
HAL Id: hal-01502913
https://hal.science/hal-01502913

Submitted on 6 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Performance of the SRR Loop Scheduler
with Irregular Workloads

Pedro Henrique Penna, Eduarco C Inacio, Márcio C Castro, Patrícia Plentz,
Henrique H Freitas, François Broquedis, Jean-François Méhaut

To cite this version:
Pedro Henrique Penna, Eduarco C Inacio, Márcio C Castro, Patrícia Plentz, Henrique H Freitas, et al..
Assessing the Performance of the SRR Loop Scheduler with Irregular Workloads. [Research Report]
RR-9051, Federal University of Santa Cararina (UFSC); Pontifical Catholic University of Minas Gerais
(PUC Minas); Grenoble Institute of Technology (Grenoble INP); University of Grenoble Alpes (UGA).
2017. �hal-01502913�

https://hal.science/hal-01502913
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

51
--

FR
+E

N
G

RESEARCH
REPORT
N° 9051
March 2017

Project-Teams LaPeSD, CArT
and CORSE

Assessing the
Performance of the SRR
Loop Scheduler with
Irregular Workloads
Pedro H. Penna, Eduarco C. Inacio, Márcio Castro,
Patrícia Plentz, Henrique Freitas,
François Broquedis, Jean-François Méhaut





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Assessing the Performance of the SRR
Loop Scheduler with Irregular Workloads

Pedro H. Penna∗, Eduarco C. Inacio∗, Márcio Castro∗,
Patrícia Plentz∗, Henrique Freitas†,

François Broquedis‡, Jean-François Méhaut§

Project-Teams LaPeSD, CArT and CORSE

Research Report n° 9051 — March 2017 — 14 pages

Abstract: The input workload of an irregular application must be evenly distributed among
its threads to enable cutting-edge performance. To address this need in OpenMP, several loop
scheduling strategies were proposed. While having this ever-increasing number of strategies at dis-
posal is helpful, it has become a non-trivial task to select the best one for a particular application.
Nevertheless, this challenge becomes easier to be tackled when existing scheduling strategies are
extensively evaluated. Therefore, in this paper, we present a performance and scalability eval-
uation of the recently-proposed loop scheduling strategy named Smart Round-Robin (SRR). To
deliver a comprehensive analysis, we coupled a kernel benchmarking technique with several rigorous
statistical tools, and considered OpenMP’s Static and Dynamic loop schedulers as our baselines.
Our results unveiled that SRR performs better on irregular applications with symmetric workloads
and coarse-grained parallelization, achieving up to 1.9x and 1.5x speedup over OpenMP’s Static
and Dynamic schedulers on synthetic kernels, respectively. On a N-Body Simulations application
kernel, SRR delivered 2.48x better performance in contrast to OpenMP’s Dynamic scheduler.
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Assessing the Performance of the SRR
Loop Scheduler with Irregular Workloads

Résumé : La charge de calcul d’une application irrégulière doit être distribuée
équitablement entre les différents flots d’exécution (threads) pour obtenir un
haut niveau de performance. Pour atteindre cet objectif avec OpenMP, plusieurs
stratégies d’ordonnancement des boucles ont déjà été proposées dans la littéra-
ture. Pouvoir disposer de nombreuses stratégies d’ordonnancement est vraiment
utile pour aider le programmeur à choisir la meilleure stratégie par rapport aux
spécificités et caractéristiques de son application. Il est donc important de pou-
voir évaluer les stratégies d’ordonnancement précisément.Dans ce rapport, nous
présentons une analyse détaillée et rigoureuse de la stratégie SRR (Smart Round
Robin) qui avait été proposée dans un précédent article. Cette analyse complète
est basée sur le couplage de d’analyse comparative de noyaux avec des outils
statistiques. La stratégie SRR a ainsi été comparée aux stratégies statique
et dynamique qu’on retrouve dans OpenMP. Les résultats montrent, que sur
des applications irrégulières (noyaux synthéqtiques) avec des charges de calcul
symétriques et parallélisation grossière, SRR permet d’améliorer entre 1.5 et 1.9
les performances. Sur le noyau d’une application réelle (Simulation N-Body),
SRR améliore les performances d’un facteur 2.48 par rapport à l’ordonnanceur
dynamique OpenMP.

Mots-clés : Ordonnancement de Boucle, Charges de Travail Irrégulières,
Kernel Benchmarking, OpenMP, SRR.
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4 Penna, Inacio & others

1 Introduction

In High Performance Computing (HPC), parallel applications can be classified
as either regular or irregular. In the former group, the time needed to solve a
given problem is strictly related to the size of the input data. A naive implemen-
tation of the matrix multiplication algorithm is a typical example of application
that belongs to this group, in which the number of operations is constantly
proportional to the products of the rows of a matrix by the columns of another
matrix, regardless of the actual numbers involved in the computation. On the
other hand, in the latter group, the contents of the input data also impact
significantly on their execution times [7]. For instance, in a data clustering ap-
plication that uses a Minimum Spanning Tree algorithm, the computation time
depends on how the data is distributed in the Clustering Euclidean space.

In the case of regular parallel applications, the input workload can be natu-
rally broken up into homogeneous tasks, so that no thread is greatly overloaded
with computations. In the case of irregular applications, in contrast, the work-
load may not be so easily divided, and thus load imbalance may arise among
the threads. This may result in considerable performance and scalability is-
sues, since the overall performance of the application would be bounded by the
performance of the most overloaded thread.

Indeed, evenly distributing the input workload of an irregular application to
its threads is a well-known NP-Hard problem named the Load Balancing Prob-
lem [10], and it is a recurring subject of research in HPC [4, 5, 9]. For instance,
in OpenMP, an industry and academia standard Application Programming In-
terface (API) for parallel programming on shared-memory architectures [3], this
problem arises when scheduling iterations in parallel loops. In this context, the
problem is referenced as the Loop Scheduling Problem and comes down into
assigning loop iterations to threads, so as to evenly distribute the overall load
between them.

To address this new problem, several loop scheduling strategies were pro-
posed to cover a great variety of scenarios. They aim at mitigating the load
imbalance between iterations by smartly assigning them to threads [4, 6, 9].
While having this ever-increasing number of strategies at disposal is indeed
helpful, it has become a complex task to actually select the best one for a
particular application [14, 13].

In this paper we argue that this challenge becomes easier to be tackled
when existing loop scheduling strategies are extensively evaluated. Therefore,
the main goal of this work is to evaluate the performance bounds and scal-
ing capabilities of the recently-proposed loop scheduling strategy named Smart
Round-Robin (SRR) [9]. This strategy showed promising results for irregular
applications, but has not yet been thoroughly assessed. More precisely, we
present the following contributions in this paper: (i) a detailed and comprehen-
sive performance analysis of SRR through a full factorial experimental design,
which considers six performance factors that impact on the workload of an irreg-
ular application, coupled with rigorous statistical tools to deliver a statistically
significant assessment; (ii) an analysis of the weak and strong scalability poten-
tials of this emerging strategy; and (iii) a throughout comparison evaluation of
SRR against the OpenMP’s Static and Dynamic loop scheduling strategies.

The remainder of this work is organized as follows. In Section 2, we present
a background of the loop scheduling strategies considered in this paper. In

Inria
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Section 3, we discuss related works and our contributions to the state-of-the-
art. In Section 4 discusses our evaluation methodology. In Section 5, we discuss
our experimental results. In Section 6, we present the main conclusions of this
work and its future perspectives.

2 Loop Scheduling Strategies in OpenMP

OpenMP is shipped with three loop scheduling strategies: Static, Dynamic and
Guided [3]. The first one divides the iterations of a parallel loop into user-defined
equal-size chunks, which are then statically assigned to threads in a round-
robin fashion. This strategy introduces minimum overhead in the application
runtime, since scheduling is performed statically. It is more suitable for regular
applications, because it schedules chunks regardless of their load.

In contrast, the Dynamic strategy uses an internal work queue to dynam-
ically assign chunk-sized blocks of loop iterations to threads. The scheduling
is performed on-demand at cost of some performance overhead, and the chunk
size may be fine-tuned to achieve load balancing [1]. Therefore, this strategy is
recommended to parallel applications that feature irregular behavior. Finally,
the Guided loop scheduling strategy works similar to the Dynamic one, but the
chunk size starts off large and decreases with the course of time. This allows
for a better tradeoff between the synchronization overhead and load balanc-
ing because: (i) threads synchronize less frequently to access the internal work
queue at the beginning due to the large chunk sizes; and (ii) as the execution
approaches the end, the chunk size becomes small enough to guarantee a better
load balance.

SRR is a workload-aware loop scheduling strategy recently-proposed to ad-
dress irregular applications that may have their input workload somehow esti-
mated [9]. Unlike the other strategies shipped with OpenMP, this one considers
some information about the input workload of the application to better bal-
ance the load among the threads. SRR was implemented in libgomp, the GCC’s
OpenMP runtime library, and it is publicly available. The main idea behind
SRR is to assign pairs of chunk-sized loop iterations to threads in a round-robin
fashion, so that, in the end, each thread is assigned to a near average workload.
For this, pairs are formed up by chunk-sized blocks of iterations that have not
yet been assigned to some thread and have the lowest and highest loads. A
complete description of SRR can be found in [9].

3 Related Work

To cover a great variety of scenarios, several loop scheduling strategies were pro-
posed. Targeting memory-bound irregular applications running on large-scale
NUMA platforms, Durand et al. introduced a new loop scheduler called Adap-
tative [5]. This strategy uses a work-stealling algorithm to dynamically adapt
the chunk granularity in parallel loops, and thus better exploit memory affinity.
Their experimental results unveiled that Adaptative overpasses the OpenMP’s
Dynamic scheduler in irregular applications, while delivering equi-performance
to OpenMP’s Static on regular applications. Other memory-affinity schedulers
are discussed in [4, 8].

RR n° 9051



6 Penna, Inacio & others

In contrast to scheduling strategies that focus on exploiting runtime informa-
tion, Thoman et al. introduced an alternative hybrid approach that uses com-
piling time information in additon [15]. They implemented their loop scheduler
in the Insieme Compiler and runtime system, and contrasted its performance
with OpenMP’s default loop schedulers. Their results suggested that a hybrid
scheduler may even superior strategies than the scheduling strategies available
in OpenMP. In [6] compiling information is also considered in loop scheduling.

With this ever-increasing number of loop scheduling strategies, the task of
actually selecting the best one for a particular scenario has become non-trivial.
To address this challenge, Sukhija et al. proposed a prediction algorithm based
on Machine Learning that selects the most robust loop scheduling strategy for
a target application/platform [14]. Based on their results, they concluded that
their approach selects the most robust loop scheduling strategy, given a user-
specified tolerance. Targeting a similar goal, Srivastava et al. proposed a strat-
egy based on Artificial Neural Networks (ANNs) to predict the performance of
dynamic loop scheduling strategies on heterogeneous platforms [13]. To train
the ANN, they used results obtained with a synthetic kernel benchmark run-
ning on synthetically-generated input workloads based the Gamma, Gaussian
and Exponential PDFs. Their results unveiled that the proposed strategy is
able to predict the performance of a dynamic scheduling strategy, and thus can
guide the selection of the best strategy on heterogeneous platforms.

What concerns the efforts for assessing scheduling strategies, Srivastava et
al. proposed a methodology for evaluating the performance of dynamic loop
schedulers [12]. Their methodology relies on the simulation and synthetic ker-
nel benchmarking techniques, and considers Gaussian-generated irregular work-
loads. In the end, they concluded that their methodology may be applied to
evaluate the performance of loop scheduling strategies. Another work that pro-
poses a similar evaluation methodology is discussed in [1].

Our work differs from the previous ones in three main points. First, unlike
those works that proposed loop scheduling strategies [5, 4, 8, 15, 6, 9], in this
work we focus on the actual performance and scalability evaluation of a recently-
proposed strategy, the SRR scheduler. Second, in contrast to the related works
that employed simulation and synthetic kernel benchmarking for evaluating loop
scheduling strategies [12, 1, 14, 13], in this work we couple the latter technique
with several rigorous statistical tools in addition, to deliver a comprehensive and
statistically significant analysis. Finally, we carry out weak and strong scaling
experiments to unveil the scalability potentials of SRR.

4 Evaluation Methodology

This section describes the performance factors considered in the evaluation.
Then, it details the experimental design method that we followed in our exper-
iments.

4.1 Performance Factors

We considered the following six performance factors to assess the performance
of the SRR loop scheduling strategy: (i) the input workload PDF; (ii) the input
workload PDF’s kurtosis; (iii) the loop iteration shuffling; (iv) the complexity

Inria
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of the application kernel; (v) the number of chunks of loop iterations; and (vi)
the number of threads. The last three factors model the irregular application,
whereas the other ones model its input workload.

Workload PDF (PDF). It models the frequency of light, medium and
heavy load chunks of loop iterations in the input workload. Chunks of loop
iterations belonging to the same class have the same load. The more skewed
the PDF is, the stronger is the irregularity in the input workload and more
difficult is to achieve load balancing.

Workload PDF’s Kurtosis (Kurtosis). It models how strong is the
frequency change in the PDF of the input workload. The stronger this factor
is, the stronger is the irregularity in the input workload and more difficult is to
evenly distribute the workload.

Loop Chunk Shuffling (Shuffling). It states how chunks of iterations
are shuffled in the input workload. In scheduling strategies that do not consider
any information about the input workload, this performance factor may greatly
impact on their load balancing capability.

Complexity of the Application Kernel (Kernel). It models the run-
time complexity of the irregular application. The more complex is the kernel
the stronger is the impact of the input workload on runtime.

Number of Chunks of Loop Iterations. It models the granularity level of
parallelization in the application. The higher is the number of chunks the easier
is to balance the overall input workload, but the higher is the synchronization
and communication overheads.

Number of Threads. It states the number of working threads in the par-
allel application. The more threads, the shorter should be the time-to-solution
of the application.

Figure 1 illustrates the impact of some of these performance factors in the
workload of the application. In this example, the frequency of each chunk load
class was generated according to the Gaussian PDF (Figure 1a). Chunk load
class frequencies are fine adjusted by the PDF kurtosis (Figure 1b). Each chunk
load class is assigned to a different load, resulting in the input workload of the
application (Figure 1c). The complexity of the application kernel strengthens
the load imbalance between chunks of loop iterations (Figure 1d). Finally, loop
chunk shuffling models how chunks of loop iterations are actually disposed in a
for loop (Figure 1e).
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Figure 1: Impact of performance factors in the application’s workload.
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4.2 Experimental Design

To assess the performance bounds and scaling capabilities of SRR, we carried
out four experiments considering the performance factors presented previously,
with following levels: PDF = { Beta, Gamma Gaussian, Uniform }; Kurtosis
= { 0.750, 0.775, 0.800, 0.825 0.850, 0.875, 0.900 }; Shuffling = { 1, 307, 769,
967 }; Kernel = { Linear, Logarithmic }; Chunks = { 4, 8, 12, 16, 20, 24 28, 32,
36, 40, 44, 48 }; and Threads = { 2, 4, 6, 8, 10, 12 14, 16, 18, 20, 24 }. Levels
for PDF and kurtosis were selected to math related work. Levels for Shuffling
were randomly chosen. Levels for Kernel were chosen to match the complexity
of widely studied algorithms. In the first three experiments, we analyzed a
synthetic kernel [9], and in the fourth one we studied an application kernel.

In the first experiment, we intended to compare the performance of SRR with
the OpenMP’s Static and Dynamic strategies. To do so, we adopt a full facto-
rial experimental design to deliver a comprehensive and statistically significant
analysis. We considered the following four performance factors, resulting in 224
possible scenarios for each of the three loop scheduling strategies: PDF, Kurto-
sis, Shuffling and Kernel. For this experiment, we set the number of threads to
24 and the number of chunks to 48 iterations. We fixed these parameters so as
they would be consistent to [9].

In the second and third experiments, we aimed at analyzing the scaling
capabilities of the SRR loop scheduling strategy. In the former experiment,
we performed weak scaling tests to analyze how SRR scales when the chunk
increases in a constant ratio of 2× with the number of threads. In the latter
experiment, we carried out strong scaling tests to study how SRR performs for
a fixed number of chunks. In both experiments we varied the number of threads
from 2 to 24 while fixing the PDF, Kurtosis, Shuffling and Kernel.

Finally, in the fourth experiment, we intended to asses the performance of
SRR in realistic scenario, and thus we studied an application kernel that per-
forms N-Body Simulations. We chose such application kernel because it has
great importance to the scientific community, since it finds application on dif-
ferent domains, such as Computation Fluid Dynamics and Molecular Dynamics
[11]. The N-Body Simulations kernel that we considered (code-named LavaMD)
was extracted from the Rodinia Benchmarks Suite [2], and it carries out a high-
resolution simulation of the pressure-induced solidification of molten tantalum
and quenched uranium atoms in a finitely-sized three-dimensional domain.

The LavaMD kernel works as follows. The 3D domain is decomposed into
several equally-dimensioned n3 boxes. In this decomposition, any box has 26
adjacent boxes, except for boxes that lie within the boundaries of the domain,
which in turn have fewer neighbours. Particles interact only with other particles
that lie within a user-specified cutoff radius, since ones at larger distances exert
negligible forces. Therefore, the box dimensions are chosen such that the cutoff
radius of any particular box does not span beyond the boundaries of an adjacent
box. Note that the actual number of interactions to compute for a given particle
α is proportional to the number of particles in the same box of α plus the total
number of particles among all the boxes that surround α’s box. We used this
knowledge to estimate the computing load of each box when using SRR. For
this experiment, we varied the number of threads from 2 to 16 while fixing the
PDF, Kurtosis, Shuffling and Kernel performance factors at randomly-chosen
levels.

Inria
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Table 1: ANOVA of the considered performance factors.

Factor MSQ Pr(>F) Factor MSQ Pr(>F)

Kurtosis 2511.12 <2.2e-16 Strategy:Kernel 52998.63 <2.2e-16
Shuffling 3094.83 <2.2e-16 PDF:Shuffling 95.04 1.121e-06
PDF 71879.79 <2.2e-16 PDF:Shuffling 95.04 1.121e-06
Strategy 118490.53 <2.2e-16 PDF:Kernel 33904.94 <2.2e-16
Kernel 2888428.00 <2.2e-16 PDF:Kurtosis 1694.24 <2.2e-16
Strategy:Kurtosis 48.90 0.002235 Kurtosis:Shuffling 12.05 0.8781
Strategy:PDF 6067.14 <2.2e-16 Kurtosis:Kernel 1201.45 <2.2e-16
Strategy:Shuffling 7329.35 <2.2e-16 Shuffling:Kernel 1649.73 <2.2e-16

Overall, in these four experiments, we carry out five replications of each
experiment to account for the inherent variance of the measures in the exper-
imental environment. For each replicate, the actual order in which individual
runs of experiments is executed is randomly determined. This approach en-
sures that observations and experimental errors are independent and identically
distributed (i.i.d.) random variables.

5 Experimental Results

In this section, we unveil the results of our performance analysis experiment,
and then we discuss about the scaling capabilities that we observed for SRR
in the weak and strong scaling experiments. Our evaluation methodology is
publicly available, so all results can be easily reproduced1. All results presented
in the paper were run on a SMP machine powered by four six-core Intel Xeon
E5 processors (24 physical cores in total) with 64 GB of RAM.

5.1 Performance Analysis Overview

To guide us on the performance analysis of the SRR loop scheduling strategy,
we adopted the Fisher’s Analysis of Variance (ANOVA) method. With this
approach, we focus on obtaining statistically significant and reproducible con-
clusions about the impact of the considered performance factors independently
and their interactions on the response variables.

Table 1 presents the outcome of the method in the form of an ANOVA ta-
ble. Results indicate that all performance factors and interactions other than
Kurtosis:Shuffling have a highly significant impact on the time-to-solution, con-
sidering a significance level of 5% (α = 0.05). In terms of main effects, we
observed that not only they significantly impact the time-to-solution, but also
their impact on the response variable is greater than their two-way interactions,
accounting for 96.7% of the total performance variability.

Moreover, by taking into account the Mean Square (MSQ) of each main fac-
tor, we concluded that the application’s kernel complexity is the most impacting
factor on the application’s time-to-solution, followed by the scheduling strategy
and the performance factors related to the input workload (i.e., PDF, Shuffling

1Experimental results are available at https://dx.doi.org/10.6084/m9.figshare.
3753024.
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and Kurtosis). On the other hand, when analyzing two-way interactions be-
tween scheduling strategies and other main factors, we observed that Shuffling
becomes slightly more impactful on time-to-solution than the PDF of the input
workload. It is noteworthy that the variance among experiment replicates are
very small, with a Mean Square of the Error (MSE) of 3261. In the following
sections we carry out a top-down performance analysis of the SRR loop schedul-
ing strategy, starting from the most impactful performance factors towards the
least impactful ones.

5.2 Kernel Analysis

Figure 2a presents an overview of execution times for scheduling strategies per
kernel type. These plots illustrate the variance of the time-to-solution for each
kernel and strategy, varying all other factors (i.e., PDF, Kurtosis and Shuffling).

When comparing the three scheduling strategies, we observed that all of
them showed a similar performance behavior regardless of the kernel type. In
contrast to the other strategies, the SRR scheduler presents a considerably
smaller variance in execution times. Moreover, when considering the interquar-
tile range (IQR), smaller execution times are observed with SRR, Dynamic, and
Static strategies, in this order. However, when taking into account the overlap
for whiskers and IQR in the boxplots, conclusions about the actual differences
in execution time are misleading. Therefore, to obtain statistically significant
mean differences between the strategies, we employed Tukey’s method with the
response variables time-to-solution and speedup, using a significance of 5%.

Indeed, results from this method unveiled that when contrasting SRR with
the Dynamic and Static strategies, time-to-solution is reduced by the former
strategy in 2.90s and 6.83s for the linear kernel, and in 11.19s and 33.69s for the
logarithmic kernel. In addition, in means of speedup, and when compared to
the Dynamic strategy, we observed that SRR performs 1.24× and 1.19× better,
in the linear and logarithmic kernels, respectively. The rationale behind the
overlap between IQR is discussed in Section 5.3. As a side remark, since the
Static scheduler presented a worse performance than both, the Dynamic and
SRR strategies, in all cases, from this point on we will carry out the analysis
only with the latter two.

Finally, when contrasting one kernel type with another, we noted that there
exists a significant difference between the two kernel types, regardless of the
scheduling strategy used. Changing from a linear to a logarithmic kernel when
using either the Static, Dynamic or SRR strategy increases the mean execution
time in 73.79s, 55.21s and 46.92s, respectively.

5.3 Workload PDF Analysis

Figure 2c presents the breakdown of execution times for each strategy per PDF
type. These plots refer to results with the logarithmic kernel when varying
all levels of the other factors (i.e., Kurtosis and Shuffling). Nevertheless, the
following discussion applies to the linear kernel.

When analyzing the impact of the PDF in the performance of each strategy,
we observed that for the Beta, Gaussian and Uniform PDFs, SRR presents
smaller time-to-solution than the Dynamic scheduler. The greatest difference
is for the Uniform PDF, where SRR has run 15.66s faster (1.41× speedup);
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Figure 2: Execution times per (a) Kernel, (b) Kurtosis/Shuffling and (c) PDF.

and the smaller difference is for the Beta PDF, where SRR has run 7.56s faster
(1.18× speedup). However, for the Gamma PDF, the performance of Dynamic
and SRR strategies was roughly the same, with the former presenting a slightly
greater variance in execution times. Indeed, in some scenarios with the Gamma
PDF, SRR has presented a slower run time than Dynamic. In the worst case,
SRR suffered a performance degradation of 8.7%.

In addition, it is important to point out that the Gamma PDF is the rationale
behind our inconclusive analysis in Section 5.2, when we studied the impact of
the application’s kernel in the performance of each strategy in means of IQR
overlapping. Results with this PDF were hiding performance gains of SRR over
the Dynamic in the other PDFs. Nevertheless, in this point, we observed that
the Gamma PDF generates a highly irregular workload, and thus suggesting
that the SRR strategy may not perform so well on asymmetric workloads.

Furthermore, when using Tukey’s method to evaluate the impact of the each
PDF in the performance of each strategy, we observed that for the Dynamic
strategy, changing the input workload of an application from one to another
greatly impacts on its execution time, regardless of the workload PDF used. On
the other hand, for the SRR strategy, this difference is significant only when
switching from/to a Gamma-generated input workload. Putting it differently,
the time-to-solution achieved by SRR is not affected by changes in the applica-
tion’s input workload.

5.4 Kurtosis and Shuffling Analysis

Results for the impact of Kurtosis and Shuffling on the time-to-solution are pre-
sented in Figure 2b. For both plots, the kernel type was fixed to logarithmic and
the PDF to Gaussian. On the left-hand side, the time-to-solution is presented
for all kurtosis, averaged by the shuffling seed value and replicates. Vertical bars
refer to the standard deviation of the mean time. On the other hand, to isolate
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the effect of the kurtosis in the response variable, the figure on the right-hand
side presents results for shuffling seed fixed to 307. The following conclusions
equally apply to all other scenarios, except for those involving Gamma.

We observed that both strategies suffer from performance degradation when
the kurtosis of the PDF increases. However, in all cases, this impact is greater
on the Dynamic than on SRR strategy. If we consider all other scenarios, this
performance degradation results in higher execution times ranging from 7.84s to
9.67s for the Dynamic strategy, on average, according to Tukey’s method with
significance of 5%. In means of speedup, we observed that SRR overpasses the
Dynamic scheduler in performance in up to 1.5× (logarithmic kernel, Uniform
PDF, 0.825 kurtosis and shuffling seed 307). When varying the seed value
for iteration shuffling, we noted that the Dynamic strategy presents a greater
variance on execution times and a worse performance than SRR, regardless of
the seed value. The performance of Dynamic is greatly influenced by this factor
due to its dynamic behavior, whereas the SRR scheduler, inherently avoids this
because it sorts loop iterations beforehand.

5.5 Scaling Analysis

In this section we carry out a discussion about the scaling capabilities of the
SRR strategy in the weak and strong scaling experiments. The following con-
clusions are based on the results that we observed for the scenario in which the
SRR scheduler has performed the best (logarithmic kernel, Uniform PDF, 0.825
kurtosis and shuffling seed 307). Therefore, they reflect an upper bound scaling
analysis over all the scenarios.

In the weak scaling experiment (Figure 3a), we noted small execution times
when running with less than 8 threads and we did not identified any significant
difference between the Dynamic and SRR scheduling strategies. However, when
running with 8 threads and more, we observed that SRR delivers a constant
performance when the number of threads and chunks of loop iterations increase
proportionally. This result thus unveils that SRR may achieve linear weak
scaling for properly large input workloads.

Results for the strong scaling experiment are presented in Figure 3b (re-
sults for scenarios with less than 6 threads were omitted to improve visibility).
Overall, we observed that the scaling capability of SRR is roughly similar to
the Dynamic strategy, i.e., time-to-solution decreases quasi-exponentially as we
increase the number of threads. Nevertheless, SRR has presented steps on the
graph. When the number of threads is a divisor of the number of chunks of loop
iterations (48 chunks), there is a considerable drop in the execution time. How-
ever, when this number is not a divisor of the number of chunks, the execution
time remains constant.

To find out more details about this peculiar behavior, we thus selected the
case with 22 and 24 threads to study. However, it is important to point out that
we drew the same conclusion for the other similar cases (i.e., 6 and 8 threads,
and 10 and 12 threads). Figures 3c and Figure 3d present the workload assigned
to each thread when running with 22 and 24 threads, respectively. As it can be
noted, in the first scenario, SRR ends up overloading two threads with compu-
tation, whereas in the second scenario, the input workload is evenly distributed.
The rationale behind this behavior, however, comes from the SRR strategy it-
self. When the number of threads is not a divisor of the number of chunks
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Figure 3: Results for weak and strong scaling experiments.

of loop iterations, the very first threads that are considered in the scheduling
end up with an extra pair of loop iterations, and thus load imbalance arises.
Indeed, we believe that if SRR also considered the total workload assigned to
each thread when scheduling loop iterations, it might had stepped out from this
corner case and delivered a better strong scaling capability.

5.6 Application Kernel Benchmarking: LavaMD

Figure 4 presents strong scaling results for the LavaMD kernel, when using
the Dynamic and SRR loop schedulers. The Static loop scheduling strategy
presented worse results than both strategies and thus they were omitted.The
plot on the left depicts execution time; that is, the overall execution time of the
parallel loop. Ideally, increasing the number of threads should exponentially
decrease of execution time. On the other hand, the plot on the right depicts
execution cost; that is the execution time multiplied by the number of working
threads that execute the parallel loop. Ideally, an increase on the number of
threads should have no impact on this metric.

Overall, the results unveiled that SRR delivers better performance than Dy-
namic, when increasing the number of threads. The highest performance gain
was observed when 16 threads were in used, where SRR achieved 2.48× superior
performance. Besides, we also observed a stepped-behavior for SRR, likewise
when performing strong scaling experiments with the synthetic benchmarking.
Therefore, these results further evidence that SRR should be improved to de-
liver a smooth executing time decrease with the number of threads. Finally,
when analyzing execution cost results, we noted that both strategies yield to an
increase of the metric, with SRR presenting a grow-rate slower than Dynamic.
This results thus suggests that SRR may be further enhanced.
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Figure 4: Results for strong scaling runs on the LavaMD kernel.
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6 Conclusions and Future Work
With the ever-increasing number of loop scheduling strategies, it has become
a non-trivial task to actually select the best one for a particular parallel appli-
cation. Nevertheless, this challenge becomes easier to be tackled when existing
strategies are extensively evaluated. Therefore, in this paper, we presented a
performance and scalability evaluation of the recently-proposed workload-aware
loop scheduling strategy named SRR. This strategy showed promising results for
irregular applications, but had not been thoroughly assessed before. To deliver
a comprehensive analysis, we coupled the synthetic kernel benchmarking tech-
nique with several rigorous statistical tools, and considered OpenMP’s Static
and Dynamic loop schedulers as our baselines.

We studied the impact of several factors in the time-to solution and speedup
of each strategy in 672 distinct scenarios using a synthetic kernel. Our exper-
iments unveiled that SRR performs better on symmetric workloads and may
achieve up to 1.9× and 1.5× better performance than OpenMP’s Static and
Dynamic strategies, respectively. Moreover, our results pointed out that the
time-to-solution achieved by SRR is not significantly affected by changes in ap-
plication’s input workload, and that this strategy may deliver linear weak scaling
capability for properly large input workloads. Nevertheless, we noted that SRR
performs similar to the Dynamic strategy for asymmetric workloads. Finally,
when SRR faces a strong scaling scenario, it is overpassed in performance by
the Dynamic scheduler, when the number of threads is not a divisor of the
number of chunks of loop iterations in the irregular application. Furthermore,
we also analyzed the performance of SRR in N-Body Simulations kernel. We
performed strong scaling experiments on a randomly-chosen workload configu-
ration and observed that SRR may deliver up to 2.48× better performance than
OpenMP’s Dynamic. Nevertheless, the results suggested that SRR still may be
further improved to deliver better scalability.

As future works, we intend assess memory affinity and energy efficiency of
the SRR strategy in NUMA and hetherogeneous platforms. Furthermore, we
intend derive formal proofs on the performance bounds of this strategy. Finally,
we intend to propose an enhancement in the SRR scheduler so that it can step
out from the corner scenarios in which we observed that it may not perform as
expected.
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