m1

. �

From the previous result and Proposition 5 it is not difficult to obtain the following corollary,
which provides the shifts of the first step of a multigraded Noether resolution of K[Pr] for all
r ∈ {2, . . . , n − 1}, namely (Pr)0 := {s ∈ Pr | s − an, s − an+1 /∈ Pr}. Indeed, Corollary 4
describes (Pr)0 from the set S0 given by Theorem 6.

Corollary 4. We denote tµ := µa1 + a2 for all µ ∈ N. If r ≤ m1, then

(a.1) for r = 2,

(P2)0 =

{
(S0 \ {tµ | 0 ≤ µ ≤ q + d− 1}) ∪ {tµ + an | 0 ≤ µ ≤ q + d− 1} , if l 6= n− 1,
(S0 \ {tµ | 0 ≤ µ ≤ q + d}) ∪ {tµ + an | 0 ≤ µ ≤ q + d} , if l = n− 1,

(a.2) for r ∈ {3, . . . , n− 2}, (Pr)0 = (S0 \ {ar}) ∪ {ar + an},

(a.3) for r = n− 1,

(Pn−1)0 =

{
(S0 \ {an−1}) ∪ {an−1 + qan + dan+1}, if l 6= n− 1,
(S0 \ {an−1}) ∪ {an−1 + (q + 1)an + dan+1}, if l = n− 1.

If r > m1, then

(b.1) for r = 2, (P2)0 = (S0 \ {tµ | 0 ≤ µ ≤ d− 1}) ∪ {tµ + an, tµ + dan+1 | 0 ≤ µ ≤ d− 1},

(b.2) for r ∈ {3, . . . , n− 2}, (Pr)0 = (S0 \ {ar}) ∪ {ar + an, ar + dan+1} , and

(b.3) for r = n− 1, (Pn−1)0 = (S0 \ {an−1}) ∪ {an−1 + dan+1}.

From Corollary 4 and Proposition 6, we get the following characterization of the Cohen-
Macaulay property for this family of semigroup rings taking into account that D in Proposition 6
equals mn in these cases.
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Corollary 5. K[Pr] is Cohen-Macaulay ⇐⇒ r ≤ m1 or r = n− 1.

Moreover, as a consequence of Theorem 4 and Corollary 4, we get the following result.

Corollary 6. For all r ∈ {2, . . . , n− 2} and r > m1, the Macaulayfication of K[Pr] is K[S].
In order to get the whole multigraded Noether resolution of K[Pr] for all r ∈ {2, . . . , n − 2}

and r > m1, it remains to study its second step. By Theorem 2, its shifts are given by the set
(Pr)1 := {s ∈ Pr | s− an, s− an+1 ∈ Pr and s− an − an+1 /∈ Pr}.

Corollary 7.

(Pr)1 =
{

{µa1 + a2 + an + dan+1 |µ ∈ {0, . . . , d− 1}} , if r = 2 andm1 = 1,
{ar + an + dan+1}, if r ∈ {3, . . . , n− 2} andm1 < r.

As a consequence of the above results, we are able to provide the multigraded Noether resolu-
tion of K[Pr] for all r ∈ {2, . . . , n− 1}.

Theorem 7. Let q, l ∈ N be the integers q := ⌈(m1 − 1)/(n− 1)⌉ and l := m1 − q(n− 1). If we

set sλ :=
(⌈

λ
n−1

⌉
mn − λd, λd

)
∈ N2 for all λ ∈ {0, . . . , mn − 1}, then the multigraded Noether

resolution of K[Pr] is given by the following expressions:

• For m1 ≥ 2, then

0 −→
(
⊕mn−1
λ=0, λ/∈Λ1

A · sλ
)
⊕
(
⊕λ∈Λ1

A · (sλ + an)
)
−→ K[P2] −→ 0,

where Λ1 := {µ(n − 1) − 1 | 1 ≤ µ ≤ q + d + ǫ}, and ǫ = 1 if l = n − 1, or ǫ = 0
otherwise.

• For r ∈ {3, . . . , n− 2} and r ≤ m1, then

0 −→
(
⊕mn−1
λ=0, λ6=n−rA · sλ

)
⊕A · (ar + an) −→ K[Pr] −→ 0

• For r = n− 1 ≤ m1, then

0 −→
(
⊕mn−1
λ=0, λ6=1A · sλ

)
⊕ A · (an−1 + (q + ǫ)an + dan+1) −→ K[Pn−1] −→ 0,

where ǫ = 1 if l = n− 1, or ǫ = 0 otherwise.

• For m1 = 1, then

0 −→ ⊕λ∈Λ2
A · (sλ + an + dan+1) −→

⊕mn−1
λ=0,λ/∈Λ2

A · sλ
⊕

⊕λ∈Λ2
A · (sλ + an)

⊕
⊕λ∈Λ2

A · (sλ + dan+1)

−→ K[P2] −→ 0,

where Λ2 := {µ(n− 1)− 1 | 1 ≤ µ ≤ d}.

• For r ∈ {3, . . . , n− 2} and r > m1, then

0 −→ A · (ar + an + dan+1) −→

(
⊕mn−1
λ=0, λ6=n−rA · sλ

)

⊕
A · (ar + an)⊕A · (ar + dan+1)

−→ K[Pr] −→ 0.

• For r = n− 1 > m1, then

0 −→
(
⊕mn−1
λ=0, λ6=1A · sλ

)
⊕A · (an−1 + dan+1) −→ K[Pn−1] −→ 0.

It is worth pointing out that from Theorem 7 and Remark 1, one can obtain the Noether res-
olution of K[Pr] with respect to the standard grading. In addition, the description of (Pr)i for
all r ∈ {2, . . . , n − 1}, i ∈ {0, 1}, allows us to use Remark 1 to provide a formula for the
Castelnuovo-Mumford regularity of K[Pr].
Theorem 8. The Castelnuovo-Mumford regularity of K[Pr] equals:
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reg(K[Pr]) =





⌈mn−1
n−1

⌉ + 1, if r ∈ {2, n− 1} and r ≤ m1,
2d, if r = 2 and m1 = 1, and

⌈mn−1
n−1

⌉, if r ∈ {3, . . . , n− 2}, or r = n− 1 and m1 < r

Let us illustrate the results of this section with an example.

Example 5. Consider the projective monomial curve given parametrically by:

x1 = st6, x2 = s5t2, x4 = s7, x5 = t7.

We observe that the curve corresponds to C2, where C is the curve associated to the arithmetic

sequence m1 < · · · < mn with m1 = 1, d = 2 and n = 4. Hence, by Theorem 7, we get that the

multigraded Noether resolution of K[P2] is

0 −→ A · (10, 18)⊕ A · (11, 24) −→
A⊕A · (1, 6)⊕A · (5, 2)⊕

A · (2, 12)⊕ A · (6, 8)⊕ A · (10, 4)⊕
A · (3, 18)⊕ A · (11, 10)⊕ A · (4, 24)

−→ K[P2] −→ 0.

By Corollary 3, we get that the multigraded Hilbert series of K[P2] is

HSK[P2](t1, t2) =
1 + t1t

6
2 + t21t

12
2 + t41t

24
2 + t31t

18
2 + t51t

2
2 + t61t

8
2 + t101 t

4
2 − t101 t

18
2 + t111 t

10
2 − t111 t

24
2

(1− t71)(1− t72)
.

Following Remark 1, if we consider the standard grading on R, we get the following Noether

resolution of K[P2]:

0 −→ A(−4)⊕ A(−5) −→ A⊕A(−1)2 ⊕ A(−2)3

A(−3)2 ⊕ A(−4)
−→ K[P2] −→ 0,

and the following expression for the Hilbert series of K[P2]:

HSK[P2](t) =
1 + 2t+ 3t2 + 2t3 − t5

(1− t)2
.

We also have that reg(K[P2]) = 4.
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