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Dynamical study of Nav channel excitability under mechanical
stress

Q. X. Ma1 · A. Arneodo2,3 · G. H. Ding1 · F. Argoul2,3

Abstract Alteration of Nav channel functions (channe-
lopathies) has been encountered in various hereditary muscle
diseases. Nav channel mutations lead to aberrant excitabil-
ity in skeletal muscle myotonia and paralysis. In general,
these mutations disable inactivation of the Nav channel, pro-
ducing either repetitive action potential firing (myotonia)
or electrical dormancy (flaccid paralysis) in skeletal mus-
cles. These “sick-excitable” cell conditions were shown to
correlate with a mechanical stretch-driven left shift of the
conductance factors of the two gating mechanisms of a frac-
tion ofNav channels,whichmake themfiring at inappropriate
hyperpolarised (left-shifted) voltages. Herewe elaborate on a
variant of the Hodgkin–Huxley model that includes a stretch
elasticity energy component in the activation and inactivation
gate kinetic rates. We show that this model reproduces fairly
well sick-excitable cell behaviour and can be used to predict
the parameter domains where aberrant excitability or paral-
ysis may occur. By allowing us to separate the incidences of
activation and inactivation gate impairments in Nav channel
excitability, this model could be a strong asset for diagnosing
the origin of excitable cell disorders.
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1 Introduction

Since the mid-1990s, voltage-gated sodium (Nav) channels
have been recognised for their implication in the generation
and conduction of action potentials in excitable cells (Hille
1992). Nav channels are macromolecular protein complexes
containing pore-forming α subunits and smaller non-pore-
forming β subunits which are embedded inside the plasma
membrane. The vertebrate Nav channel α subunit is a single
polypeptide chain (∼260kDa) that contains the ion-selective
gating component. There are 10 genes encoding the mam-
malian α subunits Nav1.1−1.9, and an atypical channel
Nax . The β subunits regulate channel expression and gat-
ing; these cell adhesion molecules (CAMs) belong to the
immunoglobulin (Ig) superfamily (Namadurai et al. 2015).
Many pieces of evidence suggest that, in addition to regulat-
ing electrical excitability, voltage-gated ion channels are also
involved in numerous “non-conducting” signalling mecha-
nisms (Kaczmarek 2006). Thus far, the non-conducting role
of voltage-gated channels via the β subunits has been best
characterised in cell adhesion (Brackenbury et al. 2008). The
α subunits remain closed at rest but are activated during cell
membrane depolarisation by a fast and transient structural
change (activation particles) leading to a flow of sodium ions
down their concentration gradient followed by another struc-
tural change (inactivation particles) that counterbalances this
inward current (Ulbricht 2005). This inactivationmechanism
is necessary for the channel to recover its initial excitability
(Gribkoff and Kaczmarek 2009). Nav channels are not only
expressed in excitable cells like nerve and muscle cells but
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also in cells ordinarily considered as non-excitable, includ-
ing glial cells, fibroblasts, vascular endothelial, immune and
metastatic cancer cells (Brackenbury et al. 2008). Neuronal
sodium channels Nav1.1 − 1.3 and Nav1.6 − 1.9 are found
in the central nervous system (CNS) and peripheral nervous
system (PNS) neurons andwithin glial cells, whereas Nav1.4
andNav1.5 are expressed in skeletal and cardiacmuscle cells,
respectively (Catterall 2012).

Channelopathies are caused by genetic or acquired defects
in ion channels, the former being the most common. Voltage-
gated channel defects are involved in a wide variety of dis-
eases like epilepsy, migraine, blindness, deafness (Spillane
et al. 2016), diabetes, hypertension, cardiac arrhythmia,
asthma, irritable bowel syndrome, and cancer (Bracken-
bury 2012). Nav channel mutations are associated to aber-
rant excitability in skeletal muscle myotonia and paralysis
(Jarecki et al. 2010). These channelopathies include hyper-
kalaemic periodic paralysis (hyperPP), potassium aggra-
vated myotonia (PAM), paramyotonia congenita (PMC)
and hypokalaemic periodic paralysis (hypoPP) (Davies and
Hanna 2001; Jarecki et al. 2010; Simkin and Bendah-
hou 2011). Hyperkalaemic periodic paralysis, paramyoto-
nia congenita and potassium-aggravated myotonia represent
myotonic disorders due to episodic membrane hyperex-
citability of skeletal muscles (Ptacek et al. 1993). These
diseases are all caused by mutations in the sodium chan-
nel genes SCN4A 3, 4, 5 and 6. They are all inherited in
an autosomal-dominant manner. In general, these mutations
slow down or impede inactivation of the Nav channel, pro-
ducing either repetitive action potential firing (myotonia) or
electrical dormancy (flaccid paralysis) in skeletal muscles.

Physical factors such as temperature, pressure, stretching
and bending can impact bilayer mechanics and the coupling
to their embedded voltage-gated channels (Markin and Sachs
2004). For instance, membrane stretching not onlymakes the
bilayer thinner, but also decreases the amplitude of its fluctu-
ations and can modify its viscoelastic properties depending
on its composition. In particular, if the membrane is highly
bent with a high density of inclusions (organic or proteic),
stretching may increase its lateral tension depending on the
tightness of the connection of the inclusions with the bilayer
amphiphilic molecules. In that regard, overstretching may
lead to the distension or even the failure of this connection
and to the inactivation of the embedded channel. In other
words, the coupling of an ion channel (whatever voltage-
gated or mechano-gated) to its surrounding membrane is of
fundamental importance for its good functioning.

The periodic contractility of the heart is one of the best
examples of the impact of a mechanical stimulation on the
organ function through stretch activation of ion channels
(Hu and Sachs 1997). It was early recognised that dis-
tending the right heart atria could increase the heart rate
(Bainbridge 1915). But it took almost a century (Hu and

Sachs 1997; Peyronnet et al. 2016) to distinguish between
mechanically modulated and mechano-gated ion channels
and their respective impacts on cardiac electrophysiology.
For instance, understanding heart rhythm disorder regula-
tion at the entire organ level from the knowledge of single
cell excitability remains a subject of intensive research (Bett
and Sachs 1997;Kohl et al. 1999; Despa andVigmond 2016).
Stretch-activated channels (SACs)were first recognised from
experiments on chick skeletal muscles (Guharay and Sachs
1984) and further identified in many cell types of different
phylogenic origins (animals, plants, fungi and even bacteria).
More interestingly, in eukaryotic cells, SACs were shown to
interact directly with the cortical cytoskeleton (Guharay and
Sachs 1984) and with the extracellular matrix (ECM) (Liu
et al. 1996). Stretch-inactivated channels (SICs) are less com-
mon, but have also been reported in several cell types (Sachs
1989; Morris 1990; Sackin 1995).

A single channel patch-clamp recording (Hamill et al.
1981; Sakmann and Neher 2009) implies a mild to strong
aspiration (suction) and bending of the membrane inside a
small capillary that likely increases its tension and activates
(inversely inactivates) the SACs (inversely the SICs). The
larger the stimulus, the higher the probability of the SAC to
open, as long as the channel to membrane connection does
not leak or break. Channels previously labelled as voltage-
gated (Laitko 2004, 2006; Lin et al. 2007;Morris and Juranka
2007) or ligand-gated (Casado and Ascher 1998; Maingret
et al. 2000) are alsomechanically sensitive. The only require-
ment for mechanical sensitivity is that the channel changes
its shape between closed and open states and that stress on
the membrane can be transferred to the channel (Markin and
Sachs 2004).

Nav , Kv , Cav and hyperpolarisation-activated cyclic nucl-
eotide-gated (HCN) channels were all shown to exhibit
reversible gating changes with stretch (Shcherbatko et al.
1999; Tabarean et al. 1999; Gu et al. 2001; Calabrese et al.
2002; Lin et al. 2007). The impact of membrane deforma-
tions upon the Nav channel activity was suspected since the
late 1990s (Shcherbatko et al. 1999; Tabarean et al. 1999;
Pawson and Bolanowski 2002) and was recently elucidated
by voltage-clamp experiments (Hamill 2006; Morris and
Juranka 2007; Beyder et al. 2010). Nav1.5 channel reversibly
responds to membrane stretch by an acceleration of the rate-
limiting voltage-dependent step leading to a Na+ ion inward
flow. Inactivation may also be accelerated. Positive feedback
amplification is a fundamental property of excitable cells that
can further explain the very high sensitivity of Nav to even
small mechanical modulations. Given that minute deviations
in Nav channel kinetics may lead to cardiac arrhythmias,
epilepsy, neuropathic pain and general muscle disorders, it
is critical to determine to which extent Nav channel kinet-
ics can be altered by membrane deformations. In this work,
we perform a dynamical system analysis of a modified ver-
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sion of the Hodgkin–Huxley model (Hodgkin and Huxley
1952a) for muscle fibres, aiming at quantifying how a mod-
ification of the bilayer membrane tension which surrounds
a Nav channel may impair its normal function (excitability),
either by driving it to a very excitable state (periodic spiking)
or by blocking its excitability (paralysis).

2 Methods

2.1 Modelling the dynamical response of excitable cells

2.1.1 Characteristic features of excitable cells

Excitable cells (Hille 1992) are ubiquitous in animals and
plants. They are distinguishable from non-excitable cells
by their ability to sustain action potentials that manifest as
short-lasting events inwhich the electrical cellularmembrane
potential rises and falls, separated by long-term recovery
phases. These action potentials are produced by voltage-
gated ion channels which can sustain the rapid upstroke
and downstroke autocatalytic processes due to fast activa-
tion gates, followed by slow and rather silent phases due to
slower inactivation and recovery mechanisms. The nonlin-
earity of these excitable systems underlies the fact that the
action potential (spike) amplitude depends very little on the
size of the perturbation, provided it is suprathreshold.

2.1.2 General Hodgkin–Huxley (HH) formalism

The Hodgkin–Huxley (HH) models for nerve and mus-
cle fibres (Hodgkin 1951; Hodgkin and Huxley 1952a, b;
Hodgkin and Horowicz 1959; Huxley 1959) are constructed
on the same basis as electrical model equations, combining
a capacitance C and three ionic conducting units in paral-
lel. The potential difference V between the inner and outer
sides of the membrane depends on the different currents
flowing from, towards or through the membrane (assisted
or not assisted by ionic channels). The three ionic currents
are respectively a sodium current INa, a potassium current IK
and a background or leak current IL. Currents are given as
current densities in µA/cm2, ionic conductances as surface
conductances in mS/cm2 and capacitances as surface capaci-
tances inµF/cm2. The applied (external) current Iapp is equal
to the sum of the charging current and the ion transport cur-
rents through the membrane that depend on the membrane
potential:

Iapp = C
dV

dt
+ INa(V, t) + IK(V, t) + IL(V, t). (1)

Figure 1 illustrates the temporal variation of the different
variables of a HH model (indeed its muscle variant defined

in Sect. 2.1.3) during a single spike. The leak current IL
is purely ohmic with a fixed conductance gL and accounts
for the passive permeability of the membrane to ions. The
potassium current IK is produced by a voltage-gated channel
(Kv), a homotetramerwith voltage-sensing domains thatmay
move across the channel or change conformation upon gating
(like lockers). Upon channel depolarisation and repolarisa-
tion (action potential), corresponding to a sharp increase and
decrease of V , respectively (Fig. 1a), different steps can be
distinguished. The raise of V produces an increase of mNa

because the inward flow of Na+ is facilitated (activation of
the Na channel) (red curve in Fig. 1b, c). This sodium inward
flux saturates within a few milliseconds. The maximum of
the slope of V (t) correlates with a progressive increase in
the potassium conductance (green curve in Fig. 1b, c), which
reaches a maximum value slightly later than the maximum
of V . The Kv channel is modelled by a single gating mech-
anism, and its conductance factor mK is a monotonous and
nonlinear function of the membrane potential and gives the
Kv conductance gK(V ) = gKm4

K(V ) (Fig. 2b); gK is the max-
imum conductance when mK = 1. The conductance of the
Nav channel is modelled by the combination of two gating
mechanisms: (i) a first gating mechanism (described by a
variable conductance factor mNa) similar to the Kv channel
which activates the permissivity of the Nav channel to Na+
ions (depolarisation step) and (ii) a second gating mecha-
nism which is initially opened at low potential and which
progressively closes during depolarisation and repolarisation
of the membrane. The conductance factor for this second
gating mechanism is written hNa. The whole conductance
of the Nav channels gNa(V ) = gNam3

Na(V )hNa(V ) was pro-
posed by Hodgkin and Huxley (Hodgkin and Huxley 1952a)
from experimental observations. Due to the counteracting
effects of the twogates, gNa(V ) reaches amaximumbefore the
maximum of the voltage (Fig. 1c). Themaximum of this con-
ductance is decreased by the presence of the second gate hNa.
This combination of two gates makes the negative spike of
Na+ ion current INa (red curve inFig. 1d) dramatically sharper
than the voltage spike (black curve in Fig. 1a). Finally, after
repolarisation, the voltage crosses more negative values that
correspond to the hyperpolarisation of the membrane, before
returning to its initial value. This slowest process is mon-
itored by the slow recovery of the second sodium gating
mechanism hNa (blue curve in Fig. 1b). The intersection of
the two curves for mNa and hNa in Fig. 1b corresponds to
V = −65 mV which is close to the resting potential of the
membrane. From the current and voltage signals, 2D phase
portraits can be reconstructed that shed light on the tempo-
ral transformation of the system trajectories plotted in phase
space. In Fig. 1e are displayed the three ionic currents INa(t),
IK(t) and IL(t) and their sum IS(t) versus V (t). In Fig. 1f,
INa(t) is represented versus the capacitance charging current
IC (t) = CdV (t)/dt . HH models [Eq. (1)] are constructed
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Dynamical signature of the different variables involved in a HH
model derived for muscle cells (Hodgkin 1951; Adrian et al. 1970). a
Voltage V (t) vs t . b Opening probabilities for the three gates involved
in the HH model: mNa(t) (red), hNa(t) (blue) and mK(t) (green). c Con-
ductance factors for the sodium m3

Na(t)hNa(t) (red) and the potassium
mK(t) (green) channels. In (b) and (c) the rescaled voltage curve (black
dashed-dotted curve) is also plotted for comparison. d Ionic currents:

INa(t) (red), IK(t) (green) and IL (grey). In black, the sum of these ionic
currents IS(t) = INa(t)+ IK(t)+ IL(t). e 2Dphase plots of the three ionic
current signals and their sum versus V . f 2D phase plot of INa(t) versus
the charging current IC (t) = CdV (t)/dt . The arrows indicate the ori-
entation of the dynamics on the phase-space trajectories. For parameter
values, see Sect. 2.1.3; Iapp = 7µA/cm2 (colour figure online)

from four variables and these phase portraits are projections
on a phase space with only two dimensions, which may not
be sufficient if the dynamics is more complex than the one
illustrated in Fig. 1. In the first phase portrait (Fig. 1e), the
comparison of the three ionic current dynamics and their rel-
ative importance in the total ionic current is enlightened. For
instance, it becomes clear that the leak current (grey dots)
is not negligible for large V values and can even overtake
the total ionic current for V values approaching zero. The
interest of phase portrait representations is also to provide a
direct separation of fast and slowdynamics from the observed
density of sampling dots; the sparser the dots, the faster the
dynamics.

When making explicit the different ionic conductances,
Eq. (1) becomes:

C
dV

dt
= −gNam

3
Na(V )hNa(V )(V − ENa)

− gKm4
K(V )(V − EK)

− gL(V − EL) + Iapp(t), (2)

where ENa, EK and EL are the reversal potentials of the mem-
brane channels corresponding to vanishing currents INa, IK
and IL, respectively; these potentials are the Nernst equilib-
rium potentials for each ion. The conductance coefficients

gNa, gK and gL of the three ionic currents are constant param-
eters that do not depend on V .

The dependance of the activation and inactivation vari-
ables mNa, mK and hNa and of the corresponding ionic
conductances on the voltage V is essential ingredients of the
HH models. The activation and inactivation variables mNa

and hNa have opposite voltage dependencies. Depolarisation
causes mNa to increase and hNa to decrease, whereas repolari-
sation causes mNa to decrease and hNa to increase (Namadurai
et al. 2015) (Fig. 2a). In HH models, the probability of Na+
permissivity is considered as equal to the product m3

NahNa,
assuming that the two Na gates mNa∞ and hNa∞ act indepen-
dently. These transition probabilities dmi/dt (i = 1, 2, 3)
= (dmNa/dt , dhNa/dt and dmK/dt), from permissive to non-
permissive states of the different ionic gates, are assumed to
obey first-order rate equations with rate factors αi (V ) and
βi (V ) that depend on the membrane potential V :

dmi

dt
= αi (V )(1 − mi ) − βi (V )mi . (3)

V is measured in millivolts and is defined such that a positive
V value corresponds to an increased inward voltage gradient
across the membrane. The probability that a gate opens over
a short interval of time is proportional to the probability (1−
mi ) of finding the gate closed, multiplied by the opening rate
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Fig. 2 Dependance on the
voltage V of the steady-state
conductances and currents in a
HH model of muscle fibres
(σ = 0) [Eqs. (5–8)]. a
Probabilities of channel gate
opening mNa∞ (red), hNa∞ (blue)
and mK∞ (green). b
Conductance factors in the
steady state for the sodium
channel 100 ∗ m3

Na∞ hNa∞ (red)
and the potassium channel mK∞
(green). c Time constants for the
three gates τmNa (red), τhNa

(blue) and τmK (green). d Ionic
currents in the steady state INa∞
(red), IK∞ (green) and IL∞
(grey) and the sum of these three
currents IS∞ (black). e Zoom in
(c) on the range of V values
corresponding to the local
maxima of the time constants. f
Zoom in (d) showing the
sigmoidal shapes of INa∞ and
IS∞ (colour figure online)
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αi (V ). Likewise, the probability that a gate closes during
this short interval of time is proportional to the probability
mi of finding the gate open, multiplied by the closing rate
βi (V ). Dividing Eq. (3) by αi (V ) + βi (V ) brings out the
time constants τi for each gate:

τi (V )
dmi

dt
= mi∞(V ) − mi , (4)

where

τi (V )= 1

αi (V ) + βi (V )
, mi,∞(V )= αi (V )

αi (V )+βi (V )
. (5)

Equation (4) tells us that for a fixed voltage V ,mi approaches
the limiting value mi,∞(V ) exponentially with a time con-
stant τi (V ).

Experimental data have revealed that the mi,∞(V ) for Na
and K activation gates (i = 1, 3) follow a sigmoidal increas-
ing shape from 0, at large and negative V values, to 1 at
large positive V values. Inversely, for the inactivation of Na
channel (hNa), the closing rate increases with V , whereas the
opening rate decreases with V . These behaviours are nicely
reproduced by the HH models (Fig. 2a).

2.1.3 Variants of the HH rate equations for muscle cells

The model equations for three gating subunits (Na activa-
tion, Na inactivation, K activation) was initially proposed in
1952 by Hodgkin and Huxley from squid giant axon voltage-
clamp experiments (Hodgkin 1951; Hodgkin and Huxley
1952a, b). The interest ofHodgkin andHuxley and their coau-
thors for excitability in mammalian cells was not limited to
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nerve cells, since they also devoted much of their efforts
to characterise the excitability and conduction of muscle
fibres (Hodgkin 1951; Hodgkin and Horowicz 1959; Hux-
ley 1959). Similar to nerve action potentials, they confirmed
older observations by Fenn and Cobb (1936) of the impli-
cation of sodium ion entry and potassium ion exportation
in mammalian muscle excitation spikes. This similarity can
be explained by the presence of a higher concentration of
potassium inside these excitable cells, whereas sodium and
chloride are relatively dilute. The mechanisms of excita-
tion conduction elaborated for nerve cells were generalised
to skeletal muscle cells (Butchal and Sten-Knudsen 1959).
However, unlike for unmyelinated nerve fibres as the squid
giant axons (Hodgkin and Huxley 1945), if the initial phase
ofmembrane repolarisation to∼−70mVwas shown to occur
within 3 ms at 20 ◦C, an additional 30 ms was necessary for
the restitution of the resting membrane potential. The hyper-
polarisation phase was also comparatively diminished, and
repolarisation was observed to remain in progress after the
peak of isometric twitch tension of the muscle fibre.

Thanks to the development of micro-electrode techniques
for single cell membrane potential difference measurements,
a variant of the original HHmodel was proposed byAdrian et
al. (1970). The opening αi and closing βi rates were adapted
from the original HH equations (Hodgkin andHuxley 1952a)
to match the excitability of muscle cells:

αmNa(V ) = 0.288V1/(1 − e−V1/10),

βmNa(V ) = 1.38 e−V1/18,

αhNa(V ) = 8.1 10−3 e−V2/14.7,

βhNa(V ) = 4.38/(1 + e−V2/9),

αmK(V ) = 0.0131V3/(1 − e−V3/7),

βmK(V ) = 0.067e−V3/40, (6)

where V1 = 44+ V , V2 = 45+ V and V3 = 40+ V . The αi

and βi are given in reciprocal ms (T = 25 ◦C) and the Vi in
mV. Let us note that the rates of closing of the Na (βmNa) and
K (βmK) activation gates and the rate of opening of the Na
(αhNa) inactivation gate are written as exponential decreasing
functions of the channel voltage. Inversely, the rates of open-
ing of the Na (αmNa) and K activation (αmK) gates and the
rate of closing (βhNa) of the Na inactivation gate are written
as the ratio of a linear function of V (shifted by a constant
value) divided by an exponential decreasing function of V .
This reproduces nicely the experimentally observed opposite
variations of Na and K activation rates and of Na inactivation
rate with the voltage V (Fig. 2a).

The reversal potentials corresponding to vanishing Na+,
K+ and leak currents (Nernst potentials) for muscle cells are
ENa = 47 mV, EK = −93 mV and EL = −85 mV. The
maximum transient conductances are gNa = 150 mS/cm2

and gK = 21.6 mS/cm2, whereas the leak conductance is
gL = 0.75 mS/cm2. The steady-state open probabilities for
the activation and inactivation Na gates are combined in the
total conductance factor for Na+ ions:

m3
Na∞hNa∞ =

[
αmNa(V )

αmNa(V ) + βmNa(V )

]3

×
[

αhNa(V )

αhNa(V ) + βhNa(V )

]
. (7)

The corresponding steady-state open probability for the K
channel yields the total conductance factor for K+ ions:

m4
K∞ =

[
αmK (V )

αmK (V ) + βmK (V )

]4
. (8)

The time constants for each rate equations [Eq. (4)] are
respectively given by Eq. (5).

The different activation and inactivation probabilities in
the steady state (mNa∞ , hNa∞ and mK∞ ) [Eq. (5)] and the con-
ductance factors m3

Na∞hNa∞ [Eq. (7)] and m4
K∞ [Eq. (8)] are

calculated numerically from Eq. (6) and plotted in Fig. 2a,
b. Note that the Na conductance factor m3

Na∞hNa∞ is much
smaller than the K conductance factor and has been multi-
plied by 100 for better visibility. The time constant of theNav

activation gate (fast upstroke and downstroke dynamics) is
much smaller than the two other time constants for K activa-
tion gate and Na inactivation gate (Fig. 2c, e where τmNa has
been multiplied by 30). The range of potential values where
these time constants are maximal shows a clear separation
of the activation (Na and K) and inactivation (Na) processes.
For membrane potentials close to the activation maximum
(V ∼ −54 mV), the time constant for the activation gate
of the K channel (green line) is about 30 times larger than
the one for the activation (red line) and inactivation (blue
line) gates of Na channel. After the upstroke which takes
a few milliseconds, the membrane potential rapidly returns
to more negative potentials and then remains in a hyper-
polarised state for several milliseconds at a non-null total
current IS (Fig. 1a). This phenomenon is also confirmed by
the variation of the stationary ion currents Ii (Fig. 2d) in
this range of potential values (Fig. 2f). In the steady state,
INa∞(V ) (red line) is smaller than IK∞(V ) (green line) and
never crosses it (checked from numerical simulations) and
both these currents vary much slower than the leak current
IL∞ which dominates the total current. Atmembrane voltages
below V = −85 mV where the sum of these three currents
gets null, the capacitance charging current IC = CdV/dt
dominates in Eq. (1).

Let us point out that both INa∞ and IS∞ display a sig-
moidal shape versus V (Fig. 2f), whereas in the nerve fibre
HHmodel, IS∞ is a smoothly increasing function of V . Inter-
estingly, the steady-state current IS∞(V ) shows a decreasing
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regime between −69.3 and −58 mV sandwiched by two
increasing regimes. This means that for a single value of
the input current Iapp, three values of V corresponding to
three steady states are possible. The stability of these three
steady solutions varies with the model parameters, and only
the stable ones will be observable in experiments. The local
stability of these steady states will be analysed in Sect. 3.1.

2.2 Modelling the mechanosensitivity of voltage-gated
channels

Variants of HH model equations (Hodgkin and Huxley
1952a) were used for the interpretation and the prediction
of impairments of sodium channel in myotonia and paralysis
in humans (Cannon et al. 1993; Cannon and Corey 1993).
The phenotype of myotonia muscle disorders corresponds
to a delayed relaxation of tension after contraction and an
enhanced electrical excitability that manifests in repetitive
discharges occurring either spontaneously or after voluntary
contraction ormuscle percussion. HyperPPmay be concomi-
tant tomyotonia. (Cannon et al. 1991) showed that functional
defects in the sodium channels of hyperPP muscle fibres can
impair the inactivation gate when the extracellular potassium
is elevated. Partial disruption of the inactivation mechanisms
of sodium channels by a mechanical disruption of muscle
fibres and the formation of cell membrane blebs were also
observed when adding a peptide toxin (ATX II) (Cannon and
Corey 1993). All these defaults in sodium channel functions
were broadly related to a persistent inactivation failure of a
fraction of the sodium channels at strong depolarising poten-
tials. More recently, the question of mechanical, ischaemic
and inflammatory injuries of voltage-gated sodium channels
and their harmful leakage was embodied in the term “sick-
excitable cell” conditions (Morris et al. 2012), corresponding
to a left shift of both the steady-state conductance factors
mNa∞(V ) and hNa∞(V ) when plotted versus V (Fig. 2a).
This left shift can be followed by the decrease of the half-
voltage V1/2 corresponding to βi/αi = 1. Actually, rather
than being inhibited, damaged and leaky Nav channels gate
“too well” since they get activated at inappropriate hyper-
polarised (left-shifted) voltages (Shcherbatko et al. 1999;
Tabarean et al. 1999;Wanget al. 2009;Beyder et al. 2010).By
virtue of molecular coupling between the fast-mode activa-
tion and inactivation (availability) processes in aNav channel
these two processes left-shift in synchrony; the kinetic fac-
tors mNa∞(V ) and hNa∞(V ) both shift of the same amount
in voltage. This behaviour was shown for recombinant Nav

1.6 channels and termed “coupled left shift” (CLS) (Morris
et al. 2012). CLS leads to maxima of the Na channel con-
ductance factor m3

Na∞hNa∞ in a range of membrane voltage
which was subthreshold in normal situations. Even if only a
small fraction of channel gates were altered, it would never-

theless imply a subthreshold persistent current which could
depolarise the adjacent (intact) Nav membrane channels.

These modifications not only correspond to a drastic
change of the IS(t) curves of stretch-traumatised nerve or
muscle cells, but also to a transformation of the type of tem-
poral dynamics that such cells can sustain on longer terms. A
way to understand how this modification of the upstroke and
downstroke dynamics of muscle fibres can induce ectopic
action potential spiking is to use a strategy inspired from
dynamical system theory (Izhikevich 2007) and which con-
sists in reconstructing the so-called bifurcation diagrams
in both normal and altered sodium-gated channels. A first
attempt of bifurcation diagram reconstruction for single ion
channel cluster was recently proposed by Assmann and Lenz
(2014), based on a modification of the squid axon model
of Hodgkin and Huxley (1952a). However, the classifica-
tion of the different dynamics encountered in the normal
and modified HH models was limited to the observation
that when the membrane surface tension was fixed at values
larger than its equilibrium values, stable limit cycle oscil-
lations could replace single, isolated excitability spikes for
biologically relevant Iapp values. They predicted that the
membrane potential would undergo a transition from non-
spiking to stable periodic spiking regions upon increasing
the surface tension. In this work, we follow the same mod-
elling rationale, and we investigate how a modification of
the kinetic rates of the Na activation (mNa∞) and inactivation
(hNa∞ ) gates can change the whole channel dynamics. We
start from a different HH model that describes muscle cell
excitability and presents multiple steady solutions at normal
tensions. From this model, we perform a full analysis of the
different dynamics with and without tension and we recon-
struct the corresponding bifurcation diagrams (Sect. 3.1).

2.2.1 Membrane tension controls channel activation and
inactivation rates

The easiest way to account for the elasticity of the bilayer
membrane and its modifications upon mechanical stretch is
to write its tension as the product of an elasticity constant σ
and the fractional increase of its area �A/A (Helfrich 1973;
Guharay and Sachs 1984; Assmann and Lenz 2014):

T = σ�A/A. (9)

σ represents the amount of tension required for doubling the
area (�A = A). The energy of membrane deformation is:

U = A

2σ
T 2 = σ

2

(
�A2

A

)
. (10)

It was demonstrated experimentally (Guharay and Sachs
1984) that stretching modifies the rate constants of the
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channel gating mechanism according to a simple Eyring for-
mulation of the rate constant between an initial state i and an
intermediate activated complex i∗:

kσ=0
i→i∗ = k0e−�G‡/kT , (11)

where k is the Boltzmann’s constant, T the absolute temper-
ature and �G‡ the free energy of transition from the initial
state to the activated complex. Equation (11) for the rate con-
stant kσ=0

i→i∗ follows an Eyring formulation (transition state
theory), which does not mean that the system is strictly at
equilibrium (the reactants and the products may not be in
equilibrium) but in local quasi-equilibrium. Given that the
probability distribution functions of the channel conductance
factors in the initial and transition states were unknown a pri-
ori, we assumed them as standard distributions, putting aside
more complex distributions such as power laws. Within this
assumption we related the free energy of transition between
the initial state and the intermediate activated complex to an
elastic energy. Replacing the membrane energy term defined
in Eq. (10) into Eq. (11) yields:

ki→i∗ = kσ=0
i→i∗ e

σ
2kT

(
�A2

A

)
= kσ=0

i→i∗ eσB, (12)

where B =
(

�A2

2kT A

)
describes the amount of stretching

(assumed fixed) implied by the experimental measurement.
�G‡ = �G‡

σ=0 − U because the intermediated activated
complex is stabilised upon stretching. The open probability
of the channel gate and the corresponding current flow will
also follow this same relationship.

Here we have restricted our modelling to the linear
elasticity regime. In real situations, such as mechanically
damaged membrane bilayers, the membrane elasticity may
become a nonlinear function of the deformation, such as
σ = σ0(�A/A)ζ with ζ > 0 for strain-stiffening mem-
branes and ζ < 0 for strain-softening membranes.

2.2.2 SLS HHm model

Along the same line as previous works on ionic channel
mechanosensitivity (Guharay and Sachs 1984; Sachs 1988;
Assmann and Lenz 2014; Morris et al. 2015), we intro-
duce this modification on the opening/closing rate of the Na
activation gate only (single left shift—SLS), to study more
specifically how it changes the excitability and periodic fir-
ing of the HH muscle (HHm) model. The σ coefficient can
be considered as a tension characterising themechanical sen-
sitivity of the gate. An increase of σ (in positive direction)
speeds up the opening of theNa activation gate. Conversely, a
decrease of σ (in negative direction) slows down the opening
of the Na activation gate. Intuitively, increasing the mem-
brane tension surrounding the channel favours its opening.

The closing of the Na activation gate works in the opposite,
an increase of σ (in positive direction) slows down the clos-
ing of the Na activation gate and a decrease of σ (in negative
direction) speeds up its closing. The Na activation gate clos-
ing rate is therefore favoured when reducing the membrane
tension:

αmNa = αmNa,0eσB, βmNa = βm Na,0e−σB . (13)

Introducing the parameter σ in the model for Na channel
activation, we get the following expression for mNa∞ :

mNa∞ = 1

1 + βNa∞ (V )

αNa∞ (V )
∗ e−2σB

= 1

1 + βσ

ασ

. (14)

Equation (14) shows that when introducing a mechanical
energy term inside the Na channel activation kinetics, this
not only implies a nonlinear change of the half-voltage V1/2

(corresponding to βσ

ασ
= 1) but also induces a nonlinear dis-

tortion of the mNa∞(V ) curves for σ values away from zero.
We take B in the range of values expected from real sit-

uations. For B = 129.65 m2/J (Assmann and Lenz 2014),
we compute the different probability mi , the conductance
factors, the time constants and the steady currents versus the
membrane voltage with and without tension σ (Fig. 3). Note
that the conclusions of our dynamical analysis of the HHm
model with mechanical tension do not depend on the specific
value ofB. By playing on the tension parameter σ , one can
compensate a change in σ and recover similar bifurcation
diagram changes. For σ > 0, the Na activation gate opening
probability displays a left shift towards negative V values
(Fig. 3a) (SLS HHm model). This stretch-activated left shift
of the conductance factors (Fig. 3b) reproduces nicely pre-
vious experimental measurements on adult rate ventricular
myocytes (Banderali et al. 2010). This simple mechanical
modification of the HHm model (limited to the Na activa-
tion gate) embodies not only an important feature observed
in experiments, namely the shift of the currents to negative
V values, but also their global amplification (Fig. 3d) (Wang
et al. 2009; Banderali et al. 2010; Beyder et al. 2010; Yu et al.
2012; Morris et al. 2015).

Given that the opening probabilities of the other gates
are unchanged, we can examine precisely how the shift in
voltage of the Na activation gate probability impacts the con-
ductance factor for sodium, the Na activation gate constant
and the steady-state currents. The introduction of a positive
tension σ in the conductance factor m3

Na∞(V )hNa∞(V ) not
only shifts its maximum to lower voltages, but also increases
its maximum (Fig. 3b). Hence, one suspects an enlargement
of the voltage interval where spiking and/or periodic firing
occurs for larger positive σ values, coming alongwith a sharp
increase of the amplitude of the ion currents (Fig. 3d). The
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Fig. 3 Dependance on the
voltage V of the conductances
and currents of a SLS HHm
model for muscle fibres. a
Probabilities of Na channel gate
opening mNa∞ (red), hNa∞ (blue)
and mK∞ (green). b
Conductance factors in the
steady state for the sodium
100 ∗ m3

Na∞ hNa∞ (red) and the
potassium mK∞ (green)
channels. c Time constants for
the three gates τmNa (red), τhNa

(blue) and τmK (green). d Ionic
currents in the steady state INa∞
(red), IK∞ (green), IL∞ (grey)
and their sum IS∞ (black). The
symbols have the following
meanings: σ = 0 mN/m (solid
line), 2 mN/m (empty circles),
4 mN/m (filled circles),
−2 mN/m (empty triangles),
−4 mN/m (filled triangles)
(colour figure online)
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time constant τmNa(V ) for the Na activation gate is also left-
shifted in V for σ > 0 (Fig. 3c), as a consequence of the
left shift of mNa∞ (Fig. 3a). Less intuitive is the fact that the
time constant maximum of this shifted curve is not changing
much with σ , meaning that the slower affordable rate for this
gate is quasi-invariant. For spiking events to occur (which
is the fundamental property of excitable cells), one major
ingredient is to have well-separated time-scales for the dif-
ferent gating mechanisms. This is still fulfilled in this SLS
HHm model. The time constant of the K activation rate is
so large as compared to the one of Na activation rate that
a left shift of the later for σ > 0 does not change much
the spiking ability of the model. Indeed, it simply changes
the range of Iapp values where these voltage and current
large amplitude incursions occur. The modifications of the
sodium and total steady-state currents with σ (Fig. 3d) are
also indicative of the changes observed in the temporal ionic
current signals. Actually, we note in Fig. 3d that changes
in the sign and amplitude of the steady-state currents INa∞
and IS∞ are very different for positive and negative values
of σ . For σ < 0, the sigmoidal shape of INa∞ disappears for
σ � −2 mN/m, likely corresponding to a loss of excitability
(this aspect will be discussed later), since spiking and peri-
odic firing are conditioned by the presence of several steady
states for a given value of Iapp. If nonetheless the system
keeps on oscillating, the small amplitude oscillations remain
subthresholded without large amplitude spiking. The steady
current curves no longer change for arbitrarily large negative
σ values, which is explained by the dramatic decrease of the
conductance factor m3

Na∞(V )hNa∞(V ) (Fig. 3b). Positive σ

values lead to a more important change of the steady-state

current curves, since their sigmoidal shape is significantly
reinforced (Fig. 3d).

The description of the temporal evolution of the different
opening probabilities and conductance factors when varying
the parameter σ is a preliminary step towards the bifurcation
diagram analysis reported in Sect. 3.1. In Fig. 4a, we com-
pare two large amplitude voltage oscillations obtained with
the SLS HHm model for Iapp = 11 µA/cm2, σ = 0 (thin
dashed-dotted line) and σ = 2 mN/m (thicker solid line).
Whereas the relaxational (non-harmonic) character of these
oscillations is not affected, the range of V is enlarged, both
towards negative and positive V values. To better distinguish
the shapes of the two series of curves, we rescale the time t to
the period of the large amplitude oscillations. Codimension
two diagrams (Iapp, σ ) visualising how the amplitude and
period of large amplitude periodic dynamics change with the
parameters σ and Iapp is presented in Sect. 3.1.

More interesting are the changes of the opening proba-
bility signals mNa(t) (red), hNa(t) (blue) and mK(t) (green)
when varying σ in the SLS HHm model (Fig. 4b). We note
that a positive σ value does not change the sharp rise of
mNa(t) since the two red curves are quite superimposed for
t/Tc ∈ [−0.1; 0] and t/Tc ∈ [0.4; 1], but the length of the
plateau at high mNa(t) values for t/Tc ∈ [0; 0.1] is clearly
increased. Since the inactivation gate dynamics is almost
unchanged (Fig. 4b), the retardation of the decay of mNa(t)
for σ > 0 means that the inward flux of Na+ ions should
increase, leading to a sharper current excursion to negative
INa(t) and IS(t) values, as confirmed in Fig. 4d. The impact
of the tension on the Na inactivation gate opening probability
hNa(t), although less important, leads also to a global post-
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Fig. 4 Comparison of the dynamical signatures of the different vari-
ables involved in the SLS HHm model. a Membrane voltage V (t/Tc)

vs t/Tc, where Tc is the period of the large amplitude oscillations. b
Opening probabilities for the three gates mNa(t) (red), hNa(t) (blue)
and mK(t) (green). c Conductance factors for the sodium m3

Na(t)hNa(t)

(red) and the potassium mK(t) (green) channels. d Ionic currents INa(t)
(red), IK(t) (green), IL(t) (grey) and their sum IS(t) (black). σ = 0
(thin dashed-dotted line), 2 mN/m (thicker solid line). I = 11 µA/cm2

(colour figure online)

poning of the dynamics of this gatewith time, favouring again
larger negative current spike amplitudes for Na+ and also for
the total ionic current IS(t). Surprisingly, the Kv activation
gate mK(t) is shifted in time although its equation does not
contain a mechanical term (Fig. 4b). Indeed, the potassium
current IK is a “slaved” variable to the other currents through
the variations of V [Eq. (1)]. As shown in Fig. 3b, c, its steady
opening probability mK and its time constant τK change when
V exceeds −50 mV. The Kv gate is also much slower than
the other ones, and its temporal evolution does not show the
drastic change from fast to slow dynamics of the Nav gates.
The strong dynamical amplification (amplitude and relative
duration during one oscillation) of the Na+ conductance
(∼×3) (Fig. 4c) is quite impressive although expected from
the SLS HHm model modification. The dynamical amplifi-
cation of the K conductance factor is more amazing since it
means that the outward flux of potassium should also dra-
matically change, although its gating properties are assumed
unchanged under tension. This means that from the measure-
ment of sodium and potassium ion conductances, we could
misleadingly conclude of some impact of the stretching of
the membrane upon both these ionic gates, whereas the mod-
ification of the membrane tension has impacted only one of
these gates. This prediction of the SLS HHm model there-
fore questions the conclusions commonly drawn from simple
experimental measures of ion fluxes, even when performed
with highly sophisticated and sensitive methods. The differ-
ent current signals (Fig. 4d) confirm this effect since both

negative and positive incursions of the currents are amplified
and extended in time for σ > 0. The shape of the increasing
part of INa(t) for t/Tc ∈ [0.05; 0.25] is modified since the
exponential decay of the current amplitude (negative value) is
replaced around t/Tc ∼ 0.05 by a linear decaywhich ends on
a small plateau for t/Tc ∼ [0.14−0.2] that vanishes through
another exponential decay. The small plateau of INa(t) likely
represents the postponement of the Na channel return to its
initial state; it exists with and without tension and is simply
postponed for σ > 0. Note that increasing σ from 2 mN/m
to 4 mN/m enhances further the effects outlined above.

2.2.3 CLS HHm model

TheCLSHHmmodel formusclefibres ensues by introducing
amechanical factor eσB on bothαmNa ,βmNa (Eq. 13) andαhNa ,
βhNa , to reproduce the experimentally observed coupled left
shifts of both the steady-state conductance factors mNa∞(V )

and hNa∞(V ). To obtain a similar left shift of the opening and
closing rates for the inactivation gate, αhNa and βhNa must be
changed in an opposite manner than for the Na activation
gate [Eq. (13)]:

αhNa = αhNa,0e−σBh , βhNa = βhNa,0eσBh , (15)

where the stretching factor Bh = 200 m2/J. Note that this
choice is completely different from that proposed by Ass-
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Fig. 5 Dependance on the voltage V of the conductances and currents
of a CLS HHm model for muscle fibres. a Probabilities of Na channel
gate opening mNa∞ (red), hNa∞ (blue) and mK∞ (green). b Conductance
factors in the steady state for the sodium 100 ∗ m3

Na∞ hNa∞ (red) and the
potassium mK∞ (green) channels. c Time constants for the three gates

τmNa (red), τhNa (blue) and τmK (green). d Ionic currents in the steady
state INa∞ (red), IK∞ (green), IL∞ (grey) and their sum IS∞ (black).
The symbols have the following meanings: σ = 0 mN/m (solid line),
2 mN/m (empty circles), 4 mN/m (filled circles), −2 mN/m (empty
triangles), −4 mN/m (filled triangles) (colour figure online)

mann and Lenz (2014), where all the channel rates were
modulated identically.

We test the impact of such a modification on the con-
ductance factor for sodium, the Na activation gate constant
and the steady-state currents (Fig. 5) for the same values of
the tension σ as previously considered with the SLS HHm
model (Fig. 3). In the CLS HHm model, the introduction
of a positive tension σ leads to a concerted left shift of the
Na activation and inactivation rates (Fig. 5a), as observed
in experiments (Morris et al. 2012). Interestingly, the con-
ductance factor for the Na channel not only shifts to the left
(lower voltage values) but also significantly decreases for
σ > 0 (Fig. 5b), whereas the time constant for the inactiva-
tion gate increases (Fig. 5c). All these evidences should lead
to a further extension of the depolarised state, favouring the
activation gating mechanism at the expense of inactivation.
The IS(V ) curve (Fig. 5d) shows also a global shift of the
range of V values where multi-steady states exist when vary-
ing σ . Contrarily to the SLS HHm model (Fig. 2d), the Iapp

values where this occurs are restricted to a narrower band
close to zero.

The computation of the dynamical signatures of the large
amplitude oscillations with the CLS HHm model for Iapp =
3.95 µA/cm2 (Fig. 6) shows that the range of V values is
now limited to negative values. The overall V amplitude
is decreased when both mNa and hNa are left-shifted by the
mechanical stretching energy. It is also very important to
remark that the length of the plateau of maximal mNa(t) val-
ues is dramatically reduced (Fig. 6a),meaning that the inward

flux of Na+ ions is diminished (Fig. 6d) in the CLS HHm
model. This phenomenon is also visible on the sharpness
of the conductance factor for Na+ ions which increases and
decreases much more rapidly when the excitable cell fires
(Fig. 6c). We also note that the voltage V (t) (Fig. 6a) and
the leak current IL(t) (Fig. 6d) signals have a longer slowly
decreasing tail in the CLS HHm model, as compared to the
SLS HHm model. The corresponding 2D phase plots (Iions ,
V ) (Fig. 6e) and (INa , IC ) (Fig. 6f) have to be compared to
the ones obtained in the original HHm model in Fig. 1e, f,
respectively.

3 Results

3.1 Dynamical analysis of the HHm models

Following the terminology used by Izhikevich (Izhikevich
2000, 2007), we consider an excitable cell as quiescent if
its membrane potential is at rest or if it exhibits only small
amplitude (subthreshold) oscillations. In terms of dynamical
system theory, these two cases correspond to a stable steady
state or to a small amplitude limit cycle attractor, respectively.
Excitability occurs when a small perturbation can drive the
system from its quiescent state to a large excursion (much
larger than the small amplitude perturbation), also called
a spike, before returning to its initial quiescent state. Such
excitable behaviour does occur when the quiescent state is
close to a bifurcation that allows the system to visit a large
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Fig. 6 Comparison of the dynamical signatures of the different vari-
ables involved in the CLSHHmodel. aVoltage V (t/Tc) vs t/Tc, where
Tc is the period of the large amplitude oscillations. b Opening prob-
abilities for the three gates included in the HH model mNa(t) (red),
hNa(t) (blue) and mK(t) (green). c Conductance factors for the sodium
m3

Na(t)hNa(t) (red) and the potassium mK(t) (green) channels. In (b)

and (c) the scaled voltage curve is also plotted for comparison. d Ionic
currents INa(t) (red), IK(t) (green), IL (grey) and their sum IS(t) (black).
e 2D phase plots of the three ionic current signals and their sum versus
V . f 2D phase plot of INa(t) versus the capacitance charging current
IC (t) = CdV (t)/dt . Iapp = 3.95 µ A/cm2, σ = 2.3 mN/m (colour
figure online)

amplitude periodic pseudo-orbit passing near the quiescent
state. The type of bifurcations that occur nearby the quies-
cent state actually defines the nature of the cell excitability
(Izhikevich 2000). When the quiescent state is near a saddle-
node on invariant circle bifurcation, the duration of the spike
may be arbitrary long and it is rather easy to define a threshold
voltage above which excitability occurs for an initial resting
state. Below the threshold, the channel features damp the
perturbations and relax the cell to quiescence. Above the
threshold, the sharper the perturbation in time, the quicker
the spike occurrence. Izhikevich (2000, 2007) qualified this
type of behaviour as an “integrator”. When the quiescent
state is near a Hopf bifurcation, the cell does not necessar-
ily respond with a single spike, nor it has a well-defined
threshold for spiking and it can even fire for a subthresh-
old perturbation. Such a situation is qualified as “resonator”
because the cell responds preferentially to precise perturba-
tion frequencies and increasing the perturbation frequency
ultimately leads to a loss of cell excitability. In this section
we use both analytical and numerical tools to locate these
two types of bifurcations in the parameter space (Iapp, σ )

and to evaluate the impact of the mechanical stress upon
cell excitability in the SLS and CLS HHmmodels described

above. The existence of stable periodic firing (large ampli-
tude spikes that repeat indefinitely) are also characterised and
circumscribed and the evolution of their period with Iapp and
σ are compared in the SLS and CLS HHm models.

3.1.1 Computation of the steady states and their stability

A dynamical system analysis (Wiggins 1988; Guckenheimer
and Labouriau 1993; Govaertz 2000a, b) of the HHm model
with or without mechanical stress requires that we first com-
pute analytically the steady states (VS , mNaS , hNaS , mKS )

from the four ODEs of the HHm model [Eqs. (2) and (3)],
by solving [dV/dt = 0, dmNa/dt = 0, dhNa/dt = 0,
dmK/dt = 0].

The local stability of these steady solutions is obtained by
linearising the four ODES of the HHm model around these
steady solutions

⎛
⎜⎜⎝

dV/dt
dmNa/dt
dhNa/dt
dmK/dt

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

V
mNa

hNa

mK

⎞
⎟⎟⎠ . (16)
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The Jacobianmatrix in Eq. (16) (matrix of first derivatives) is
then diagonalised analytically, and its eigenvalues are com-
puted numerically by solving a characteristic fourth degree
equation. The corresponding eigenvectors are also computed
numerically. The saddle-node (fold) and Hopf bifurcations
are codimension one bifurcations corresponding, respec-
tively, to a simple real eigenvalue (λ) or a pair of complex
conjugate eigenvalues (λ± iω(ω > 0)) that cross the imagi-
nary axis (λ = 0). The saddle-node bifurcation corresponds
to a collision between a stable and an unstable steady states
leading to the disappearance of the former when changing
Iapp. The Hopf bifurcation corresponds to the emergence of
a periodic orbit from the destabilisation of a stable steady
state.

3.1.2 Steady states and their stability in the HHm model
without tension

Hopf (H1 and H2) and saddle-node (limit points LP1 and
LP2) bifurcations are reported in the bifurcation diagram of
the HHm model without tension shown in Fig. 7. We notice
that with the original HHm model, three steady states do
exist over a Iapp interval bounded by the two saddle-node
bifurcation points LP2 and LP1 (Fig. 7a). When increasing
Iapp from 0, the lower-branch steady state exhibits a subcrit-
ical Hopf bifurcation H1 giving rise to an unstable periodic
orbit (brown vertical dashed-dotted line) for Iapp < IH1

which disappears via a homoclinic bifurcation (homoclinic
to hyperbolic saddleHHS∗

3) corresponding to a collisionwith

the middle-branch hyperbolic saddle steady state (Fig. 7b).
The upper-branch steady state also exhibits a subcritical
Hopf bifurcation H2 (Fig. 7a) from which emerges an unsta-
ble periodic cycle (Iapp > IH2 = 8.745 µA/cm2) (pink
vertical dashed-dotted line). Global bifurcation like homo-
clinic bifurcations or bifurcations of periodic orbits cannot
be computed from the linearised ODEs but indeed requires to
solve numerically the whole HHm ODEs. Alternatively, we
usedMatlabODE solver libraries (ODE15s) andMATCONT
(Dhooge et al. 2003) which provides a graphical interface for
interactive numerical study of dynamical systems. The over-
all bifurcation analysis was based on continuation methods,
tracing out solution manifolds of various dynamical system
states while varying our model parameters Iapp and σ . As
shown in Fig. 7a, the numerical bifurcation analysis reveals
the existence of large amplitude periodic oscillations (pink
vertical solid line) over a rather wide range of Iapp values:
ILPC1 < Iapp < ILPC2 . When increasing Iapp, this periodic
firing (Izhikevich 2000, 2007) originates from a saddle-node
bifurcation of cycle (limit point bifurcation of cycle LPC1).
Whereas the new born unstable periodic cycle is going to
disappear via a homoclinic collision with the middle-branch
hyperbolic saddle steady state at IHHS3 > ILPC1 (Fig. 7b),
the stable large amplitude periodic cycle develops up to
rather high Iapp values and finally disappears via a saddle-
node bifurcation of cycle at Iapp = ILPC2 when colliding
the unstable periodic cycle originating from the subcritical
Hopf bifurcation H2 of the upper branch (IH2 < ILPC2)

(Fig. 7a).
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Fig. 7 Bifurcation diagram of the original HHm model without ten-
sion. Codimension one Hopf (H) and saddle-node (fold—LP) bifurca-
tions of steady states are reported together with saddle-node bifurcation
of cycle (LPC). The thick brown (resp. green) lines correspond to stable
focus (resp. stable steady state) solutions. The dashed light brown (resp.
green) lines correspond to unstable focus (resp. hyperbolic saddle steady
state) solutions. The transitions points T0 (resp. T2) correspond to neu-
tral saddle points where two complex eigenvalues with positive (resp.
negative) real parts become real. The pink vertical solid lines illustrate
the large amplitude stable limit cycle. b Zoom in (a) showing the two

unstable limit cycles arising from either the saddle-node bifurcation of
cycle LPC1 (pink vertical dashed-dotted line) or the subcritical Hopf
bifurcation H2 of the lower-branch state (brown vertical dashed-dotted
line). Both these unstable cycles disappear via homoclinic bifurcations
HHS3 andHHS∗

3 by collidingwith themiddle-branch hyperbolic steady
state (green dashed line). IH1 = 7.050 µA/cm2, IH2 = 8.745 µA/cm2,
ILPC1 = 7.181µA/cm2, ILPC2 = 4.335µA/cm2, IT0 = 4.728µA/cm2,
IT1 = 7.176 µA/cm2, IT2 = 4.564 µA/cm2, IHHS3 = 6.914 µA/cm2,
IHHS∗

3
= 6.98 µA/cm2 (colour figure online)
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Fig. 8 Steady-state manifolds computed from the HHm models with
tension. a SLS HHmmodel. b CLS HHmmodel. The dark (resp. light)
green areas correspond to stable (resp. hyperbolic saddle) steady states.
The dark (resp. light) brown areas correspond to stable (resp. unstable)

foci. The boundaries of the dark and light brown areas correspond to
Hopf bifurcation points. The boundaries of the dark (resp. light) red
and green domains correspond to neutral saddle steady states (colour
figure online)

3.1.3 Global change of the steady-state manifolds with
tension

The system sensitivity and displacement of the bifurcation
points (H, LP, LPC) when introducing tension in the SLS
and CLS HHm models are shown in a 3D representation
(Iapp, σ, V ) in Fig. 8a, b, respectively. Increasing the param-
eter σ > 0 leads to significantly different changes in the
original HHm bifurcation diagram (Fig. 7), whether only
mNa is sensitive to tension (SLS) or whether both mNa

and hNa are sensitive to tension (CLS). For instance, the
range of Iapp values where the three steady states coexist
(ILP1 ≤ Iapp ≤ ILP2)widens (resp. shrinks) in the SLSHHm
model for positive (resp. negative) values of σ (Fig. 8a). This
interval of Iapp values does not increase for positive σ val-
ues but rather stabilizes to a fixed width that drifts towards
negative values for the CLS HHm model (Fig. 8b). Another
feature which changes from the original HHm model is the
range of Iapp values visited by the boundary between brown
(stable focus) and light brown (unstable focus) areas corre-
sponding to the Hopf bifurcation (H1) of the lower-branch
steady state. Consistent with its proximal saddle-node bifur-
cationLP1,H1 extends to higher Iapp valueswhen decreasing
σ to negative values. Since, as discussed above, Hopf and
saddle-node bifurcations of steady states are favourable situ-
ations for excitability, we expect that it will be observed over
a much wider range of Iapp values in the SLS and CLCHHm
models by varying σ .

3.2 Excitability of the HHm models with tension

To investigate the excitability in the two-dimensional param-
eter space (Iapp, σ ) of the SLS and CLSmechanical variants
of the HHm model, we proceed through the following
numerical strategy. For each parameter pair (Iapp, σ ), the

steady-state solutions of the four ODEs are computed first
and the one with the lower VS value is chosen (lower-
branch when multiple steady states). This steady state
SS[VS, mNaS , hNaS , mKS ] is perturbed by +40 mV on VS

and used as initial condition for numerical integration of
the ODEs equations with the Matlab ODE solver ODE15s.
When the dynamics displays a single large amplitude oscil-
lation (i.e. larger than the perturbation) before returning to
the steady state, then the steady state SS is considered as
excitable. Of course the excitability diagrams so obtained are
not strictly exact but qualitative in the sense that their bound-
aries are dependent on the amplitude of the perturbation;
the larger the perturbation amplitude the wider the expected
excitability domain. We choose the perturbation amplitude
larger than the voltage drop between the upper and lower
steady states but smaller than the amplitude of the large limit
cycle (pink vertical lines in Fig. 7).

The excitability diagram of the SLS HHm model (Fig. 9)
shows that the system keeps its excitability when increas-
ing σ > 0 and that the amplitude of the single spikes
also increases with σ . The Iapp interval where excitabil-
ity occurs shifts to lower (more negative) values of Iapp,
following nicely the Hopf bifurcation H1 curve (blue dots)
of the lower branch (right side of the excitable domain).
This diagram illustrates the excitability of the resting state
(corresponding to low V values) specifically and not of
the upper-branch steady state which does not correspond
to realistic experimental situations. Interestingly, the volt-
age amplitude of the excitability spike does not depend on
the amplitude of the perturbation and is larger at larger dis-
tance from the H1 Hopf bifurcation line. This comes along
with a widening to lower negative Iapp values of the multi-
steady-state window (Fig. 9a). The rightmost bottom part of
the excitability domain (larger Iapp and smaller σ values)
corresponds to single spikes with smaller voltage amplitude,
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Fig. 9 Excitability domain in the two parameter space (Iapp, σ ) of
the SLS HHm model. a Excitable states are shown as coloured pix-
els according to the amplitude of the single spike (in mV) obtained by
a numerical integration of the four ODEs. The lines for saddle-node

(LP—green) and Hopf (H—blue dots) bifurcations of steady state and
saddle-node bifurcations of cycle (LPC—pink) are also represented. b–
g Illustrations of single spike V signals chosen in the excitable zone and
pointed by black crosses in the diagram in (a) (colour figure online)
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Fig. 10 Excitability domain in the two parameter space (Iapp, σ ) of
the CLS HHm model. a Excitable states are shown as coloured pix-
els according to the amplitude of the single spike (in mV) obtained
by a numerical integration of the four ODEs. The lines for saddle-

node (LP—green), Hopf (H—blue dots) bifurcations of steady state
and saddle-node bifurcation of cycle (LPC—pink) are also represented.
b–g Illustrations of single spike V signals chosen in the excitable zone
and pointed by black crosses in the diagram in (a) (colour figure online)

which ultimately resemble subthreshold oscillations. Beyond
the light coloured boundary domain of these oscillations,
the SLS HHm model has lost its excitability and remains
in a resting state whatever the perturbation amplitude. This
phenomenon is also simultaneous to the disappearance of
large (issued from saddle-node LPC bifurcation) or small

(issued from supercritical Hopf bifurcation) amplitude limit
cycles.

The excitability diagram of the CLSHHmmodel (Fig. 10)
bears some resemblance to the one of the SLS HHm model
(Fig. 9). The excitable domain still covers a whole area on
the left part of the Hopf (H1) and saddle-node (LP1) bifurca-
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tion lines on the lower steady-state fold. The fact that the two
saddle-node LP1 and LP2 lines (green) remain very close to
each other in Iapp (they look quite parallel for σ > 0) is the
signature of a smaller voltage drop between the upper and
lower steady-state folds, which explains that the amplitude
of the excitability spike in the CLS HHm model is smaller
than in the SLS HHm model. However, the domain of exis-
tence of the resting state excitability has not shrunk. On
the contrary, the Hopf bifurcation H1 on the lower branch
(H1) persists for σ < 0 and the CLS HHm model remains
excitable for much more negative values of σ than the SLS
HHm model. Importantly, in the CLS HHm model, the volt-
age spike (Fig. 10b–g) is triggered very fast, independently of
the special location in the excitability domain. In that sense,
the excitability is stronger in the CLS HHm model than in
the SLS HHm model. If a Nav channel behaves as predicted
by the CLS HHm model, we can thus expect that it will be
more sensitive to its neighbouring channels and that the cell
will be globally more excitable.

3.3 Periodic firing in the HHm models with tension

To further understand and predict the dynamics of injured
muscle cells produced by some mechanical alteration of
the Nav channels gating kinetics, we analyse the range of
parameters where periodic firing (large amplitude oscilla-
tions) occurs. The large amplitude limit cycles of the twoSLS
and CLS mechanical variants of the HHm model are com-
puted numerically in the two-dimensional parameter space
(Iapp, σ ). For each parameter pair (Iapp, σ ), the steady-state
solutions of the four ODEs are computed first and the one
with the largest VS value is chosen (in multi-steady-state
situations). When increasing Iapp, the large amplitude limit
cycle emerges from a saddle-node bifurcation of cycle, as
previously observed in the original HHmmodel without ten-
sion (Fig. 7). We use continuation methods to follow this
limit cycle that could also be reached from stable steady
state via a large amplitude perturbation. To illustrate what
could be performed in experimental situations by a perturba-
tion of the channel voltage, we choose the second alternative
to build these diagrams. We perturb the steady state SS[VS ,
mNaS , hNaS ,mKS ] by a negative drop (−50mV) in VS and use
it as initial condition for numerical integration of the ODEs
equations with the Matlab ODE solver ODE15s. Choosing
a negative voltage drop (inversely to the excitability study
just above) is important because it is directed towards the
resting state voltage level. Again it is important to choose a
perturbation amplitude in V large enough to get out from the
attraction basin of the stable focus that exists on the upper
branch. Note that if we perturb the stable large amplitude
oscillations, depending on the direction and amplitude of the
perturbation the system may return back to the upper-branch
steady state (at high voltage).

4 Discussion

Periodic firing could provide some understanding of what
is observed in hyperPP which is characterised by muscle
hyperexcitability orweaknesswhich can lead to uncontrolled
shaking followed by paralysis. In the SLS HHm model,
the window of periodic firing in Iapp starts widening when
increasing σ > 0 and shifts to lower Iapp values (Fig. 11a).
Periodic firing is likely to occur more often when the cell is
under tension. If the muscle cells fire periodically, both Na+
and K+ ion inward fluxes increase. Moreover, if the channels
which have stepped to large amplitude oscillations are again
perturbed, they may stall on a stable upper-branch steady
statewhich is different from their normal (lower-branch) rest-
ing state, without being able to fire or to recover their initial
state, mimicking a sort of paralysis. The SLS HHm model
demonstrates that if the activation gate of the Nav channel
is speeded up by tension, not only the cells become more
excitable but they can also fire periodically at Iapp values
where they would have relaxed to the resting state in normal
situations.

The periodic firing diagram of the SLS HHm model
(Fig. 11a) shows that the amplitude of periodic oscilla-
tions increases when increasing σ > 0, the larger ones
being observed at the left border (LPC1) of the periodic
firing domain. When decreasing σ to negative values, the
oscillation amplitude diminishes progressively to become
subthreshold (Fig. 11f) due to the change from subcritical to
supercritical of the original Hopf (H) bifurcation and finally
the oscillations disappear. For σ ≤ −2 mN/m, the system no
longer fires and remains in its resting state. This character-
istic passivity of the SLS HHm model for slightly negative
σ values is a hallmark of this system. For instance, if a SLS
HHm-type cell has encountered a hyperkalaemic periodic
paralysis phenomenon at higher tension and is stalled in a
non-resting state, lowering the tension by relaxing the mus-
cle cell will likely help it to recover a normal resting state,
driving thewhole system back or close to normal situation. In
the diagram of Fig. 11b where the period of the large ampli-
tude oscillations is colour coded, we note that this period
does not change much and remains in the interval 5 to 20 ms,
except in the neighbourhood of the left LPC1 saddle-node of
cycle bifurcation line where it increases sharply.

The periodic firing diagram of the CLS HHm model
(Fig. 12) is very different from the one of the SLS HHm
model (Fig. 11). If the periodic firing domain is still delim-
ited by the LPC saddle-node of cycle bifurcation lines, it
no longer develops very far to positive σ values, but mainly
expands towards negative σ values (Fig. 12a). Moreover, the
large amplitude oscillations are rather observed at negative
σ values and the Iapp interval where they occur spreads
dramatically to larger Iapp values. Contrarily to the SLS
HHm model, when switching the system to slightly nega-
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Fig. 11 Large amplitude oscillations (periodic firing) domain in the
two parameter space (Iapp, σ ) of the SLS HHm model. a Colour cod-
ing of the voltage amplitude of the periodic oscillations (mV). The lines
for saddle-node bifurcation of cycle (LPC—pink) are also represented

because they delimit the domain of existence of the large amplitude limit
cycle. b Colour coding of the period of the periodic oscillations (ms).
c–f Illustrations of V (t) signals chosen in the periodic firing domain
and pointed by black crosses in the diagram in (a) (colour figure online)

tive tensions, the periodic firing regime becomes robust and
insensitive to extra perturbations. Indeed, both the right LPC2

boundary line and the domain of existence of a stable focus
on the upper branch are shifted to larger Iapp values, get-
ting rid off bistability situation between the large amplitude
periodic cycle and the upper branch saddle-focus steady state.
This situation resemblesmore themyotoniamuscle disorders
(non-dystrophic). Myotonia is described by delayed muscle
relaxation after contraction; its manifestations are stiffness,
cramp or locking of muscles together with an inability to
immediately relax muscles after forceful contraction or con-
traction induced by direct percussion (percussion myotonia).
Percussion is a local and sharp mechanical stress that could
be mimicked by our HHm models with tension. Actually
in the CLS HHm model, the fact that the periodic firing
domain spreads very far at large Iapp values is an indica-
tion that if the gated channels reach such a periodic firing
state (which would correspond to a persistent muscle con-
traction), they may stay there without being able to recover
to normal (uncontracted muscle cell) situation. The exten-
sion of both excitability and periodic firing domains in the
CLS HHm model is indeed an indication of the inability of
the system to stay in the rest state for long terms. Stochastic
simulations (adding external noise with or without specific
frequential signature) of the four HHm ODEs confirm that

the CLS HHmmodel is much more sensitive to external per-
turbations than the SLS HHm model (Cannon et al. 2010).

In Fig. 13 are compared the distributions of amplitude and
period for the periodic firing regimes encountered in both
SLS and CLS HHmmodels. The voltage amplitude distribu-
tions (Fig. 13a) are not very different in the range from 60
to 120 mV; they differ only at small and large amplitudes.
In particular, the SLS HHm model predicts higher amplifi-
cation of the periodic oscillations for σ > 0 than the CLS
HHm model; these large amplitude oscillations occur in the
LPC1 leftmost part of the periodic firing domains (Fig. 11a).
The firing period distributions (Fig. 13b) are not drastically
different for the large periods; they differ noticeably at low
periods (< 10 ms) that correspond to the rightmost part of
the periodic firing domains in Figs. 11b and 12b, respectively.
The SLS HHmmodel can afford much faster dynamics close
to the rightmost LPC2 saddle-node of cycle bifurcation curve
(Fig. 7a) at positive tension 3 mN/m � σ � 6 mN/m that
has no counter part in the SLS HHm model.

To summarise, we show that the response of the Hodgkin–
Huxley model for muscle cells to a mechanical perturbation
is completely asymmetric when the Nav activation gate is
changed solely (SLS HHmmodel). The enlargement of both
the excitability domain and the window of periodic firing in
Iapp for σ > 0 indicates that single spike and ultimately
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Fig. 12 Large amplitude oscillations (periodic firing) domain in the
two parameter space (Iapp, σ ) of the CLS HHm model. a Colour cod-
ing of the voltage amplitude of the periodic oscillations (mV). The
bifurcation lines for saddle-node bifurcation of cycle (LPC—pink) are
also represented because they delimit the domain of existence of the

large amplitude limit cycle. b Colour coding of the period of the peri-
odic oscillations (ms). c–f Illustrations of V (t) signals chosen in the
periodic firing domain and pointed by black crosses in the diagram in
(a) (colour figure online)
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Fig. 13 Statistical analysis of large amplitude oscillations (periodic fir-
ing) in SLS (blue) and CLS (red) HHmmodels. Normalised probability
distributions of the oscillation amplitude (a) and period (b), over the

periodic firing domains in Figs. 11a and 12a, respectively. These prob-
abilities were scaled by 1000 (resp. 10) in (a) [resp. (b)] to simplify the
scale notation in y (colour figure online)

periodic firing are likely to occur more frequently when
the cell is under tension. This hyperexcitability predicted
by the SLS HHm model mimics HPP in damaged muscle
cells and their stalling (paralysis) far from the rest state. For
σ � −2 mN/m, the SLS HHm model no longer fires and
progressively looses its excitability. The passivity of the SLS
HHm model for slightly negative σ values is an important
feature that could be used to check to which extent the Nav

activation gate has been impacted compared to the Nav inac-
tivation gate. For instance, if in a hyperkalaemic periodic
paralysis, lowering the tension by relaxing the muscle drives

it back or close to normal situation, this could be a strong
indication that the inactivation gate has not been impacted.
On the contrary when both activation and inactivation Nav

gates aremechanically perturbed to resemble a sick-excitable
cell (CLS HHm model), the excitability and periodic firing
processes persist for positive σ values and extend to negative
σ values. In such a situation a tension relaxation treatment
would be inefficient to restore the muscle resting state as
observed in non-dystrophic myotonia disorders where the
muscle remains contracted (keeps on firing) upon percussion
without any ability to relax.
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The dynamical system analysis proposed here opens new
perspectives to physiologists as regards the possibility of dis-
tinguishing those of theNav gates which aremostly impacted
by a mechanical damage. It should therefore be interesting to
reconstruct excitability and/or periodic firing domains (such
as those reported in this work) from experiments (e.g. mod-
ulating the cell tension) to estimate the level of mechanical
damage (percentage of impacted activation and inactivation
gates) and to propose an adapted treatment. If we believe that
the CLSHHmmodel is relevant for myotonia disorders, then
better not to try to relax the muscle but rather to increase its
tension to take it away from the periodic firing regime.
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