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a b s t r a c t

This paper deals with EEG source localization. The aim is to perform spatially coherent focal localization

and recover temporal EEG waveforms, which can be useful in certain clinical applications. A new hier-

archical Bayesian model is proposed with a multivariate Bernoulli Laplacian structured sparsity prior for

brain activity. This distribution approximates a mixed ℓ20 pseudo norm regularization in a Bayesian

framework. A partially collapsed Gibbs sampler is proposed to draw samples asymptotically distributed

according to the posterior of the proposed Bayesian model. The generated samples are used to estimate

the brain activity and the model hyperparameters jointly in an unsupervised framework. Two different

kinds of Metropolis–Hastings moves are introduced to accelerate the convergence of the Gibbs sampler.

The first move is based on multiple dipole shifts within each MCMC chain, whereas the second exploits

proposals associated with different MCMC chains. Experiments with focal synthetic data shows that the

proposed algorithm is more robust and has a higher recovery rate than the weighted ℓ21 mixed norm

regularization. Using real data, the proposed algorithm finds sources that are spatially coherent with

state of the art methods, namely a multiple sparse prior approach and the Champagne algorithm. In

addition, the method estimates waveforms showing peaks at meaningful timestamps. This information

can be valuable for activity spread characterization.

1. Introduction

EEG source localization problem has attracted considerable

attention in the literature resulting in a wide range of methods

developed in the last years. These can be classified into two

groups: (i) the dipole-fitting models that represent the brain ac-

tivity as a small number of dipoles with unknown positions; and

(ii) the distributed-source models that represent the brain activity

as a large number of dipoles in fixed positions. Dipole-fitting

models (Sommariva and Sorrentino, 2014; da Silva and Van Rot-

terdam, 1998) try to estimate the amplitudes, orientations and

positions of a few dipoles that explain the measured data. Un-

fortunately, the corresponding estimators are very sensitive to the

initial guess of the number of dipoles and their initial locations

(Grech et al., 2008). On the other hand, the distributed-source

methods model the brain activity using a large number of dipoles

with fixed positions and try to estimate their amplitudes (Grech

et al., 2008) by solving an ill-posed inverse problem. One of the

most simple ways to solve this inverse problem is to use an ℓ2

norm regularization as the minimum norm estimator (Pascual-

Marqui, 1999) or its variants Loreta (Pascual-Marqui et al., 1994)

and sLoreta (Pascual-Marqui et al., 2002). However, these methods

usually overestimate the active area size (Grech et al., 2008).

Sparsity constraints can remedy the overestimation issue when

dealing with applications with discretely localized activity such as

certain kinds of epilepsy (Berg et al., 2010). In distributed activity ap-

plications, promoting sparsity should provide spatially coherent loca-

lization even though it is unable to estimate the activity extension. To

apply sparsity, ideally an ℓ0 pseudo norm regularization (Candes,

2008) should be used. Unfortunately, this procedure is intractable in

an optimization framework. As a consequence, the ℓ0 pseudo norm is

usually approximated by the ℓ1 norm via convex relaxation (Uutela

et al., 1999), even if the two regularizations do not always provide the

same solution (Candes, 2008). In a previously reported work, we

proposed to combine them in a Bayesian framework (Costa et al.,

2015), using the ℓ0 pseudo norm to locate the non-zero positions and

the ℓ1 norm to estimate their amplitudes. However the methods

studied in Candes (2008), Uutela et al. (1999), and Costa et al. (2015)

consider each time sample independently leading in some cases to

unrealistic solutions (Gramfort et al., 2012).

To improve source localization, it is possible to make use of the

temporal structure of the data. This can be done by considering

sparse Bayesian learning using multiple measurement vectors

(Zhang and Rao, 2011) or by using the STOUT (Castaño-Candamil

et al., 2015) and dMAP-EM (Lamus et al., 2012) methods that apply
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physiological considerations to the source representation. It is also

possible to model the time evolution of the dipole activity and es-

timate it using Kalman filtering (Galka et al., 2004; Long et al.,

2011), particle filters (Somersalo et al., 2003; Sorrentino et al., 2013;

Chen and Godsill, 2013) or by encouraging spatio-temporal struc-

tures by promoting structured sparsity (Huang and Zhang, 2010).

Structured sparsity has been shown to improve results in several

applications including audio restoration (Kowalski et al., 2013), image

analysis (Yu et al., 2012) and machine learning (Huang et al., 2011).

Structured sparsity has also been applied to M/EEG source localiza-

tion by Gramfort et al. by using the ℓ21 mixed norm (Gramfort et al.,

2012). This approach promotes sparsity among different dipoles (via

the ℓ1 portion of the norm) and groups all the time samples of the

same dipole together, forcing them to be either jointly active or in-

active (with the ℓ2 norm portion). This work was reconsidered by the

same authors yielding the iterative reweighted mixed norm esti-

mator (Strohmeier et al., 2014) and the time–frequency mixed-norm

estimator (Gramfort et al., 2013). However, all these methods require

the manual tuning of the regularization parameters.

Several Bayesian methods have also been used to solve the inverse

problem (Friston et al., 2008; Stahlhut et al., 2013; Wipf et al., 2010;

Lucka et al., 2012). Friston et al. (2008) developed the multiple sparse

priors (MSP) approach, in which they segment the brain into different

pre-defined regions and promote all the dipoles in each region to be

active or inactive jointly. In contrast, Wipf et al. developed the

Champagne algorithm to promote activity to be concentrated on a

sparse set of dipoles (Wipf et al., 2010). Lucka et al. (2012) studied a

hierarchical Bayesian model (HBM) offering significant improvements

over established methods such as MNE and sLoreta.

Similar to Wipf et al., this paper develops a new method en-

couraging sparse activity considering each dipole separately (Friston

et al., 2008). The proposed method uses a multivariate Bernoulli

Laplace prior (approximating the weighted ℓ20 mixed norm) for the

dipole amplitudes without assuming any additional prior informa-

tion such as the amount or position of the active dipoles. Since the

parameters of the proposed model cannot be computed with

closed-form expressions, we investigate a Markov chain Monte

Carlo sampling technique to draw samples that are asymptotically

distributed according to the posterior of the proposed model. Then

the brain activity, the model parameters and hyperparameters are

jointly estimated in an unsupervised framework. In order to avoid

the sampler to becoming stuck around local maxima, specific Me-

tropolis–Hastings moves are introduced. These moves significantly

accelerate the convergence speed of the proposed sampler. From

the medical point of view, the proposed approach aims at providing

the localization of the main sources of the brain activity to help

making decisions when selecting candidate patients for recessive

surgery, in the case of discretely localized epilepsy (Berg et al.,

2010). In addition, considering several time samples simultaneously

allows us to estimate the temporal waveforms of the activity. Esti-

mating these waveforms can be useful in some clinical applications,

such as the estimation of the spread patterns of the activity in

epilepsy (Quintero-Rincón et al., 2016).

The paper is organized as follows: Section 2 presents the

proposed Bayesian model. Section 3 introduces the partially

collapsed Gibbs sampler used to generate samples distributed

according to the posterior of this model and the Metropolis–

Hastings moves that are used to accelerate the convergence of

the sampler. Experimental results conducted for both synthetic

and real data are presented in Section 4. Conclusions are finally

reported in Section 5.

2. Proposed method

EEG source localization is an inverse problem consisting in

estimating the brain activity of a patient from EEG measurements

taken from M electrodes during T time samples. In a distributed

source model, the brain activity is represented by a finite number

of dipoles located at fixed positions on the brain cortex. More

precisely, we consider N dipoles located on the cortical surface and

oriented orthogonally to it (see Hallez et al., 2007 for motivation).
The EEG measurement matrix !∈ ×Y M T can be written as

= + ( )Y H X E 1

where !∈ ×X N T contains the dipole amplitudes, !∈ ×H M N is the

lead-field matrix and E is the additive noise.

2.1. Likelihood

It is very classical to assume that the noise samples are in-

dependent and identically distributed according to a Gaussian

distribution (Grech et al., 2008). Note that when this assumption

does not hold it is possible to estimate the noise covariance matrix

from measurements that do not contain the signal of interest and

use it to whiten the data (Maris, 2003). Denoting as sn
2 the noise

variance, the independence assumption leads to the likelihood

"( )∏θ σ( | ) =
( )=

Y y Hxf ,
2t

T

t t
n M

1

2!

where "M is the identity matrix of size M and θ σ= { }X, n
2 contains

the unknown parameters.

2.2. Prior distributions

2.2.1. Brain activity X

To promote structured sparsity of the source activity, we con-

sider the weighted ℓ20 mixed pseudo-norm

∥ ∥ =#{ | ∥ ∥ ≠ } ( )X xi v 0 3i i20 2

where = ∥ ∥hvi
i

2 is a weight introduced to compensate the depth-

weighting effect (Grech et al., 2008; Uutela et al., 1999) and #"
denotes the cardinal of the set " . Since this prior leads to in-

tractable computations, we propose to approximate it by a mul-

tivariate Laplace Bernoulli prior for each row of X1
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where ∝ means “proportional to”, λ is the parameter of the ex-
ponential distribution and ∈ { }z 0, 1 N is a vector indicating if the

rows of X are non-zero. To make the analysis easier we introduce

the hyperparameter = σ

λ
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The elements zi are then assigned a Bernoulli prior with parameter

ω ∈ [ ]0, 1

( )ω ω( | ) = | ( )f z z . 6i i#

Note that the Dirac delta function δ ( ). in the prior of xi promotes

sparsity while the Laplace distribution regulates the amplitudes of

the non-zero rows. The parameter ω allows the importance of these

two terms to be balanced. In particular, ω = 0 yields =X 0 whereas

ω = 1 leads to the Bayesian formulation of the group-lasso (Yuan

1 In this paper, we will denote as mi the i-th row of the matrix M and as m j its

j-th column.



and Lin, 2006). Unfortunately the prior (5) still leads to an in-

tractable posterior. It is possible to fix this problem by introducing a
latent variable vector !τ ∈ ( )+ N2 as suggested in Raman et al. (2009).

More precisely, we use the following gamma and Bernoulli–Gaus-

sian priors for τ2i and xi
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which yield the marginal distribution of xi defined in (5) (Raman

et al., 2009).

2.3. Hyperparameter priors

The proposed method allows one to balance the importance

between sparsity of the solution and fidelity to the measure-

ments using two hyperparameters: (1) ω that adjusts the pro-

portion of non-zero rows and (2) a that controls the amplitudes

of the non-zeros. The hyperparameter vector will be denoted as

ϕ ω= { }a, . The corresponding hierarchy between the model

parameters and hyperparameters is illustrated in Fig. 1. In con-

trast to the ℓ21 mixed norm the proposed algorithm is able to

estimate the model hyperparameters from the data by assigning

hyperpriors to them following a so-called hierarchical Bayesian

analysis. These hyperpriors, along with the prior of the noise

variance sn
2, were chosen to be as non-informative as possible

and can be found in Appendix A.

2.4. Posterior distribution

Using the previously described priors and hyperpriors, the

posterior distribution of the proposed Bayesian model is

τ ϕ θ θ τ τ ϕ ϕθ( | ) ∝ ( | ) ( | ) ( | ) ( ) ( )z Y Y z zf f f f f, , , , , 92 2 2

where θ( | )Yf has been defined in (2) and
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ϕ α β ω( ) = ( | ) ( ) ( )f f a f, . 12

The posterior distribution (9) is intractable and does not allow us

to derive closed-form expressions for the Bayesian estimators of

the different parameters and hyperparameters. Thus we propose

to draw samples from (9) and use them to estimate the brain ac-

tivity jointly with the model hyperparameters. The following

section provides more details about the sampling method in-

vestigated in this paper.

3. A partially collapsed Gibbs sampler

We investigate a partially collapsed Gibbs sampler that samples

the variables zi and xi jointly. If −X i denotes the matrix X whose ith

row has been replaced by zeros, the resulting sampling strategy is

summarized in Algorithm 1. The corresponding conditional dis-

tributions are described in Appendix B.

Algorithm 1. Partially Collapsed Gibbs sampler.

Initialize =X 0 and =z 0

Sample a and τ
2 from their prior distributions

repeat

Sample sn
2 from ( )τσ |Y X zf , , ,n

2 2

Sample ω from ω( | )zf

for i¼1 to N do

Sample τi
2 from ( )τ σ|xf a z, , ,i i n i

2 2

Sample zi from ( )σ τ ω| −Y Xf z , , , ,i i n i
2 2

Sample xi from ( )σ τ| −x Y Xf z , , , ,i i i n i
2 2

end for

Sample a from ( )τ|f a 2

until convergence

3.1. Multiple dipole shift proposals

The partially collapsed Gibbs sampler summarized in Algo-

rithm 1 may get stuck around local maxima of the variable z from

which it can be difficult to escape in a reasonable amount of

iterations (examples illustrating this situation are shown in Costa

et al., 2015). In order to bypass this problem, we introduce specific

Metropolis–Hastings moves. These moves consist of proposing a

new value of z (referred to as “candidate”) after each sampling

iteration. The candidate is then accepted or rejected with an ap-

propriate acceptance rate according to the Metropolis–Hastings

rule, which guarantees that the target distribution is preserved.

Before presenting the proposal scheme, it is interesting to

mention that it was inspired by an idea developed in Bourguignon

and Carfantan (2005). The authors of Bourguignon and Carfantan

(2005) proposed to move a random non-zero element of a binary

sequence to a random neighboring position after each iteration of

the MCMC sampler. We have generalized their scheme by pro-

posing to move a random subset of K estimated non-zeros si-

multaneously to random neighboring positions. According to ex-

perimental results (some of them described in Section 4), the

simple choice K¼2 provides good results in most practical cases.

Since there is a high correlation between the variables τ2 and z , it

is convenient to update their values jointly. The resulting proposal

is shown in Algorithm 2 where

( ) ( )( )τ σ ω ω ω σ Σ| ∝ − | | ( )
−

z Yf a, , , , 1 13r r n
C C

n

TC T2 2 2 2 2
0 1

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∏ ∏τ τ( ) −

∑ +

( )∈

− =

=

K T v a
exp

2

1

2
,

2
.

14Ii

i

T t

T
t

i

N

i
i2

2
1

1

2

1

$

Algorithm 2. Multiple dipole shift proposal.

¯ =z z

repeat K times

Set indold to be the index of a random non-zero of z

Set = [ ( )]γp ind , neigh indold oldFig. 1. Directed acyclic graph for the Bayesian model illustrating the dependencies

between the model parameters and hyperparameters.



Set indnew to be a random element of p

Set ¯ =z 0indold
and ¯ =z 1indnew

end

Sample X̄ from ( )τσ¯ | ¯X z Yf , , ,n
2 2 .

Sample τ̄2 from ( )τ σ¯ | ¯ ¯X zf a, , ,n
2 2 .

Set τ τ{ } = {¯ ¯ }z z, ,2 2 with probability ( )τ

τ

( ¯ ¯ | )

( | )
min , 1

z

z

f

f

, .

, .

2

2

Resample X if the proposal was accepted
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Note that −m s denotes the vector m whose rows belonging to s

have been removed, −M s is the matrix M whose columns be-

longing to s have been removed, ( )sdiag is the diagonal square

matrix whose diagonal elements are the elements of s and | |M is

the determinant of the matrix M .

Algorithm 2 also uses the following neighborhood definition

{ }γ( ) ≜ ≠ | ( )| ≥ ( )γ h hi j ineigh corr , 18
i j

where ( )v vcorr ,1 2 is the correlation between vectors v1 and v2. The

neighborhood size can be adjusted by setting γ ∈ [ ]0, 1 ( γ = 0

corresponds to a neighborhood containing all the dipoles and γ = 1

corresponds to an empty neighborhood). To maximize the moves

efficiency, the value of γ has to be selected carefully. Experiments

during this study have shown that a good compromise is obtained

with γ = 0.8. A comparison of the results obtained with and

without multiple dipole shift proposals can be found in Costa et al.

(2015).

3.2. Inter-chain proposal

Another possibility to improve the convergence speed of the

proposed partially collapsed Gibbs sampler is to run multiple

MCMC chains in parallel and exchange some information between

them. Several methods have already been explored to perform this

“exchange of information”, including Metropolis-coupled MCMC

(Geyer, 1991), Population MCMC (Laskey and Myers, 2003) and

simulated tempering (Geyer and Thompson, 1995; Marinari and

Parisi, 1992). In this paper, we introduce inter-chain moves by
proposing to exchange the values of z and τ2 between different

chains. This exchange is accepted with the probability shown in

Algorithm 3. Note that “a between-chain exchange” is made after

each iteration with probability p (adjusted to 1

1000
by cross vali-

dation) according to Algorithm 3. A comparison of the results

obtained with and without these inter-chain proposals can be

found in Costa et al. (2015).

Algorithm 3. Inter-chain proposals.

Define a vector = { … }c L1, 2, , where L is the number of chains

for = { … }i L1, 2, ,

Choose (and remove) a random element from c and denote it

by k

Denote as τ{¯ ¯ }z ,k k
2 the sampled values of τ{ }z, 2 of MCMC

chain number #k

For the chain #i set τ τ{ } = {¯ ¯ }z z, ,i i k k
2 2 with probability

τ

τ

( ¯ ¯ | )

( | )

z

z

f

f

, .

, .

k k
2

2

Resample X if the proposal has been accepted

end

3.3. Estimators

The point estimators used in this study are defined as

( )^ ≜ # (¯) ( )¯∈{ }z zarg max 19z 0,1 N %

∑^ ≜
# (^) ( )∈ (^)

( )

z
p p

1

20zm

m

% %

where ( ¯)z% is the set of iteration numbers m for which = ¯( )z zm

after the burn-in period and ( )p m is the m-th sample of

{ }τσ ω∈ > Xp a, , , ,n
2 2 . Thus the estimator ẑ in (19) is the max-

imum a posteriori estimator of ẑ whereas the estimator used for

all the other sampled variables in (20) is the minimum mean

square error (MMSE) estimator.

It is interesting to note that the proposed method does not only

provide point-estimators as the methods based on the ℓ21 mixed

norm. For instance, in some cases different values of z can have a

significant posterior probability. In this case the sampler may os-

cillate between different values of z that usually differ by minor

variations. In these cases, the proposed sampling method is able to

identify several possible solutions (each of them corresponding to

a different value of z) with their corresponding probabilities.

4. Experimental results

4.1. Synthetic data

Synthetic data are first considered to compare the ℓ21 mixed

norm approach, the Champagne model and the proposed method

using a 212-dipole Stok three-sphere head model (Stok, 1986) with

41 electrodes. Two kinds of activations are considered: (1) three

dipoles with low SNR and (2) multiple dipoles with high SNR. Note

that additional experiments are available in the associated tech-

nical report (Costa et al., 2015).

4.1.1. Three-dipoles with low SNR

Three dipoles were assigned damped sinusoidal excitations

with frequencies varying between 5 and 20 Hz. These excitations

were 500 ms long (a period corresponding to a stationary dipole

activity) and sampled at 200 Hz. Different levels of noise were

used to compare the performance of the different methods. The

parameters of the proposed multiple dipole shift proposal were set

to K¼2, γ = 0.8 and C¼8 MCMC chains were run in parallel. The

potential scale reduction factor (PSRF) (Gelman and Rubin, 1992)

was used to assess the convergence of the proposed method. After

running a fixed number of 10,000 iterations, the PSRFs of all the

sampled variables were computed and we checked that these

values were below 1.2 as recommended in (Gelman et al., 1995p.

332). For the ℓ21 mixed norm approach, the value of the regular-

ization parameter λ was chosen using cross-validation.

For high values of the input SNR (≥20 dB), the results obtained

with all methods are almost always identical to the ground truth.

However, for lower values of SNR the proposed method outperforms



the other two. The estimated dipole locations associated with

SNR¼ −3 dB are shown in Fig. 2 and the corresponding estimated

waveforms in Fig. 3. Fig. 4 shows the ground truth of the three

waveforms compared to the μ σ± 2 boundaries estimated by the

proposed method. Note that only the dipoles with highest activity

are displayed for the ℓ21 approach. The approach based on the ℓ21

normmanages to recover only two of the three non-zero activities at

the correct positions and seems to underestimate considerably the

amplitude of this activity. This is a known problem caused by ap-

proximating the ℓ0 pseudo-norm by the ℓ1 norm. In comparison, the

Champagne method spreads the activity of some of the active di-

poles to its neighbors. The proposed algorithm oscillates between

several values of z (specified in Table 1). However, the most prob-

able value of z found by the algorithm is the correct one whereas the

other most likely values of z have one of the non-zeros moved to a

close neighbor. Finally, the histograms of the hyperparameters

generated by the proposed Gibbs sampler are displayed in Fig. 5,

showing a good agreement with the actual values of the parameters

ω and sn
2 and allowing the parameter a associated with the latent

variables τi
2 to be estimated.

Fig. 2. Results for synthetic data with three active dipoles and low SNR: Comparison between the ground truth positions of the active dipoles with the positions estimated

by different algorithms. The proposed method is the only one to find all dipoles in the correct places (a) Ground truth - Axial, coronal and sagittal views respectively, (b)

Weighted ℓ21 - Axial, coronal and sagittal views respectively, (c) Champagne - Axial, coronal and sagittal views respectively, (d) Proposed method - Axial, coronal and sagittal

views respectively.



To conclude, the proposed method improves the EEG source

localization thanks to the use of a Laplace Bernoulli prior. More-

over, the use of an MCMC method makes it possible to recover

different sets of source locations with their respective

probabilities.

4.1.2. Multiple dipoles

In each simulation of this section, P dipoles were activated with

damped sinusoidal waves whose frequencies vary between 5 and

20 Hz. The activations were sampled at 200 Hz and scaled in

amplitude so that each of them produced the same energy in the

measurements. Fifty different sets of localizations were used for

the active dipole positions for each value of = …P 1, , 20, resulting

in a total of 1000 experiments. Noise was added to the measure-

ments to obtain SNR¼30 dB. For the ℓ21 mixed norm regulariza-

tion the regularization parameter was set according to the un-

certainty principle which consists in finding a solution X̂ such that

∥ ^ − ∥ ≈ ∥ − ∥HX Y HX Y (Morozov, 1966).

For each simulation, the estimated activity was defined as the P

dipoles that had the highest value of
x

v

i

i

2

2
. The other dipoles were

considered as residuals. We define the recovery rate as the pro-

portion of active dipoles in the ground truth that are also present

in the estimated activity. The average recovery rates of the

Fig. 3. Results for synthetic data with three active dipoles and low SNR: Comparison between the ground truth and the waveforms estimated by different algorithms. The

estimates obtained with the proposed method are closer to the ground truth (a) Ground truth, (b) ℓ21 mixed norm estimation, (c) Champagne, (d) Proposed method.

Fig. 4. Results for synthetic data with three active dipoles and low SNR: Ground truth activation waveforms compared with μ σ± 2 boundaries estimated by the proposed

method. The ground truth waveforms are within the estimated boundaries (a) Dipole waveform 1, (b) Dipole waveform 2, (c) Dipole waveform 3.

Table 1

Results for synthetic data with three active dipoles and low SNR: modes explored

by the proposed algorithm. Positions 1, 2 and 3 correspond to the non-zero ele-

ments of the ground truth, showing that the ground truth mode is the most ex-

plored mode after convergence.

Active non-zeros Percentage of samples

1 2 3 43

1 2 4 22

1 2 5 11

1 2 6 7

1 2 7 6

Others 11

Fig. 5. Results for synthetic data with three active dipoles with low SNR: histograms of the hyperparameters by the proposed method after convergence. The actual values of

ω and sn
2 are marked with a red vertical line, showing close values to the ones sampled by the algorithm (a) Histogram of ω, (b) Histogram of a, (c) Histogram of sn

2.



proposed method and the ℓ21 mixed norm approach are presented

in Fig. 6a as a function of P. For ≤P 10, the proposed algorithm

detects the non-zeros with an accuracy higher than 90% which

drops to 60.2% for P¼11 and 49.7% for P¼12. This drop of the

recovery rate when a large number of non-zeros is present in the

ground truth is well known, since the possible amount of non-

zeros to recover correctly is limited by the operator span (Candes,

2008). For comparison, the ℓ21 mixed norm regularization re-

covers up to P¼5 non-zeros with an accuracy higher than 90% and

its recovery rate decreases slowly to reach 64% for P¼10. Note that

the proposed method has a higher recovery rate than the ℓ21 ap-

proach for ≤P 11. Beyond this point, the poor performance of both

methods prevents them from being used in real applications.

It is also interesting to analyze how much activity is present in the

residual non-zeros. Thus, we define the proportion of residual energy as

the amount of energy contained in the measurements generated by the

residual non-zeros with respect to the total energy in the measure-

ments. Fig. 6b shows the value of the residual energy obtained for both

algorithms as a function of P. The ℓ21 approach has up to 7.7% of the

activity detected in residual non-zeros whereas the proposed algorithm

algorithm never exceeds 1.1%, confirming its good sparsity properties.

4.2. Real data

Two real data sets are considered in this section. The first data

set corresponds to the auditory evoked responses to left ear pure

tone stimulus while the second one consists of the evoked re-

sponses to facial stimulus. The results of the proposed method are

compared with the weighted ℓ21 mixed norm (Gramfort et al.,

2012), the Champagne model (Wipf et al., 2010) and the method

investigated in Friston et al. (2008) based on multiple sparse priors.

4.2.1. Auditory evoked responses

The default data set of the MNE software (Gramfort et al., 2014,

2013) is used in this section. It consists of the evoked response to

left-ear auditory pure-tone stimulus using a realistic BEM (Bound-

ary element method) head model sampled with 60 EEG electrodes

and 306 MEG sensors. The head model contains 1.844 dipoles lo-

cated on the cortex with orientations that are normal to the brain

surface. Two channels that had technical artifacts were ignored. The

data was sampled at 600 Hz. The samples were low-pass filtered at

40 Hz and downsampled to 150 Hz. The noise covariance matrix

was estimated from 200 ms of the data preceding each stimulus

and was used to whiten the measurements. Fifty-one epochs were

averaged to calculate the measurements Y . The activity of the

source dipoles was estimated jointly for the period from 0 ms to

500 ms after the stimulus. It is expected to find the brain activity

primarily focused on the auditory cortices that are located close to

the ears in both hemispheres of the brain (Gramfort et al., 2012).

The uncertainty principle was used to adjust the hyperparameter

of the ℓ21 mixed norm leading to having activity distributed all over

the brain as shown in Fig. 7(a). By manually adjusting the

hyperparameter to produce a sparser result, it is possible to obtain a

solution that has activity in the auditory cortices as shown in Fig. 7(b).

In contrast, the proposed algorithm estimates its hyperparameters

automatically and finds most of the activity in the auditory cortices

without requiring any manual adjustment. The MSPmethod also finds

the activity in both auditory cortices whereas the Champagne model

finds an active patch on one of them. In addition, Fig. 8 shows the

estimated waveforms using the ℓ21 mixed norm and the proposed

method. As we can see, they both have sharp peaks between 80 and

100 ms after the application of the stimulus, as expected in the re-

sponse to an auditory stimulus (Gramfort et al., 2012).

To summarize, the proposed method finds the EEG source ac-

tivity in areas that are spatially coherent with those found by the

MSP and the Champagne methods. The main difference between

the results is that the proposed method estimates the brain activity

to be in only a few dipoles whereas the other algorithms estimate

its extent. This is due to the sparsity-promoting prior that focuses

the brain activity on the most important sources. Note that more

details about the experiment are available in Costa et al. (2015).

4.2.2. Facial evoked responses

In a second step, data acquired from a face perception study

where the subject was required to evaluate the symmetry of a mixed

set of faces and scrambled faces was used, one of the default data sets

of the SPM software.2 Faces were presented during 600 ms every

3600 ms. The measurements were obtained by the electrodes of a

128-channel ActiveTwo system with a sampling frequency of

2048 Hz. The measurements were downsampled to 200 Hz and, after

artifact rejection, 299 epochs corresponding to the non-scrambled

faces were averaged and low-pass filtered to 40 Hz. A T1 MRI scan

was then downsampled to generate a 8196 dipole head model.

The estimated activities are shown in Fig. 9. Using the proposed

method, one can note that the activity is localized close to the

fusiform region in the occipital lobe (Kanwisher et al., 1997). This

in good agreement with the results obtained by the MSP and

Champagne algorithms. Again, the difference is related to the fo-

calization of the activity among a reduced number of dipoles.

4.3. Computational cost

It is important to note that the price paid for the proposed

method, while having several advantages over the ℓ21 mixed norm

approach, is its higher computational complexity. This problem is

typical with MCMC methods when compared to optimization

techniques. More precisely, the low SNR three-dipole experiment

was processed in 6 s using a modern Xeon CPU E3-1240 @ 3.4 GHz

processor (and a Matlab implementation with MEX files written in

C) against 104 ms for the ℓ21 mixed norm approach. However, it is

interesting to note that the ℓ21 norm approach requires running

Fig. 6. Results for synthetic data with multiple active dipoles: Performance as a function of the amount of active dipoles (P).

2 The SPM software is freely avaiable at http://www.fil.ion.ucl.ac.uk/spm.



Fig. 7. Results for real data auditory evoked responses: Active dipole positions estimated by different algorithms. The proposed method finds the activity focused in both

auditory cortices as the MSP algorithm does. The Champagne model finds the activity in one of the auditory cortices (a) Weighted ℓ21 norm - Uncertainty principle for

parameter λ, (b) Weighted ℓ21 norm - Manual adjustment of parameter λ, (c) Proposed method, (d) MSP algorithm, (e) Champagne.



the algorithm multiple times to adjust the regularization

parameter.

5. Conclusion

We presented a Bayesian mathematical model for sparse EEG

reconstruction that approximates the ℓ20 mixed norm in a Baye-

sian framework by a multivariate Bernoulli Laplacian prior. A

partially collapsed Gibbs sampler was used to sample from the

target posterior distribution. We introduced multiple dipole shift

proposals within each MCMC chain and exchange moves between

different chains to improve the convergence speed. Using the

generated samples, the source activity was estimated jointly with

the model hyperparameters in an unsupervised framework. The

proposed method was compared with the ℓ21 mixed norm, the

Champagne algorithm and a method based on multiple sparse

priors in a wide variety of situations including several multi-dipole

synthetic activations and two different real data sets. Using syn-

thetic data sets, the proposed algorithm presented several ad-

vantages including better recovery of dipole locations and wave-

forms in low SNR conditions, the capacity of correctly detecting a

higher amount of non-zeros, providing sparser solutions and

avoiding underestimation of the activation amplitude. Using the

real data sets, the proposed algorithm finds activity in locations

that are spatially coherent with those found by the MSP and the

Champagne algorithms. Finally, the possibility of providing several

solutions with their corresponding probabilities is interesting.

Future work will be devoted to a generalization of the proposed

model to cases where the head model is not precisely known.

Possible future options are to extend the current work to run

Fig. 8. Estimated waveforms for real data auditory evoked responses: Measurements

and estimated activationwaveforms. Both algorithms find the peak activity around 90ms

after the stimulus was applied as expected (a) Weighted ℓ21 norm, (b) Proposed method.

Fig. 9. Results for facial evoked responses: Active dipole positions estimated by different algorithms. The proposed method finds the activity in locations that are compatible

with the ones estimated by the Champagne and MSP algorithms (a) Proposed method, (b) MSP algorithm, (c) Champagne.



models for estimating the spread patterns of the activity in

epilepsy.
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Appendix A. Parameter priors

In this appendix the priors that were used for the variance of

the noise sn
2 and the hyperparameters a and ω are detailed.

A.1. Noise variance activity sn
2

The noise variance is assigned a Jeffrey's prior

!( ) ( )σ
σ

σ∝
( )

+f
1
1

21
n

n
n

2
2

2

where ! ξ( ) =+1 1 if !ξ ∈ + and 0 otherwise. This choice is very

classical when no information about a scale parameter is available

(see Casella and Robert, 1999 for details).

A.2. Hyperprior of a

A conjugate gamma prior is assigned to a

( )α β α β( | ) = ( )f a a, , 22$

with α β= = 1. These values of α and β yield a vague hyperprior

for a. The conjugacy of this hyperprior will make the analysis

easier.

A.3. Hyperprior of ω

A uniform prior on [0, 1] is used for ω

ω ω( ) = ( ) ( )[ ]f 230,1&

reflecting the absence of knowledge for this hyperparameter.

Appendix B. Conditional distributions

The conditional distributions of the model parameters used in

Algorithm 1 are detailed below.

B.1. Conditional distribution of τi
2

The conditional distribution of τi
2 is a gamma ($ ) or a gen-

eralized inverse Gaussian ( $'$ ) distribution depending on the

value of zi. More precisely
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B.2. Conditional distribution of xi

The conditional distribution of the ith row of X is
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B.3. Conditional distribution of zi

The conditional distribution of zi is a Bernoulli distribution
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B.4. Conditional distribution of a

The conditional distribution of τ|a 2 is the following gamma

distribution
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B.5. Conditional distribution of sn
2

The distribution of τσ |Y X z, , ,n
2 2 is the following inverse gamma

('$ ) distribution
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B.6. Conditional distribution of ω

Finally, ω|z has the following beta distribution

( )ω ω( | ) = + ∥ ∥ + − ∥ ∥ ( )z z zf e N1 , 1 . 310 0#
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