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Abstract
We introduce an Embarrassingly Parallel Search (EPS) method for solving constraint

problems in parallel, and we show that this method matches or even outperforms state-of-
the-art algorithms on a number of problems using various computing infrastructures. EPS
is a simple method in which a master decomposes the problem into many disjoint subprob-
lems which are then solved independently by workers. Our approach has three advantages:
it is an efficient method; it involves almost no communication or synchronization between
workers; and its implementation is made easy because the master and the workers rely on
an underlying constraint solver, but does not require to modify it. This paper describes
the method, and its applications to various constraint problems (satisfaction, enumeration,
optimization). We show that our method can be adapted to different underlying solvers
(Gecode, Choco2, OR-tools) on different computing infrastructures (multi-core, data cen-
ters, cloud computing). The experiments cover unsatisfiable, enumeration and optimization
problems, but do not cover first solution search because it makes the results hard to an-
alyze. The same variability can be observed for optimization problems, but at a lesser
extent because the optimality proof is required. EPS offers good average performance, and
matches or outperforms other available parallel implementations of Gecode as well as some
solvers portfolios. Moreover, we perform an in-depth analysis of the various factors that
make this approach efficient as well as the anomalies that can occur. Last, we show that
the decomposition is a key component for efficiency and load balancing.

1. Introduction

In the second half of the 20th century, the frequency of processors doubled every 18 months
or so. It has now been clear for a few years that this period of “free lunch”, as put by Sutter
and Larus (2005), is behind us. As outlined by Bordeaux, Hamadi, and Samulowitz (2009),
the available computational power will keep increasing exponentially, but the increase will be
in terms of number of available processors, not in terms of frequency per unit. Multi-core
processors are now the norm which raises significant challenges for software development.
Data centers for high-performance computing are readily accessible by many in academia
and industry. Cloud computing (Amazon, Microsoft Azure, Google, . . . ) offers massive
infrastructures for rent on which computing and storage can be used on demand. With
such facilities anyone can now gain access to super-computing facilities at a moderate cost.
Distributed Computing offers possibilities to put computational resources in common
and effectively obtains massive capabilities. Examples include Seti@home (Anderson, Cobb,
Korpela, Lebofsky, & Werthimer, 2002), Distributed.net (Distributed Computing Tech-
nologies Inc, 20) and Sharcnet (Bauer, 2007). The main challenge is therefore to scale, i.e.,
to cope with this growth.

c©2016 AI Access Foundation. All rights reserved.
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Constraint programming (CP) is an appealing technology for a variety of combinatorial
problems which has grown steadily in the last three decades. The strengths of CP are
the use of constraint propagation combined with efficient search algorithms. Constraint
propagation aims at removing combinations of values from variable domains which cannot
appear in any solution. Over a number of years, possible gains offered by the parallel
computing have attracted the attention.

Parallel computing is a form of computation in which many calculations are carried out
simultaneously (Almasi & Gottlieb, 1989) operating on the principle that large problems
can often be divided into smaller ones, which are then solved in parallel. Different forms
of parallel computing exist: bit-level, instruction level, data and task parallelism. Task
parallelism is a common approach for parallel branch-and-bound (B&B) algorithms (Matt-
son, Sanders, & Massingill, 2004) and is achieved when each processor executes a different
thread (or process) on same or different data. Parallel computer programs are more diffi-
cult to write than sequential ones, because concurrency introduces several new classes of
potential software bugs, of which race conditions are the most common. For example, when
memory is shared, several tasks of an algorithm can modify the same data at the same
time. This could render the program incorrect. Mutual exclusion allows a worker to lock
certain resources to obtain exclusive access, but can create starvation because the other
workers must wait until the worker frees the resources. Moreover, the indeterminism of the
parallel programs makes the behaviour of the execution unpredictable, i.e. the results of
different program runs may differ. So, communication and synchronization among different
sub-tasks can address this issue, but are typically some of the greatest obstacles to good
performance. Another central bottleneck is load balancing, i.e. keeping all processors busy
as much as possible.

Wilkinson and Allen (2005) introduced the Embarrassingly Parallel paradigm which as-
sumes that a computation can be divided into a number of completely independent parts
and that each part can be executed by a separate processor. In this paper, we introduce
an Embarrassingly Parallel Search (EPS) method for constraint problems and show that
this method often outperforms state-of-the-art parallel B&B algorithms for a number of
problems on various computing infrastructures. A master decomposes the problem into
many disjoint subproblems which are then solved independently by workers. Since a con-
straint program is not trivially embarrassingly parallel, the decomposition procedure must
be carefully designed. Our approach has three advantages: it is an efficient method; it
involves almost no communication, synchronization, or mutual exclusion between workers;
its implementation is simple because the master and the workers rely on an underlying
constraint solver but does not require to modify it. Additionally, it is deterministic under
certain restrictions.

This paper integrates results from a series of publications (Régin, Rezgui, & Malapert,
2013, 2014; Rezgui, Régin, & Malapert, 2014). However, this paper includes novel con-
tributions, implementations, and results. A new implementation of EPS on the top of
the Java library Choco2 (Choco, 2010) uses a new decomposition procedure. New results
are given for the implementations on the top of the C++ library Gecode (Schulte, 2006)
and OR-tools (Perron, Nikolaj, & Vincent, 2012), More problem’s types and instances
are tested. EPS is compared with other parallelizations of Gecode and with several static
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solvers portfolios, We perform in-depth analysis of various components, especially the de-
composition procedures, as well as the anomalies that can occur.

The paper is organized as follows. Section 2 presents the constraint programming back-
ground, Amdahl’s law, and related work about parallel constraint solving. Section 3 gives
a detailed description of our embarrassingly parallel search method. Section 4 gives exten-
sive experimental results for the various implementations (Gecode, Choco2, OR-tools) on
different computing infrastructures (multi-core, data center, cloud computing) as well as
comparisons to other state-of-the-art parallel implementations and static solver portfolios.

2. Related Work

Here, we present the constraint programming background, two important parallelization
measures related to Amdahl’s law, and related work about parallel constraint solving.

2.1 Constraint Programming Background

Constraint programming (CP) has attracted high attention among experts from many areas
because of its potential for solving hard real-life problems. For an extensive review on
constraint programming, we refer the reader to the handbook by Rossi, Van Beek, and
Walsh (2006). A constraint satisfaction problem (CSP) consists of a set X of variables
defined by a corresponding set of possible values (the domains D) and a set C of constraints.
A constraint is a relation between a subset of variables that restricts the possible values that
variables can take simultaneously. The important feature of constraints is their declarative
manner, i.e. they only specify which relationship must hold. The current domain D(x) of
each variable x ∈ X is always a (non-strict) subset of its initial domain. A partial assignment
represents the case where the domains of some variables have been reduced to a singleton
(namely a variable has been assigned a value). A solution of a CSP is an assignment of a
value to each variable such that all constraints are simultaneously satisfied.

Solutions can be found by searching systematically through the possible assignments of
values to variables. A backtracking scheme incrementally extends a partial assignment A
that specifies consistent values for some of the variables, toward a complete solution, by
repeatedly choosing a value for another variable. The variables are labeled (given a value)
sequentially. At each node of the search tree, an uninstantiated variable is selected and the
node is extended so that the resulting new branches out of the node represent alternative
choices that may have to be examined in order to find a solution. The branching strategy
determines the next variable to be instantiated, and the order in which the values from its
domain are selected. If a partial assignment violates any of the constraints, backtracking is
performed to the most recently assigned variable that still has alternative values available
in its domain. Clearly, whenever a partial assignment violates a constraint, backtracking is
able to eliminate a subspace from the Cartesian product of variable domains.

A filtering algorithm is associated with each constraint which removes inconsistent values
from the domains of the variables, i.e. assignments which cannot belong to a solution of
the constraint. Constraints are handled through a constraint propagation mechanism which
allows the reduction of the domains of variables until a global fixpoint is reached (no more
domain reductions are possible). In fact, a constraint specifies which relationship must hold
and its filtering algorithm is the computational procedure that enforces the relationship.
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Generally, consistency techniques are not complete, i.e. they do not remove all inconsistent
values from the domains of the variables.

Both backtracking scheme and consistency techniques can be used alone to completely
solve a CSP, but their combination allows the search space to be explored in a complete
and more efficient way. The propagation mechanism allows the reduction of the variable
domains and the pruning of the search tree whereas the branching strategy can improve the
detection of solutions (or failures for unsatisfiable problems).

Here, we consider a complete standard backtracking scheme with depth-first traversal of
the search tree combined to the following variable selection strategies. Note that different
variable selection strategies can be used although only one at a time. lex selects a variable
according to lexicographic ordering. dom selects the variable with the smallest remaining do-
main (Haralick & Elliott, 1980). ddeg selects a variable with largest dynamic degree (Beck,
Prosser, & Wallace, 2005), that is, the variable that is constrained with the largest number
of unassigned variables. Boussemart, Hemery, Lecoutre, and Sais (2004) proposed conflict-
directed variable ordering heuristics in which every time a constraint causes a failure during
search, its weight is incremented by one. Each variable has a weighted degree, which is
the sum of the weights over all constraints in which this variable occurs. wdeg selects the
variable with the largest weighted degree. The current domain of the variable can be in-
corporated to give dom/ddeg or dom/wdeg which selects the variable with minimum ratio
between current domain size and its dynamic or weighted degree (Boussemart et al., 2004;
Beck et al., 2005). dom/bwdeg is a variant which follows a binary labeling scheme. impact
selects the variable/value pair which has the strongest impact, i.e. leads in the strongest
search space reduction (Refalo, 2004).

For optimization problems, we consider a standard top-down algorithm which maintains
a lower bound, lb, and an upper bound, ub, on the objective value. When ub ≤ lb, the subtree
can be pruned because it cannot contain a better solution.

2.2 Parallelization Measures and Amdahl’s Law

Two important parallelization measures are speedup and efficiency. Let t(c) be the wall-
clock time of the parallel algorithm where c is the number of cores and let t(1) be the
wall-clock time of the sequential algorithm. The speedup su(c) = t(1) / t(c) is a measure
indicating how many times the parallel algorithm performs faster due to parallelization.
The efficiency eff (c) = su(c) / c is a normalized version of speedup, which is the speedup
value divided by the number of cores. The maximum possible speedup of a single program
as a result of parallelization is known as Amdahl’s law (Amdahl, 1967). It states that a
small portion of the program which cannot be parallelized will limit the overall speedup
available from parallelization. Let B ∈ [0, 1] be the fraction of the algorithm that is strictly
sequential, the time t(c) that an algorithm takes to finish when being executed on c cores
corresponds to: t(c) = t(1)

(
B + 1

c (1−B)
)
. Therefore, the theoretical speedup su(c) is:

su(c) = 1
B + 1

c (1−B)
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According to Amdahl’s law, the speedup can never exceed the number of cores, i.e. a linear
speedup. This, in terms of efficiency measure, means that efficiency will always be less
than 1.

Note that the sequential and parallel B&B algorithms do not always explore the same
search space. Therefore, super-linear speedups in parallel B&B algorithms are not in con-
tradiction with Amdahl’s law because processors can access high quality solutions in early
iterations, which in turn brought a reduction in the search tree and problem size.

2.3 Parallel Constraint Solving

Designing and developing parallel programs has been a manual process where the program-
mer was responsible for both identifying and implementing parallelism (Barney & Liver-
more, 2016). In this section, we only discuss parallel constraint solving. About parallel
logic programming, we refer the reader to the surveys of De Kergommeaux and Codognet
(1994), and Gupta, Pontelli, Ali, Carlsson, and Hermenegildo (2001). About parallel integer
programming, we refer the reader to the surveys of Crainic, Le Cun, and Roucairol (2006),
Bader, Hart, and Phillips (2005), and Gendron and Crainic (1994).

The main approaches to parallel constraint solving can roughly be divided into the fol-
lowing main categories: search space shared in memory; search space splitting; portfolio al-
gorithms; problem splitting. Most approaches require communication and synchronization,
but the most important issue is load balancing which refers to the practice of distributing
approximately equal amounts of work among tasks so that all processors are kept busy all
the time.

2.3.1 Search Space in Shared Memory

These methods are implemented by having many cores sharing a list of open nodes in the
search tree (nodes for which there is at least one of the children that is still unvisited).
Starved processors just pick up the most promising node in the list and expand it. By
defining different node evaluation functions, one can implement different strategies (DFS,
BFS and others). Perron (1999) proposed a comprehensive framework tested with at most
4 processors. Vidal, Bordeaux, and Hamadi (2010) reported good performance for a parallel
best-first search up to 64 processors. Although this kind of mechanism intrinsically provides
excellent load balancing, it is known not to scale beyond a certain number of processors;
beyond that point, performance starts to decrease. Indeed, on a shared memory system,
threads must contend with each other for communicating with memory and the problem is
exacerbated by cache consistency transactions.

2.3.2 Search Space Splitting

Search Space Splitting strategies exploring the parallelism provided by the search space
are common approaches: when a branching is done, different branches can be explored
in parallel (Pruul, Nemhauser, & Rushmeier, 1988). One challenge is load balancing: the
branches of a search tree are typically extremely imbalanced and require a non-negligible
overhead of communication for work stealing (Lai & Sahni, 1984).

The work stealing method was originally proposed by Burton and Sleep (1981) and first
implemented in Lisp parallel machines (Halstead, 1984). The search space is dynamically

425
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split during the resolution. When a worker finished to explore a subproblem, it asks other
workers for another subproblem. If another worker agrees to the demand, then it splits
dynamically its current subproblem into two disjoint subproblems and sends one subproblem
to the starving worker. The starving worker “steals” some work to the busy one. Note
that some form of locking is necessary to avoid that several starving workers steal the
same subproblems. The starving worker asks other workers in turn until it receives a new
subproblem. Termination of work stealing method must be carefully designed to reduce the
overhead when almost all workers are starving, but almost no work remains. Recent works
based on this approach are those by Zoeteweij and Arbab (2004), Jaffar, Santosa, Yap, and
Zhu (2004), Michel, See, and Hentenryck (2009), and Chu, Schulte, and Stuckey (2009).

Because work stealing uses both communication, synchronization and computation time,
this cannot easily be scaled up to thousands of processors. To address these issues, Xie and
Davenport (2010) allocated specific processors to coordination tasks, allowing an increase
in the number of processors (linear scaling up to 256 processors) that can be used on a
parallel supercomputer before performance starts to decline.

Machado, Pedro, and Abreu (2013) proposed a hierarchical work stealing scheme corre-
lated to the cluster physical infrastructure, in order to reduce the communication overhead.
A worker first tries to steal from its local node, before considering remote nodes (starting
with the closest remote node). This approach achieved good scalability up to 512 cores for
the n-queens and quadratic assignment problems. For constraint optimization problems,
maintaining the best solution for each worker would require a large communication and
synchronization overhead. But, Machado et al. observed that the scalability was lowered
because the lazy dissemination of the so-far best solution, i.e. because some workers use
obsolete best solution.

General-purpose programming languages designed for multi-threaded parallel computing
like Charm++ (Kale & Krishnan, 1993) and Cilk++ (Leiserson, 2010; Budiu, Delling, &
Werneck, 2011) can ease the implementation of work stealing approaches. Otherwise, a
work stealing framework like Bobpp (Galea & Le Cun, 2007; Le Cun, Menouer, & Vander-
Swalmen, 2007) provides an interface between solvers and parallel computers. In Bobpp, the
work is shared via a global priority queue and the search tree is decomposed and allocated to
the different cores on demand during the search algorithm execution. Periodically, a worker
tests if starving workers exist. In this case, the worker stops the search and the path from
the root node to the highest right open node is saved and inserted into the global priority
queue. Then, the worker continues the search with the left open node. Otherwise, if no
starving worker exists, the worker continues the search locally using the solver. The starving
workers are notified of the insertions in the global priority queue, and each one picks up a
node and starts the search. Using OR-tools as an underlying solver, Menouer and Le Cun
(2013), and Menouer and Le Cun (2014) observed good speedups for the Golomb Ruler
problem with 13 marks (41.3 with 48 workers) and the 16-queens problem (8.63 with 12
workers). Other experiments investigate the exploration overhead caused by their approach.

Bordeaux et al. (2009) proposed another promising approach based on a search space
splitting mechanism not based on a work stealing approach. They use a hashing function
allocating implicitly the leaves to the processors. Each processor applies the same search
strategy in its allocated search space. Well-designed hashing constraints can address the
load balancing issue. This approach gives a linear speedup for up to 30 processors for the
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n-queens problem, but then the speedups stagnate at 30 until to 64 processors. However,
it only got moderate results 100 industrial SAT instances.

We have presented earlier works on the Embarrassingly Parallel Search method based
on search space splitting with loose communications (Régin et al., 2013, 2014; Rezgui et al.,
2014).

Fischetti, Monaci, and Salvagnin (2014) proposed another paradigm called SelfSplit in
which each worker is able to autonomously determine, without any communication between
workers, the job parts it has to process. SelfSplit can be decomposed in three phases: the
same enumeration tree is initially built by all workers (sampling); when enough open nodes
have been generated, the sampling phase ends and each worker applies a deterministic rule
to identify and solve the nodes that belong to it (solving); a single worker gathers the results
from others (merging). SelfSplit exhibited linear speedups up to 16 processors and good
speedups up to 64 processors on five benchmark instances. SelfSplit assumes that sampling
is not a bottleneck in the overall computation whereas that can happen in practice (Régin
et al., 2014).

Sometimes, for complex applications where very good domain specific strategies are
known, the parallel algorithm should exploit the domain-specific strategy. Moisan, Gau-
dreault, and Quimper (2013), and Moisan, Quimper, and Gaudreault (2014) proposed a
parallel implementation of the classic backtracking algorithm, Limited Discrepancy Search
(LDS), that is known to be efficient in centralized context when a good variable/value
selection heuristic is provided (Harvey & Ginsberg, 1995). Xie and Davenport (2010) pro-
posed that each processor locally uses LDS to search in the trees allocated to them (by a
tree splitting or work stealing algorithm) but the global system does not replicate the LDS
strategy.

Cube-and-Conquer (Heule, Kullmann, Wieringa, & Biere, 2012) is an approach for par-
allelizing SAT solvers. A cube is a conjunction of literals and a DNF formula a disjunction of
cubes. The SAT problem is split into several disjoint subproblems that are DNF formulas
which are then solved independently by workers. Cube-and-Conquer using the Conflict-
Driven Clause Learning (CDCL) solver Lingeling outperforms other parallel SAT solvers
on some instances of the SAT 2009 benchmarks, but is also outperformed on many other
instances. Thus, Concurrent Cube-and-Conquer (Van Der Tak, Heule, & Biere, 2012) tries
to predict on which instances it works well and abort the parallel search after a few seconds
in favor of a sequential CDCL solver if not.

2.3.3 Las Vegas Algorithms / Portfolios

They explore the parallelism provided by different viewpoints on the same problem, for
instance by using different algorithms or parameter tuning. This idea has also been exploited
in a non-parallel context (Gomes & Selman, 2000). No communication is required and an
excellent level of load balancing is achieved (all workers visit the same search space). Even
if this approach causes a high level of redundancy between processors, it shows really good
performance. It was greatly improved by using randomized restarts (Luby, Sinclair, &
Zuckerman, 1993) where each worker executes its own restart strategy. More recently, Cire,
Kadioglu, and Sellmann (2014) executed the Luby restart strategy, as a whole, in parallel.
They proved that it achieves asymptotic linear speedups and, in practice, often obtained
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linear speedups. Besides, some authors proposed to allow processors to share information
learned during the search (Hamadi, Jabbour, & Sais, 2008).

One challenge is to find a scalable source of diverse viewpoints that provide orthogonal
performance and are therefore of complementary interest. We can distinguish between
two aspects of parallel portfolios: if assumptions can be made on the number of available
processors then it is possible to handpick a set of solvers and settings that complement
each other optimally. If we want to face an arbitrarily high number of processors, then we
need automated methods to generate a portfolio of any size on demand (Bordeaux et al.,
2009). So, portfolio designers became interested in feature selection (Gomes & Selman, 1997,
1999, 2001; Kautz, Horvitz, Ruan, Gomes, & Selman, 2002). Features characterize problem
instances like number of variables, domain sizes, number of constraints, constraints arities.
Many portfolios select the best candidate solvers from a pool based on static features or by
learning the dynamic behaviour of solvers. The SAT portfolio iSAC (Amadini, Gabbrielli,
& Mauro, 2013) and the CP portfolio CPHydra (O’Mahony, Hebrard, Holland, Nugent, &
O’Sullivan, 2008) use feature selection to choose the solvers that yield the best performance.
Additionally, CPHydra exploits the knowledge coming from the resolution of a training set
of instances by each candidate solver. Then, given an instance, CPHydra determines the k
most similar instances of the training set and determines a time limit for each candidate
solver based on constraint program maximizing the number of solved instances within a
global time limit of 30 minutes. Briefly, CPHydra determines a switching policy between
solvers (Choco2, AbsCon, Mistral).

Many recent SAT solvers are based on a portfolio such as ManySAT (Hamadi et al.,
2008), SATzilla (Xu, Hutter, Hoos, & Leyton-Brown, 2008), SArTagnan (Stephan & Michael,
2011), Hydra (Xu, Hoos, & Leyton-Brown, 2010), Pminisat (Chu, Stuckey, & Harwood,
2008) based on Minisat (Een & Sörensson, 2005). Most of them combine portfolio-based
algorithm selection to automatic algorithm configuration using different underlying solvers.
For example, SATzilla (Xu et al., 2008) exploits the per-instance variation among solvers
using learned runtime models.

In general, the main advantage of the algorithms portfolio approach is that many strate-
gies will be automatically tried at the same time. This is very useful because defining good
search strategies is a difficult task.

2.3.4 Problem Splitting

Problem Splitting is another idea that relates to parallelism, where the problem itself is split
into pieces to be solved by each processor. The problem typically becomes more difficult to
solve than in the centralized case because no processor has a complete view on the problem.
So, reconciling the partial solutions of each subproblem becomes challenging. Problem
splitting typically relates to distributed CSPs, a framework introduced by Yokoo, Ishida,
and Kuwabara (1990) in which the problem is naturally split among agents, as for privacy
reasons. Other distributed CSP frameworks have been proposed such as those by Hirayama
and Yokoo (1997), Chong and Hamadi (2006), Ezzahir, Bessière, Belaissaoui, and Bouyakhf
(2007), Léauté, Ottens, and Szymanek (2009), and Wahbi, Ezzahir, Bessiere, and Bouyakhf
(2011).
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2.3.5 Parallel Constraint Propagation

Other approaches can be thought of, typically based on the parallelization of one key algo-
rithm of the solver, for instance constraint propagation (Nguyen & Deville, 1998; Hamadi,
2002; Rolf & Kuchcinski, 2009). However, parallelizing propagation is challenging (Kasif,
1990) and the scalability is limited by Amdahl’s law. Some other approaches focus on
particular topologies or make assumptions on the problem.

2.3.6 Concluding Remarks

Note that for the oldest approaches, scalability issues are still to be investigated because of
the small number of processors, typically around 16 and up to 64 processors. One major
issue is that all approaches may (and a few must) resort to communication. Communication
between parallel agents is costly in general: in shared-memory models such as multi-core,
this typically means an access to a shared data structure for which one cannot avoid some
form of locking; the cost of message-passing cross-CPU is even significantly higher. Com-
munication additionally makes it difficult to get insights on the solving process since the
executions are highly inter-dependent and understanding parallel executions is notoriously
complex.

Most parallel B&B algorithms explore leaves of the search tree in a different order than
they would be on a single-processor system. This could be a pity in situations where we
know a really good search strategy, which is not entirely exploited by the parallel algorithm.
For many approaches, experiments with parallel programming involve a great deal of non-
determinism: running the same algorithm twice on the same instance, with identical number
of threads and parameters, may result in different solutions, and sometimes in different
runtimes.

3. Embarrassingly Parallel Search

In this section, we present the details of our embarrassingly parallel search. First, Section 3.1
introduces the key concepts that guided our design choices. Then, Section 3.2 introduces
several search space splitting strategies implemented via the top-down or bottom-up decom-
position procedures presented in Section 3.3. Section 3.4 gives details about the architecture
and the communication. Section 3.5 explains how to manage the queue of subproblems in
order to obtain a deterministic parallel algorithm. Section 4.1 gives more details about the
implementation.

3.1 Key Concepts

We introduce the key concepts that guided our design choices: massive static decomposition;
loose communication; non-intrusive implementation; toward a deterministic algorithm.

3.1.1 Massive Static Decomposition

The master decomposes the problem into p subproblems once and for all which are then
solved in parallel and independently by the workers. So, the solving process is equivalent to
the real-time scheduling of p jobs on w parallel identical machines known as P ||Cmax (Korf &
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Schreiber, 2013). Efficient algorithms exists for P ||Cmax and even the simple list scheduling
algorithms (based on priority rules) are a (2− 1

w )-approximation. The desirable properties
defined in Section 3.2 should ensure low precision processing times that makes the problems
easier. If we hold the precision and number of workers fixed, and increase the number of
subproblems, then problems get harder until perfect schedules appear, and then they get
easier. In our case, the number p of subproblems should range between one and three
orders of magnitude larger than the number of workers w. If it is too low, the chance of
finding perfect schedules, and therefore obtain good speedups, are low. If it is too large, the
decomposition takes longer and becomes more difficult. If these conditions are met, then
it is unlikely that a worker will be assigned more work than any other, and therefore, the
decomposition will be statistically balanced. Beside, to reach good speedups in practice,
the total solving time of all subproblems must be close to the sequential solving time of the
problem.

An advantage is that the master and workers are independent. They can use different
filtering algorithms, branching strategies, or even underlying solvers. The decomposition is
a crucial step, because it can be a bottleneck of the computation and its quality also greatly
impacts the parallelization efficiency.

3.1.2 Loose Communication

p subproblems are solved in parallel and independently by the w workers. As load balancing
must be statistically obtained from the decomposition, we do not allow work stealing in
order to drastically reduce communication. Of course, some communication is still needed
to dispatch the subproblems, to gather the results and possibly to exchange useful additional
information, like objective bound values. Loose communication allows to use a star network
without risk of congestion. A central node (foreman) is connected to all other nodes (master
and workers).

3.1.3 Non-intrusive Implementation

For the sake of laziness and efficiency, we rely as much as possible on the underlying solver(s)
and on the computing infrastructure. Consequently, we modify as little as possible the un-
derlying solver. We do not consider nogoods or clauses exchanges because these techniques
are intrusive and increase the communication overhead. Additionally, logging and fault
tolerance are respectively delegated to the underlying solver and to the infrastructure.

3.1.4 Toward Determinism

A deterministic algorithm is an algorithm which, given a particular input, will always pro-
duce the same output, with the underlying machine always passing through the same se-
quence of states. If the determinism is already challenging for sequential B&B algorithms
due to their complexity (randomization, restarts, learning, optimization), it is still more
difficult for parallel B&B algorithms.

Here, we will always guarantee reproducibility if the real-time assignment of subprob-
lems to workers is stored. Reproducibility means that it is always possible to replay the
solving process. With some restrictions detailed later, our parallel algorithm can be made
deterministic with no additional cost. Moreover, the parallel algorithm should be able to
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mimic the sequential algorithm, i.e. they produce identical solutions. It requires that the
parallel algorithm visits the tree leaves in the same order as the sequential algorithm. More
generally, it would be useful for debugging, performance evaluation, or incremental problem
solving that the parallel algorithm may produce identical solutions no matter how many
workers are present or which computing infrastructure is used.

Conversely, any real-time scheduling algorithm can be applied to subproblems. It would
allow to improve diversification by using more randomization, or to exploit past information
provided by the solving process. In the experiments, we will only use FIFO scheduling of
the subproblems, because other scheduling policy would change the shape and size of the
search tree and, therefore, reduces the relevance of speedups. Unlike EPS, work stealing
approaches are not deterministic and offer no control on subproblem scheduling.

3.2 Search-Space Splitting Strategies

Here, we extend the approach to search-space splitting proposed by Bordeaux et al. (2009),
called splitting by hashing. Let us recall that C is the set of constraints of the problem. To
split the search space of a problem into p parts, one approach is to assign each subproblem
i (1 ≤ i ≤ p) an extended set of constraints C ∪Hi where Hi is a hashing constraint, which
constrains subproblem i to a particular subset of the search space. Hashing constraints
must necessarily be sound and should be effective, nontrivial, and statistically balanced.

Sound Hashing constraints must partition the search space: ∪p
i=1Hi must cover the entire

initial search space (completeness), and the mutual intersections Hi ∩Hj (1 ≤ i < j ≤ p)
should preferably be empty (non-overlapping).

Effective The addition of the hashing constraints should effectively allow each worker to
efficiently skip the portions of the search space not assigned to its current subproblem. Each
subproblem must be significantly easier than the original problem. This causes overhead,
to which we refer to as recomputation overhead.

Nontrivial The addition of the hashing constraints should not lead to an immediate
failure of the underlying solver. Thus, generating trivial subproblems might be paid by some
exploration overhead, because many of them would have been discarded by the propagation
mechanism of the sequential algorithm.

Statistically Balanced All workers should be given about the same amount of work. If
the decomposition is appropriate, then the number p of subproblems is significantly larger
than the number w of workers. It is thus unlikely that a given worker would be assigned
significantly more work than any other worker by any real-time scheduling algorithm. How-
ever, it is possible that solving one subproblem requires significantly more work than another
subproblem.

Bordeaux et al. (2009) defined hashing constraints by selecting a subset X of the variables
of the problem and stating Hi (1 ≤ i ≤ p) as follows:

∑
x∈X x ≡ i mod p. This effectively

decomposes a problem into p problems if p is within reasonable limits. For p = 2, it imposes
a parity constraints over the sum of the variables. Splitting can be repeated to scale-up to
an arbitrary number of processors. This splitting is obviously sound, but less effective for
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CP solvers than for SAT solvers. Here, we study assignment splitting and node splitting to
generate a given number p? of subproblems.

3.2.1 Assignment Splitting

Let us consider a non empty subset X ⊆ X of d ordered variables: X = (x1, . . . , xd). A vec-
tor τ = (v1, . . . , vd) is a tuple on X if vj ∈ D(xj) (j = 1, . . . , d). Let H(τ) = ∧d

j=1 (xj = vj)
be the hashing constraints which restrict the search space to solutions extending the tuple τ .
A total decomposition on X splits the initial problem into

∏d
i=1D(xi) subproblems, i.e. one

subproblem per tuple. A total decomposition is clearly sound and effective, but not efficient
in practice. Indeed, Régin et al. (2013) showed that the number of trivial subproblems can
grow exponentially.

In a table decomposition, a subproblem is defined by a set of tuples that allows to reach
exactly the number p? of subproblems. Let T be an ordered list of tuples on X such that
|T | > p?. Then, the first subproblem is defined by the first k =

⌊
|T |
p?

⌋
tuples, the second

subproblem is defined by the following k tuples, and so on. So, all subproblems are defined
by the same number of tuples possibly with the exception of the last.

A tuple τ is solver-consistent if the propagation of the extended set of constraints C ∧
H(τ) by the underlying solver does not detect unsatisfiability. In order to obtain nontrivial
decompositions, total and table decompositions are restricted to solver-consistent tuples.

3.2.2 Node Splitting

Node splitting allows the parallel algorithm to exploit domain-specific strategies for the
decomposition when a good strategy is known. Let us recall some concepts on search
trees (Perron, 1999) that are the basis of the decomposition procedures introduced later.
To decompose the problems, one needs to be able to map individual parts of the search tree
to hashing constraints. These parts are called open nodes. Once open nodes are defined,
we present how a search tree is decomposed into a set of open nodes.

Open Nodes and Node Expansion The search tree is partitioned into three sets, open
nodes, closed nodes, and unexplored nodes. Here, we do not make any assumption about
the arity of the search tree, i.e. the maximal number of children of its nodes. These subsets
have the following properties.
• All the ancestors of an open node are closed nodes.
• Each unexplored node has exactly one open node as its ancestor.
• No closed node has an open node as its ancestor.

The set of open nodes is called the search frontier as illustrated in Figure 1. The search

unexplored

closed

active
path

open Frontier

Figure 1: Node status and search frontier of a search tree.
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frontier evolves simply through a process known as node expansion. It removes an open node
from the frontier, transforms the removed node into a closed node, and adds its unexplored
children to the frontier. Node expansion is the only operation that happens during the
search. It corresponds to the branch operation in a B&B algorithm.

At any point of the search, the search frontier is a sound and nontrivial decomposition
of the original problem where each open node is associated to a subproblem. The decom-
position is effective if and only if the branching strategy is effective. Let us remark that
assignment splitting can be seen as a special case of node splitting in which a static ordering
is used for variables and values.

Active Path and Jumps in the Search Tree Expanding one node after another may
require changing the state (at least the variables domains) of the search process from the
first node to the second. So, the worker in charge of exploring an open node must reconstruct
the state it visits. This is done using an active path and a jumping operation.

When going down in the search tree, our search process builds an active path, which is
the list of ancestors of the current open node, as illustrated in Figure 1. When a worker
moves from one node to another, it has to jump in the search tree. To make the jump, it
simply recomputes every move from the root until it gets to the target node. This causes
overhead, to which we refer to as recomputation overhead. Recomputation does not change
the search frontier because it does not expand a node.

3.3 Decomposition Procedures

The decomposition challenge is to find the depth at which the search frontier contains
approximately p? nodes. The assignment splitting strategy is implemented by a top-down
procedure which starts from the root node and incrementally visits the next levels, whereas
the node splitting strategy is implemented by a bottom-up procedure which starts form a
level deep enough and climbs back to the previous levels.

3.3.1 Top-Down Decomposition

The challenge of the top-down decomposition is to find d ordered variables which produce
approximately p? solver-consistent tuples. Algorithm 1 realizes a solver-consistent table
decomposition by iterated depth-bounded depth-first searches with early removals of incon-
sistent assignments (Régin et al., 2013). The algorithm starts at the root node with an
empty list of tuples (line 1). It computes a list T of p? tuples that are a solver-consistent
table decomposition by iterativly increasing the decomposition depth. Let us assume that
there exists a static order of the variables. At each iteration, it determines a new lower
bound (line 4) on the decomposition depth d, i.e. the number of variables involved in
the decomposition. This lower bound uses the Cartesian product of the current domains
of the next variables xd+1, xd+2, . . . Then, a depth-bounded depth-first search extends the
decomposition to its new depth and updates the list of tuples (line 5). The current tuples
are added to the constraints of the model during the search (line 5) in order to reduce
redundant work. After the search, the extended tuples are propagated (line 7) to reduce
the domains, and to improve the next lower bound on the decomposition depth. Each tuple
was solver-consistent (not proven infeasible) during the last search. The process is repeated
until the number |T | of tuples is greater or equal to p?. At the end, tuples are aggregated

433
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Algorithm 1: Top-down decomposition.
Data: A CSP (X , D, C) and a number of subproblems p?
Result: A list of tuples T

1 d← 0;
2 T ← ∅ ;

/* Simulate a breadth-first search: iterated depth bounded DFSs. */
3 repeat

/* Determine a lower bound on the decomposition depth. */

4 d← min
{
l
∣∣∣ max(1, |T |)×

∏l
i=d+1|D(xi)| ≥ p?

}
;

/* Extend the current decomposition with new variables. */
5 T ← depthBoundedDFS (X , C ∪ {∨τ∈T H(τ)},D, {x1, . . . , xd});
6 if T == ∅ then break;

/* Propagate the tuples (without failure). */
7 D ← propagate (X , C ∪ {∨τ∈T H(τ)},D);
8 until |T | < p?;

/* Aggregate tuples to generate exactly p? subproblems */
9 T ← aggregateTuples(T ) /* All subproblems become simultaneously available.

*/
10 foreach τ ∈ T do sendSubProblem (X , C ∪H(τ),D);

to generate exactly p? subproblems. In practice, consecutive tuples of T are aggregated.
All subproblems become simultaneously available after the aggregation.

Sometimes, the sequential decomposition is a bottleneck because of Amdahl’s law. So,
the parallel decomposition procedure increases the scalability (Régin et al., 2014). Only
two steps differ from Algorithm 1. First, instead of starting at depth 0 with an empty list
of tuples (line 1 of Algorithm 1), a first list is quickly generated with at least five tuples per
worker.

1 d← min
{
l
∣∣∣ ∏l

i=1 |D(xi)| ≥ 5× w
}

;

2 T ←
∏d
i=1 D(xi);

Second, at each iteration, each tuple is extended in parallel instead of extending sequen-
tially all tuples (line 5 of Algorithm 1). The parallel decomposition can change the ordering
of T compared to the sequential one. Again, all subproblems only become available at the
end of the decomposition.

5 T ′ ← ∅;
6 run in parallel
7 foreach τ ∈ T do

/* extend each tuple in parallel */
8 T ′ ← T ′ ∪ depthBoundedDFS (X , C ∪H(τ),D, {x1, . . . , xd});

9 T ← T ′;

Both top-down procedures assume that the variable ordering used in the decomposi-
tion is static. The next decomposition procedure bypasses this limitation and handles any
branching strategy.
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Algorithm 2: Bottom-up decomposition.
Data: A CSP (X , D, C), a decomposition depth d?, and a subproblem limit P .

1 p← 0;
/* Generate subproblems by visiting the top of the real tree. */

2 Before Node Callback decomposition(node) is
3 if depth(node) ≥ d? then
4 sendSubProblem (node);
5 p← p+ 1;
6 if p ≥ P then

/* Decrease dynamically the depth. */
7 d? ← max(1, d? − 1);
8 P ← 2× P ;
9 backtrack;

10 DFS (X ,C,D);

3.3.2 Bottom-Up Decomposition

The bottom-up decomposition explores the search frontier at the depth d? with approxi-
mately p? nodes. In its simplest form, the decomposition depth d? can be provided by a
user with good knowledge of the problem. Algorithm 2 explores the search frontier at depth
d? using a depth-first search as illustrated in Figure 2(a). A search callback identifies each
node at level d? (line 2), and sends immediately its active path, which defines a subproblem,
so that the subproblem will be solved by a worker. If the decomposition depth is dynamic,
then it is reduced if the number of subproblems becomes too large (line 6). It aims to
compensate a poor choice of the decomposition depth d?. In practice, the depth is reduced
by one unit if the current number of subproblems exceeds a given limit P . This limit is
initially set up to P = 2× p? and is doubled each time it is reached. On the contrary, the
depth is static (P = +∞) if it never changes whatever be the number of subproblems.

In practice, it is not common that the user provides the decomposition depth, and
an automated procedure without any user’s intervention is needed. Algorithm 3 aims at
identifying the topmost search frontier with approximately p? open nodes by sampling and
estimation. The procedure can be divided into three phases: build a partial tree by sampling

2P nodes

Search Frontier Dynamic

Static

P nodes

(a) Decomposition.

Initial depth

Final depth

nodes

D

D

p⋆

(b) Estimation.

Figure 2: Bottom-up decomposition and estimation.
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Algorithm 3: Bottom-up estimation.
Data: A CSP (X , D, C) and a number of subproblems p?.
Data: A time limit t, a node limit n, and a maximum depth D large enough
Result: A decomposition depth d?
/* Set counters for the width of the levels */

1 foreach d ∈ [1, D] do width[d]← 0;
/* Build a partial tree by sampling. */

2 Before Node Callback estimation(node) is
3 d← depth(node);
4 if d ≤ D then
5 width[d]← width[d] + 1;
6 if width[d] ≥ p? then D ← d− 1 ;
7 else backtrack;
8 if hasFinished (t,n) then break;
9 DFS (X ,C,D);

/* Estimate the level widths of the tree and the decomposition depth. */
10 width← estimateWidths(width);
11 d? ← estimateDepth(width, p?);

the top of the real search tree; estimate the level widths of the real tree; and then determine
the decomposition depth d? with a greedy heuristic.

Since we need to explore the top of the search tree, an upper bound D on the decom-
position depth is fixed. The maximum decomposition depth D must be chosen according
to the number of workers and the expected number of subproblems per worker. If D is
too small, the decomposition could generate too few subproblems. If D is too large, the
sampling time increases while the decomposition quality could decrease.

The sampling phase builds a partial tree with at most p? open nodes on a level using
a callback of a depth-first search. The number of open nodes at each level of the partial
tree is counted by the callback. The maximum depth D is reduced each time p? nodes are
opened at a given level (line 6). If the sampling ends within its limits, then the top of the
tree has been entirely visited and no estimation is needed. Otherwise (line 8), one needs
to estimate the widths of the topmost levels of the tree depending on the partial tree. The
estimation is a straightforward adaptation of the one proposed by Cornuéjols, Karamanov,
and Li (2006) to deal with n-ary search tree (line 10). In practice, the main issue is that the
higher the arity is, the lower is the precision of the estimation. Therefore, a greedy heuristic
determines the decomposition depth based on the estimated number of nodes per level, but
also on the number of nodes in the partial tree (line 11). The heuristics minimizes the
absolute deviation between the estimated number of nodes and the expected number p?. If
several levels have an identical absolute deviation, then the lowest level with an estimated
number of subproblems greater than or equal to p? is selected.

3.4 Architecture and Communication

We describe messages exchanged by the actors depending on the problem’s type. Then,
a typical use case illustrates the solving process for an optimization problem. Briefly, the
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communication network is a star network where the foreman acts as a pipe to transmit
messages between the master and workers.

3.4.1 Actors and Messages

The total number of messages depends linearly of the number of workers (w) and the
number of subproblems (p). All messages are synchronous for sake of simplicity which
means that work must wait until the communications have completed (Barney & Livermore,
2016). Interleaving computation with communication is the single greatest benefit for using
asynchronous communications since work can be done while the communications are taking
place. However, asynchronous communications complicate the architecture, for instance if
a message requests a answer.

Master is the control unit which decomposes the problem and collects the final results.
It sends the following messages: create the foreman; give a subproblem to the foreman;
wait for the foreman to gather all results; destroy the foreman. The master only deals
with the foreman. The decomposition time is the elapsed time between the create and
wait messages. The workers time is the elapsed time between the first give and destroy
messages. The wall-clock time is the elapsed time from the creation to the destruction of
the master.

Foreman is the central node of the star network. It is a queuing system which stores sub-
problems received from the master and dispatches them to workers. It also gathers results
collected from the workers. The foreman allows the master to concentrate on the problem’s
decomposition, which is a performance bottleneck, by handling all communications with the
workers. It sends the following messages: create a worker; give a subproblem to a worker;
collect (send) the final results to the master; destroy a worker. When the foreman
detects that the search has ended, it sends a collect-message containing the final results
to the master.

Workers are search engines. They send the following messages: find a subproblem (the
foreman must answer by a give-message); collect (send) results to the foreman. The
results contain essential information about the solution(s) and the solving process. Workers
only know the foreman. When a worker acquires new work (receives a give-message from
the foreman), the acquired subproblem is recomputed which causes recomputation overhead.
In work stealing context, Schulte (2000) noticed that the higher the node is in the search
tree, the smaller is the recomputation overhead. By construction, only the topmost nodes
are used here.

3.4.2 Problem’s Types

We discuss the specificities of first solution, all solution, and best solution searches.

First Solution Search The search is complete as soon as a solution has been found.
Other workers must be immediately terminated as well as the decomposition procedure.

All Solution Search The search is complete when all subproblems have been solved.

437
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Best Solution Search The main design issue in best-solution search is to maintain the
so-far best solution. The sequential B&B algorithm always knows the so-far best solution.
This is difficult to achieve in a concurrent setting with several workers. Maintaining the best
solution for each worker could lead to large communication and synchronization overheads.
Instead we prefer a solution where both the foreman and workers maintain the so-far best
solution as follows. By default, the give and collect messages between the foreman and the
workers carry the objective information. Additionally, a worker can send better messages
to the foreman with an intermediate solution, or the foreman can send its best solution to
all workers. For instance, when a worker finds a new solution, it informs the foreman by
sending a better message if the solution is accepted by a threshold function. Similarly,
when the foreman receives a new solution through a collect or better message, it checks
whether the solution is really better. If the solution is accepted by the threshold function,
the foreman sends another better message to all workers. The architecture sketched above
entails that a worker might not always know the so-far best solution. In consequence, some
parts of the search tree are explored, and they should have been pruned away if the worker
had had exact knowledge. Thus, the loose coupling might be paid by some exploration
overhead.
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opt

[Allocate Resources]
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Figure 3: Sequence diagram of the solving process with two workers.
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3.4.3 Use Case

Figure 3 is a sequence diagram illustrating the solving process for an optimization problem
with two workers. It shows how actors operate with each other in chronological order.

The first horizontal frame is the resource allocation. The master creates the foreman.
The foreman creates the workers. Immediately after creation, the master and each worker
load the original problem. The foreman transparently manages a concurrent queue of sub-
problems produced by the master and consumed by workers. After that, workers will only
jumps in the search tree.

After the foreman creation, the master starts the decomposition of the original problem
into p = 3 subproblems. As soon as a subproblem is generated, the master gives it to
the foreman. Here, the give and find messages are interleaved as in the node splitting
decomposition proposed in Section 3.3.2. The assignment splitting decomposition proposed
in Section 3.3.1 would produce a unique give message with all subproblems. When the
decomposition is finished, the master sends a wait message to the foreman and waits for
a collect response containing the final result. This last collect message triggers the
resource deallocation.

Each time a worker is starving, it asks the foreman for a subproblem and waits for it.
Here, the first subproblem is assigned to the first worker while the second worker waits for
the second subproblem. The “Best Solution Search” frames correspond to specific messages
for optimization problems. The first worker quickly finds a good solution and sends it to
the foreman via a better message. A second subproblem is generated by the master and
then given to the foreman. In turn, the foreman gives the second subproblem and updated
objective information to the second worker. The second problem is quickly solved by the
second worker which sends a collect message to the foreman. The collect message also
stands for a find message. Then, the third, and last, subproblem is assigned to the second
worker.

The foreman broadcasts a better message because of the good quality of the solution
received from the first worker. Note that this message is useless for the first worker. The
foreman detects the termination of the solving process and sends the collect message to the
master if the three following conditions are met: the master is waiting; the subproblem’s
queue is empty; and all workers are starving. The last horizontal frame is the resource
deallocation.

3.5 Queuing and Determinism

The foreman plays the role of a queuing system which receives subproblems from the master
and dispatches them to the workers. In this section, we show that EPS can be modified
to return the same solution than the sequential algorithm which can be useful in several
scenarios such as debugging or performance evaluation. Generally, any queuing policy can
be applied to select the next subproblem to solve.

Let us assume that the subproblems P1, P2, . . . , Pp are sent to the foreman in a fixed
order which is the case for the sequential top-down procedure and the bottom-up procedure.
Otherwise, a fixed order of subproblems can be obtained by sorting the subproblems.

The first solution found by the sequential algorithm belongs to the satisfiable subproblem
Pi with the smallest index, i.e. the leftmost solution. Let us assume that the parallel
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algorithm finds a first solution for the subproblem Pj such that j > i. Then, it is not
necessary to solve problems Pk such that k > j and one must only wait for each problem
Pk such that k < j and then determine the leftmost solution, the satisfiable subproblem
with the smallest index.

It can easily be extended for optimization problems by slightly modifying the cutting
constraints. Usually, a cutting constraint is stated when a new solution is found that
only allows strictly improving solution. On the contrary to other constraints, the cutting
constraint is always propagated while backtracking. Here, if a solution is found when solving
the subproblem Pj , then the cutting constraint only allows strictly improving solution for
subproblems k ≥ j, but also allows equivalent solution for subproblems k < j.

So, the parallel algorithm returns the same solution than the sequential one if the
subproblem are visited in the same order. Moreover, the solution returned by the parallel
algorithm does not depend on the number of workers, but only on the decomposition. In
our experiments, the queuing policy is the FIFO policy that ensures that subproblems are
solved in the same order so that the speedups are relevant. However, there is no guaranty
that the sequential and parallel algorithms return the same solution.

4. Experimental Results

Here, we describe experiments on EPS and carry out a detailed data analysis. We aim
to answer the following questions. Is EPS efficient? With different number of workers?
With different solvers? On different computing platforms? Compared to other parallel
approaches? What is the influence of the different components (decomposition procedures,
search strategies, constraint models)? Is EPS robust and flexible? Which anomalies can
occur?

Section 4.1 presents the benchmark instances, execution environments, parameters set-
tings, and the different implementations. First, in Section 4.2, we analyze and evaluate the
top-down and bottom-up decomposition procedures as well as the importance of the search
strategy, especially for the decomposition. Then, we evaluate the efficiency and scalability
of parallel solvers on a multi-core machine (Section 4.3), on a data center (Section 4.4),
and on a cloud platform (Section 4.5). In these sections, we compare our implementations
of EPS with work stealing approaches whenever it is possible. In Section 4.4, we also an-
alyze the efficiency of a parallel solver depending on the search strategy. In Section 4.6,
we transform with reasonable effort a parallel solver into a distributed parallel solver by
using the batch scheduler provided by the data center. Some anomalies of a parallel solver
are explained and resolved by its distributed equivalent. Last, Section 4.7 discusses the
performance of parallel solvers compared with static portfolios built from the underlying
sequential solvers on the data center.

4.1 Experimental Protocol

In this section, we introduce the benchmark instances, execution environments, metrics and
notations. We also give more details about the implementations.
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4.1.1 Benchmark Instances

A lot of benchmark instances are available in the literature. We aim to select difficult
instances with various models that represent problems tackled by CP. Ideally, an instance
is difficult if none of the solvers can solve it quickly. Indeed, parallel solving is relevant
only if it shortens a long wall-clock time. Here, we only consider unsatisfiable, enumeration
and optimization problem’s instances. We will ignore the problem of finding a first feasible
solution because the parallel speedup can be completely uncorrelated to the number of
workers, making the results hard to analyze. We will consider optimization problems for
which the same variability can be observed, but at a lesser extent because the optimality
proof is required. The variability for unsatisfiable and enumeration instances is lowered, and
therefore, they are often used as a test bed for parallel computing. Besides, unsatisfiable
instances have a practical importance, for instance in software testing, and enumeration is
important for users to compare various solutions.

The first set called fzn is a selection of 18 instances selected from more than 5000
instances either from the repository maintained by Kjellerstrand (2014) or directly from the
Minizinc 1.6 distribution written in the FlatZinc language (NICTA Optimisation Research
Group, 2012). Each instance is solved in more than 500 seconds and less than 1 hour with
Gecode. The selection is composed of 1 unsatisfiable, 6 enumeration, and 11 optimization
instances.

The set xcsp is composed of instances from the categories ACAD and REAL of XCSP
2.1 (Roussel & Lecoutre, 2008). It consists of difficult instances that can be solved within
24 hours by Choco2 (Malapert & Lecoutre, 2014). A first subset called xcsp1 is composed
of 5 unsatisfiable and 5 enumeration instances whereas the second subset called xcsp2 is
composed of 11 unsatisfiable and 3 enumeration instances. The set xcsp1 is composed of
instances easier to solve than those of xcsp2.

Besides, we will consider two classical problems, the n-queens and the Golomb ruler
problems which have been widely used in the literature (Gent & Walsh, 1999).

4.1.2 Implementation Details

We implemented EPS method on top of three solvers: Choco2 2.1.5 written in Java, Gecode
4.2.1 and OR-tools rev. 3163 written in C++. We use two parallelism implementation
technologies: Threads (Mueller et al., 1993; Kleiman, Shah, & Smaalders, 1996) and
MPI (Lester, 1993; Gropp & Lusk, 1993). The typical difference between both is that
threads (of the same process) run in a shared memory space, while MPI is a standardized
and portable message-passing system to exchange information between processes running
in separate memory spaces. Therefore, Thread technology does not handle multiple nodes
of a cluster whereas MPI does.

In C++, we use Threads implemented by pthreads, a POSIX library (Mueller et al.,
1993; Kleiman et al., 1996) used by Unix systems. In Java, we use the standard Java Thread
technology (Hyde, 1999).

There are many implementations for MPI like OpenMPI (Gabriel, Fagg, Bosilca, Angskun,
Dongarra, Squyres, Sahay, Kambadur, Barrett, Lumsdaine, et al., 2004), Intel MPI (Intel
Corporation, 2015), MPI-CH (MPI-CH Team, 2015) and MS-MPI (Krishna, Balaji, Lusk,
Thakur, & Tiller, 2010; Lantz, 2008). MPI is a standard API, so the characteristics of the
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machine are never taken into account. So, the machine providers like Bull, IBM or Intel
provide their own MPI implementation according to the specifications of the delivered ma-
chine. Thus, the cluster provided by Bull has a custom Intel MPI 4.0 library, but OpenMPI
1.6.4 is also installed, and Microsoft Azure only supports its own MS-MPI 7 library.

OR-tools uses a sequential top-down decomposition and C++ Threads. Gecode uses a
parallel top-down decomposition and C++ Threads or MPI technologies. In fact, Gecode
will use C++ pthread on the multi-core computer, OpenMPI on the data center, and
MS-MPI on the cloud platform. Gecode and OR-tools both use the lex variable selection
heuristic because the top-down decomposition requires a fixed variable ordering. Choco2
uses a bottom-up decomposition and Java Threads. In every case, the foreman schedules
the jobs in FIFO to mimic as much as possible the sequential algorithm so that speedups
are relevant. When needed, the master and the workers read the model from the same file.
We always take the value selection heuristic which selects the smallest value whatever be
the variable selection heuristic.

4.1.3 Execution Environments

We use three execution environments that are representative of computing platforms avail-
able nowadays.
Multi-core is a Dell computer with 256 GB of RAM and 4 Intel E7-4870 2.40 GHz pro-
cessors running on Scientific Linux 6.0 (each processor has 10 cores).
Data Center is the “Centre de Calcul Interactif” hosted by the “Université Nice Sophia
Antipolis” which provides a cluster composed of 72 nodes (1152 cores) running on CentOS
6.3, each node with 64 GB of RAM and 2 Intel E5-2670 2.60 GHz processors (8 cores). The
cluster is managed by OAR (Capit, Da Costa, Georgiou, Huard, Martin, Mounie, Neyron,
& Richard, 2005), i.e., a versatile resource and task manager. As Thread technology is
limited to a single node of a cluster, Choco2 can use up to 16 physical cores whereas Gecode
can use any number of nodes thanks to MPI.
Cloud Computing is a cloud platform managed by the Microsoft company (Microsoft
Azure) that enables to deploy applications on Windows Server technology (Li, 2009). Each
node has 56 GB of RAM and Intel Xeon E5-2690E 2.6 GHz processors (8 physical cores)
We were allowed to simultaneously use 3 nodes (24 cores) managed by the Microsoft HPC
Cluster 2012 (Microsoft Corporation, 2015).

Some computing infrastructures provide hyper-threading technologies. Hyper-threading
improves parallelization of computations (doing multiple tasks at once). For each core
that is physically present, the operating system addresses two logical cores, and shares the
workload among them when possible. The multi-core computer provides hyper-threading,
whereas it is deactivated on the cluster, and not available on the cloud.

4.1.4 Setting up the Parameters

The time limit for solving each instance is set to 12 hours whatever be the solver. If the
number of workers is strictly less than the number of cores (w < c), then there will always
be unused cores. Usually, one chooses w = c, so that all workers can work simultaneously.
On the multi-core computer, we use two workers per physical core (w = 2c) because hyper-
threading is efficient as experimentally demonstrated in Appendix A. The target number
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p? of subproblems depends linearly on the number w of workers (p? = 30× w) that allows
statistical balance of the workload without increasing too much the total overhead (Régin
et al., 2013).

In our experiments, the network and RAM memory loads are low in regards to the
capacities of the computing infrastructures. Indeed, the total number of messages depends
linearly of the number of workers and the number of subproblems. RAM is pre-allocated
if the computing infrastructure allows it. Last, workers almost produce no input/output or
disk access.

4.1.5 Metrics and Notations

Let t be the solving time (in seconds) of an algorithm and let su be the speedup of a parallel
algorithm. In the tables, a row gives the results obtained by different algorithms for a given
instance. For each row, the best solving times and speedups are indicated in bold. Dashes
indicate that the instance is not solved by the algorithm. Question marks indicate that
the speedup cannot be computed because the sequential solver does not solve the instance
within the time limit. Arithmetic means, abbreviated AM, are computed for solving times,
whereas geometrical means, abbreviated GM, are computed for speedups and efficiency.
Missing values, i.e. dashes and question marks, are ignored when computing statistics.

We also use a scoring procedure based on the Borda count voting system (Brams &
Fishburn, 2002). Each benchmark instance is treated like a voter who ranks the solvers.
Each solver scores points related to the number of solvers that it beats. More precisely, a
solver s scores points on problem P by comparing its performance with each other solver s′
as follows:
• if s gives a better answer than s′, it scores 1 point;
• else if s did not answer or gives a worse answer than s′, it scores 0 point;
• else scoring is based on execution time comparison (s and s′ give indistinguishable

answers).
Let t and t′ respectively denote the wall-clock times of solvers s and s′ for a given problem’s
instance. In case of indistinguishable answers, s scores f(t, t′) according to the Borda system
used in the Minizinc challenge. But, the function f does not capture user’s preferences very
well. Indeed, if the solver s solves n problems in 0.1 seconds and n others in 1000 seconds
whereas the solver s′ solves the first n problems in 0.2 seconds and the n others in 500
seconds, then both solvers obtain the same score n whereas most users would certainly
prefer s′. So, we use another scoring function g(t, t′) in which g(t) can be interpreted as
the utility function for solving the problem’s instance within t seconds. The function g(t) is
strictly decreasing from 0.5 toward 0. The remaining points are shared using the function f .

f(t, t′) = t′

t+ t′
g(t, t′) = g(t)+(1−g(t)−g(t′))×f(t, t′) g(t) = 1

2× (loga(t+ 1) + 1)

Using the function g (a = 10) in the previous example, solvers s and s′ are respectively
scored 0.81× n and 1.19× n points.
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4.2 Analysis of the Decomposition

In this section, we compare the quality and performance of the top-down and bottom-up
decomposition procedures introduced in Section 3.3.

4.2.1 Decomposition Quality

The top-down decomposition always returns the target number p? = 30×w of subproblems
whereas it is not guaranteed with the bottom-up decomposition. Figure 4(a) is a boxplot
of the number of subproblems per worker (p / w) with the bottom-up decomposition of
Choco2 depending on the number of workers. Boxplots display differences among popula-
tions without making any assumptions of the underlying statistical distribution: they are
non-parametric. The box in the boxplot spans the range of values from the first quartile
to the third quartile. The whiskers extend from each end of the box for a range equal to
1.5 times the interquartile range. Any points that lie outside the range of the whiskers are
considered outliers: they are drawn as individual circles.

For each number of workers w ∈ {16, 80, 512}, the decompositions of xcsp instances
using one variable selection heuristic among lex, dom, dom/ddeg,dom/wdeg, dom/bwdeg,
and impact, combined with minVal, are considered. The bottom-up decomposition obtains
satisfying average performance (mostly between 10 and 100 subproblems per worker) while
respecting as much as possible the branching strategy. However, a few anomalies occur.
First, the decomposition is sensitive to the shape of the search tree. Sometimes, the model
only contains a few variables with large domains which forbid an accurate decomposition.
For instance, the first and second levels of the knights-80-5 search tree respectively contain
more than 6000 and 50000 nodes. There can also be a significant underestimation of the
tree size, especially if the branching has high arity. For instance, the width of the second
level of fapp07-0600-7 is estimated around 950 nodes while it contains more than 6000
nodes. On the contrary, an underestimation can occur if top nodes are eliminated from a
search tree with a low arity. Apart for a few underestimation, the decomposition is accurate
for search trees with low arity.

The top-down decomposition is accurate, but requires a fixed variable ordering, whereas
the bottom-up decomposition is less accurate, but handles any branching strategy.
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Figure 4: Analysis of the decomposition procedures (w = 16, 80, 512).
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4.2.2 Decomposition Time

Figure 4(b) gives the percentage of decompositions done within a given time. The Choco2
times are reported for all variable selection heuristics on xcsp instances. The Gecode times
are reported for lex on xcsp and fzn instances.

Because of the implementation differences, times reported for Choco2 and Gecode are
slightly different. Indeed, the decomposition time alone is given for Gecode. The Choco2
times take also into account the estimation time, the time taken by the foreman to fill
the queue of subproblems, and the time taken by workers to empty the queue. Let us
also remind that subproblems only become available after the top-down decomposition is
complete whereas they become available on the fly during the bottom-up decomposition.
In both cases, the reported time is a lower bound on the solving time.

The top-down decomposition is faster than the bottom-up decomposition because of its
parallelism. In fact, the Gecode decomposition is often faster than the estimation time alone.
One compelling example is the instance knights-80-5 which has the highest time (around
800 seconds) as well as a poor quality because the structure of the problem is unsuited
for the bottom-up decomposition: there are only a few variables with large domains (more
than 6000 values); there is almost no domain reduction in the top of the tree; and the
propagation is very long.

To conclude, the parallel top-down decomposition of Gecode is fast and accurate while
the bottom-up decomposition offers greater flexibility, but less robustness.

4.2.3 Influence of the Search Strategy

To analyze the influence of search strategies on the decomposition and the resolution, we
apply a variable selection heuristic during the decomposition (master) and another one
during the resolution (workers). Table 1 gives the solving times for the combinations of lex
or dom when solving the instances xcsp1. Results are not reported if there is no significant
differences among solving times. The choice of the variable selection heuristic is more critical
for the decomposition than for the resolution. Indeed, initial choices made by the branching
are both the least informed and the most important, as they lead to the largest subtrees and
the search can hardly recover from early mistakes. From now on, the master and workers
will use the same variable selection heuristic.

Instances Worker lex dom

Master lex dom lex dom

costasArray-14 191.2 240.9 191.4 240.0
latinSquare-dg-8 all 479.4 323.8 470.6 328.1
lemma-100-9-mod 109.7 125.9 101.8 123.4
pigeons-14 1003.8 956.3 953.2 899.1
quasigroup5-10 182.2 125.3 188.5 123.5
queenAttacking-6 872.4 598.3 867.8 622.5
squares-9-9 126.8 1206.5 127.8 1213.0

Table 1: Solving times with different search strategies (Choco2, multi-core, w = 2c = 80).
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4.3 Multi-core

In this section, we use parallel solvers based on Thread technologies to solve the instances
of xcsp1 or the n-queens problem using a multi-core computer. Let us recall that there is
two worker per physical core because hyper-threading is activated (w = 2c = 80). We show
that EPS frequently gives linear speedups, and outperforms the work stealing approach
proposed by Schulte (2000), and Nielsen (2006).

4.3.1 Performance Analysis

Table 2 gives the solving times and speedups of the parallel solvers using 80 workers for the
xcsp1 instances. Choco2 is tested with lex and dom whereas Gecode and OR-tools only
use lex. They are also compared to a work stealing approach denoted Gecode-WS (Schulte,
2000; Nielsen, 2006). First, implementations of EPS are faster and more efficient than the
work stealing. EPS often reaches linear speedups in the number of cores whereas it never
happens for the work stealing. Even worse, three instances are not solved within the 12
hours time limit using the work stealing whereas they are using the sequential solver.

For Choco2, dom is more efficient in parallel than lex but remains slightly slower in
average. Decomposition is a key of the bad performance on the instances knights-80-5 and
lemma-100-9-mod. As outlined before, the decomposition of knights-80-5 takes more than
1100 seconds and generates too much subproblems, which forbids any speedup. The issue
is lessened using the sequential decomposition of OR-tools and is resolved by the parallel
top-down decomposition of Gecode. Note also that the sequential solving times of OR-tools
and Gecode respectively are 20 and 40 times higher. Similarly, the long decomposition time
of Choco2 for lemma-100-9-mod leads to a low speedup. However, the moderate efficiency
of Choco2 and Gecode for squares-9-9 is not caused by the decomposition.

Gecode and OR-tools are often more efficient and faster than Choco2. The solvers show
different behaviors even when using the same variable selection heuristic because their

Instances Choco2-lex Choco2-dom Gecode OR-tools Gecode-WS

t su t su t su t su t su

costasArray-14 191.2 31.4 240.0 38.8 62.3 19.1 50.9 33.4 594.0 2.0
knights-80-5 1138.3 1.2 1133.1 1.5 548.7 37.6 2173.9 18.5 – –
latinSquare-dg-8 all 479.4 39.0 328.1 39.2 251.7 42.0 166.6 35.2 4488.5 2.4
lemma-100-9-mod 109.7 4.0 123.4 4.1 6.7 10.1 1.8 22.9 3.0 22.3
ortholatin-5 248.7 30.0 249.9 36.0 421.7 13.5 167.7 38.1 2044.6 2.8
pigeons-14 1003.8 13.8 899.1 15.5 211.8 39.1 730.3 18.5 – –
quasigroup5-10 182.2 30.7 123.5 32.5 18.6 26.4 17.0 36.9 22.8 21.5
queenAttacking-6 872.4 23.4 622.5 28.5 15899.1 ? – – – –
series-14 39.3 29.9 39.3 32.9 11.3 34.2 16.2 28.7 552.3 0.7
squares-9-9 126.8 19.0 1213.0 16.1 17.9 18.4 81.4 35.0 427.8 0.8

AM (t) or GM (su) 439.2 15.9 497.2 17.4 1745.0 24.0 378.4 28.7 1161.9 3.3

Borda score (rank) 20.6 (3) 19.7 (4) 26.1 (1) 22.8 (2) 9.8 (5)

Table 2: Solving times and speedups (multi-core, w = 2c = 80). Gecode and OR-tools use
the lex heuristic.
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propagation mechanisms and decompositions differ. Furthermore, the parallel top-down
decomposition of Gecode does not preserve the ordering of the subproblems in regard to
the sequential algorithm.

4.3.2 Variations About the N-Queens Problem

Here, we verify the effectiveness of EPS in classic CSP settings. We consider four models for
the well-known n-queens problem (n = 17). The n-queens puzzle is the problem of placing
n chess queens on an n×n chessboard so that no two queens threaten each other. Here, we
enumerate all solutions and the heuristics lex or dom are reasonable choices. The models are:
allDifferent global constraints which enforce arc-consistency (AC); allDifferent con-
straints which enforce bound-consistency (BC); arithmetic inequalities constraints (NEQ);
and a dedicated global constraint (JC) (Milano & Trick, 2004, ch. 3).

Table 3 gives the solving times and speedups of Choco2 with 80 workers when the
decomposition depth is either 3 or 4. What is striking for this result is that our splitting
technique gives excellent results, with a linear speedup for up to 40 processors with the
exception of the JC model. It is unfortunate since the JC model is clearly the best model
for the sequential solver. Here, dom is always a better choice than lex. The number of
subproblems for dom is the same whatever the model whereas the total number of nodes
changes. It indicates that the filtering is weak at the top of the search tree.

Most other works report good results, and often linear speedups for the n-queens prob-
lem. Bordeaux et al. (2009) reported linear speedups up to 30 cores for the 17 queens, but
no more improvement until 64 cores, whereas Machado et al. (2013) scales up to 512 work-
ers using their hierarchical work stealing approach. Menouer and Le Cun (2014) reported
speedups around 8 using 12 cores for the 16 queens, and Pedro, Abreu, Pedro, and Abreu
(2010) reported speedups around 20 using 24 cores. Zoeteweij and Arbab (2004) reported
linear speedups up to 16 cores for the 15 queens, Pedro et al. (2010) reported a speedup
of 20 using 24 cores, So, the EPS efficiency is slightly above the average, because similar
results are observed with 15 and 16 queens.

The previous experimental setting is in favor of EPS because we are exploring a search
space exhaustively, and the problem is highly symmetric. Indeed, the variance of the sub-
problem’s solving time is low, especially with higher levels of consistency. Note that the
lower speedups of the JC model are probably not caused by load balancing issues because
the subproblems of the NEQ model have a greater mean and variance.

Model lex dom

d = 3 d = 4 d = 3 d = 4

t su t su t su t su

BC 838.8 38.3 835.1 38.5 640.4 38.7 635.5 39.0
AC 3070.2 38.8 3038.9 39.3 2336.2 38.8 2314.7 39.2
NEQ 280.7 31.8 241.9 36.9 188.8 36.4 181.1 37.9
JC 202.4 20.4 196.9 21.0 140.6 24.2 148.8 22.9

Table 3: Variations about the 17 queens problem (Choco2, multi-core, w = 2c = 80).
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Instances lex dom dom/ddeg dom/bwdeg dom/wdeg impact

t su t su t su t su t su t su

cc-15-15-2 1947.1 5.2 25701.7 ? – – 1524.9 4.6 2192.1 2.1 31596.1 ?
costasArray-14 500.4 12.4 641.9 12.1 895.3 8.6 4445.0 2.4 649.9 11.4 652.2 10.5
crossword-m11 506.1 4.4 – – – – 492.0 1.9 204.6 5.1 179.5 2.9
crossword-m1c2 2376.9 0.6 1173.9 0.6 1316.2 0.5 1471.3 0.7 1611.9 0.6 4689.6 1.9
fapp07-0600-7 – – – – – – 1069.5 2.1 2295.7 1.8 – –
knights-20-9 359.3 17.2 353.9 17.3 357.4 14.9 5337.5 1.3 491.3 17.5 215.4 16.5
knights-25-9 855.3 17.8 840.6 18.0 986.1 13.3 13264.8 1.3 1645.2 14.1 550.8 16.9
knights-80-5 708.5 2.0 726.9 2.0 716.4 2.1 1829.5 0.9 1395.6 3.4 896.3 2.5
langford-3-17 38462.7 ? 708.3 12.5 5701.6 2.5 6397.5 1.9 3062.2 3.7 5995.6 ?
langford-4-18 40465.2 ? 148.2 14.4 1541.9 2.2 1307.1 2.1 538.3 4.8 1041.5 10.0
langford-4-19 – – 747.2 16.9 – 0.0 7280.1 2.3 2735.3 5.6 4778.9 ?
latinSquare-dg3 1161.7 14.3 903.2 12.2 812.0 14.4 416.9 4.2 294.8 11.3 28.7 5.0
lemma-100-9-mod 110.5 4.1 117.6 3.7 180.4 3.7 154.4 3.5 145.3 3.5 226.8 2.5
ortholatin-5 572.6 13.5 558.9 13.5 475.5 11.5 453.1 11.6 362.4 13.7 641.7 10.6
pigeons-14 1330.1 9.8 1492.6 8.3 1471.6 11.8 6331.1 2.6 2993.3 5.1 3637.2 4.2
quasigroup5-10 397.2 12.6 277.3 12.9 1156.6 3.6 733.5 5.2 451.5 7.9 308.4 27.8
queenAttacking-6 2596.7 7.3 1411.8 10.6 4789.7 4.2 2891.0 1.9 706.4 5.4 427.1 6.2
queensKnights4 – – – – – – 1517.8 0.2 5209.5 1.0 – –
ruler-70-12-a3 137.4 16.8 2410.6 17.5 – – 51.5 2.4 42.8 6.7 24.8 12.1
ruler-70-12-a4 6832.0 3.9 4021.1 4.7 7549.2 2.2 1412.0 0.9 1331.3 2.3 102.9 24.4
scen11-f5 – – – – – – 38698.7 0.0 – 0.0 – –
series-14 77.8 14.8 89.1 12.4 9828.6 3.4 1232.2 2.6 338.9 9.9 346.5 8.5
squares-9-9 220.7 10.5 1987.4 7.2 129.7 9.4 697.2 2.2 115.9 11.0 138.9 10.8
squaresUnsat5 – – – – – – 3766.1 1.2 3039.8 2.9 – –

AM (t) or GM (su) 5243.1 7.5 2332.2 8.6 2369.3 4.8 4282.3 1.6 1385.0 4.9 2823.9 7.7

Borda score (rank) 65.1 (6) 72.8 (5) 49.6 (8) 91.2 (2) 100.3 (1) 81.4 (3)
1crossword-m1-words-05-06 2crossword-m1c-words-vg7-7 ext 3latinSquare-dg-8 all
4queensKnights-20-5-mul 5squaresUnsat-19-19

Table 4: Detailed speedups and solving times depending on the variable selection heuristics
(Choco2, data center, w = 16).
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Figure 5: Speedups of the variable selection heuristics (Choco2, data center, w = 16).
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4.4 Data Center

In this section, we study the influence of the search strategy on the solving times and
speedups, the scalability up to 512 workers, and compare EPS to a work stealing approach.

4.4.1 Influence of the Search Strategy

We study the performance of Choco2 using 16 workers for solving the xcsp instances using
the variable selection heuristics presented in Section 2.1. Figure 5 is a boxplot of the
speedups for each variable selection heuristic. First, speedups are lower for dom/bwdeg
because the decomposition is not effective. The binary branching states the constraint x = a
in the left branch and x 6= a in the right branch. So, the workload between the left and right
branches is imbalanced. In this case, only the positive decisions in the left branches should
be taken into account. Second, without learning (lex and dom), the parallel algorithm
is more efficient and robust in terms of speedup. With learning (dom/bwdeg, dom/wdeg,
impact), the parallel algorithm may explore a different search tree than the sequential
one. Indeed, the master only explores the top of the tree which changes the learning, and
possibly the branching decisions. The worker also learns only from their subproblems, and
not from the whole search tree. This frequently causes exploration overhead as for solving
queensKnights-20-5-mul (twelve times more nodes using dom/wdeg) or, sometimes gives a
super-linear speedup as for solving quasigroup5-10 (three times less nodes using impact).
Last, low speedups occur for all variable selection heuristics.

Table 4 gives solving times and speedups obtained for the different variable selection
heuristics. Borda scores are computed for Choco2 (Table 4) and Gecode (Table 5). First,
no variable selection heuristics strictly dominates the others either in sequential or parallel.
However, dom/wdeg is the most robust as outlined by the Borda scores. In fact, the vari-
ability of the solving times between the different heuristics is reduced by the parallelization,
but remains important. Second, in spite of low speedups, dom/bwdeg remains the second
best variable selection heuristic for parallel solving because it was the best one in sequential.
In average, using advanced variable selection heuristics such as dom/bwdeg, dom/wdeg, or
impact gives lower solving times than lex or dom in spite of lower speedups. It highlights the
fact that decomposition procedures should handle any branching strategy. In Section 4.6.1,
we will investigate the very low speedups for the instance crossword-m1c-words-vg7-7
that are not caused by the variable selection heuristics.

4.4.2 Scalability up to 512 Workers

Table 5 compares the Gecode implementations of EPS and work stealing (WS) for solving
xcsp instances using 16 or 512 workers. EPS is faster and more efficient than the work
stealing. With 16 workers, the work stealing is ranked last using the Borda score. With
512 workers, EPS is in average almost 10 times faster than the work stealing. It is also
more efficient because they both parallelize the same sequential solver. On the multi-core
machine, Gecode was faster than Choco2 on most instances of xcsp1. Here, the performance
of Gecode are more mitigated as outlined by the Borda scores. Five instances that are not
solved within the time limit by Gecode are not reported in Table 5. Six instances are
not solved with 16 workers whereas twelve instances were not solved with the sequential
solver. By way of comparison, only five instances are not solved by Choco2 using the lex
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Instances w = 16 w = 512
EPS WS EPS WS

t su t su t su t su

cc-15-15-2 – – – – – – – –
costasArray-14 64.4 13.6 69.3 12.7 3.6 243.8 17.7 49.8
crossword-m1c1 240.6 13.1 482.1 6.6 18.7 168.6 83.1 38.0
crossword-m12 171.7 14.5 178.5 13.9 13.3 187.3 57.8 43.0
knights-20-9 5190.7 ? 38347.4 ? 153.4 ? 3312.4 ?
knights-25-9 7462.3 ? – – 214.9 ? – –
knights-80-5 1413.7 11.5 8329.2 2.0 49.3 329.8 282.6 57.5
langford-3-17 24351.5 ? 21252.3 ? 713.5 ? 7443.5 ?
langford-4-18 3203.2 ? 25721.2 ? 94.6 ? 5643.1 ?
langford-4-19 26871.2 ? – – 782.5 ? – –
latinSquare-dg-8 all 613.5 13.1 621.2 13.0 23.6 341.7 124.4 64.7
lemma-100-9-mod 3.4 14.7 5.8 8.6 1.0 51.4 2.5 19.7
ortholatin-5 309.5 14.1 335.8 13.0 10.4 422.0 71.7 61.0
pigeons-14 383.3 14.5 6128.9 0.9 15.3 363.1 2320.2 2.4
quasigroup5-10 27.1 13.5 33.7 10.8 1.7 211.7 9.8 37.3
queenAttacking-6 42514.8 ? 37446.1 ? 1283.9 ? 9151.5 ?
ruler-70-12-a3 96.6 15.1 105.5 13.8 3.7 389.3 67.7 21.5
ruler-70-12-a4 178.9 14.4 185.2 13.9 6.0 429.5 34.1 75.5
series-14 22.5 13.4 56.9 5.3 1.1 264.0 8.2 36.9
squares-9-9 22.8 11.1 44.3 5.7 1.3 191.7 7.6 33.7

AM (t) or GM (su) 5954.8 13.5 8196.7 7.4 178.53 246.2 1684.6 33.5

Borda score (rank) 76.9 (4) 60.3 (7)
1crossword-m1-words-05-06 2crossword-m1c-words-vg7-7 ext

Table 5: Speedups and solving times for xcsp (Gecode, lex, data center, w = 16 or 512).

heuristics whereas all instances are solved in sequential or parallel when using dom/wdeg or
dom/bwdeg. Once again, it highlights the importance of the search strategy.

Figure 6 is a boxplot of the speedups with different numbers of workers for solving fzn
instances. The median of speedups are around w

2 in average and their dispersion remains
low.
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Figure 6: Scalability up to 512 workers (Gecode, lex, data center).
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Instance EPS WS

t su t su

market split s5-02 467.1 24.3 658.6 17.3
market split s5-06 452.7 24.4 650.7 17.0
market split u5-09 468.1 24.4 609.2 18.7
pop stress 0600 874.8 10.8 2195.7 4.3
nmseq 400 342.4 8.5 943.2 3.1
pop stress 0500 433.2 10.1 811.0 5.4
fillomino 18 160.2 13.9 184.6 12.1
steiner-triples 09 108.8 17.2 242.4 7.7
nmseq 300 114.5 6.6 313.1 2.4

golombruler 13 154.0 20.6 210.4 15.1
cc base mzn rnd test.11 1143.6 7.3 2261.3 3.7
ghoulomb 3-7-20 618.2 6.8 3366.0 1.2
still life free 8x8 931.2 9.6 1199.4 7.5
bacp-6 400.8 16.4 831.0 7.9
depot placement st70 6 433.9 18.3 1172.5 6.8
open stacks 01 wbp 20 20 1 302.7 17.6 374.1 14.3
bacp-27 260.2 16.4 548.4 7.8
still life still life 9 189.0 16.9 196.8 16.2
talent scheduling alt film117 22.7 74.0 110.5 15.2

AM (t) or GM (su) 414.7 15.1 888.4 7.7

Table 6: Solving times and speedups for fzn (Gecode, lex, cloud, w = 24).

4.5 Cloud Computing

EPS can be deployed on the Microsoft Azure cloud platform. The available computing
infrastructure is organized as follows: cluster nodes computes the application; one head
node manages the cluster nodes; and proxy nodes load-balances communication between
cluster nodes. On the contrary to a data center, cluster nodes may be far from each other
and communication time may take longer. Proxy nodes requires 2 cores and are managed
by the service provider. Here, 3 nodes of 8 cores with 56 GB of RAM memory provide 24
workers (cluster nodes) managed by MPI.

Table 6 compares the Gecode implementations of EPS and work stealing for solving the
fzn instances with 24 workers. Briefly, EPS is always faster than the work stealing, and
therefore, more efficient because they both parallelize the same sequential solver. The work
stealing suffers from a higher communication overhead in the cloud than in a data center.
Furthermore, the architecture of the computing infrastructure and the location of cluster
nodes are mostly unknown which forbid improvements of the work stealing such as those
proposed by Machado et al. (2013), or by Xie and Davenport (2010).

4.6 Embarrassingly Distributed Search

In this section, we transform with reasonable effort a parallel solver (EPS) into a distributed
parallel solver (EDPS) by using the batch scheduler OAR (Capit et al., 2005) provided by
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the data center. In fact, the batch scheduler OAR plays the foreman. The parallel Choco2
solver is modified so that the workers write the subproblems into files instead of solving
them. Then, a script submits the jobs/subproblems to the OAR batch scheduler, waits
for their termination, and gathers the results. OAR schedules jobs on the cluster using
priority FIFO with backfilling and fair-share based priorities. Backfilling allows to start
lower priority jobs without delaying highest priority jobs whereas fair-share means that no
user/application is preferred in any way. The main drawback is that a new worker must
be created for each subproblem. Each worker process is allocated by OAR with predefined
resources. A worker is either a sequential (EDS) or a parallel solver (EDPS).

This approach offers a practical advantage for resource reservation in a data center.
Indeed, when asking for an MPI process, one has to wait until enough resources are available
before the process starts. Here, resources (cores or nodes) are nibbled as soon as they
become available which can drastically reduce the waiting time. Furthermore, it bypasses
limitations of the Threads Technology by allowing to use multiple nodes of the data center.
However, it clearly increases the recomputation overhead because, a worker solves a single
subproblem instead of multiple subproblems. So, the model creation and initial propagation
are realized more often. It also introduces a non-negligible submission overhead which is
the time taken to create and submit all jobs to the OAR batch scheduler.

4.6.1 Anomaly in crossword-m1c-words-vg7-7 ext

We investigate the very low speedups for solving the instance crossword-m1c-words-vg7-7
with any variable selection heuristic (see Table 4). We compare the results of the parallel
(EPS, w = 16) and distributed (EDS with sequential worker) algorithms for different de-
composition depths (d = 1, 2, 3). Table 7 gives the solving times, speedups, and efficiencies.
The number of distinct cores used by the distributed algorithm is a bad estimator for com-
puting efficiencies, because some of them are used only for a short period of time. Therefore,
the number c of cores used to compute the efficiency of EDS or EDPS is estimated as the
ratio of the total runtime over the wall-clock time.

First, the parallel algorithm is always slower than the sequential one. However, the
speedups of the distributed algorithms are significant even if they decrease quickly as the
decomposition depth increases. The fall of the efficiency shows that EDS is not scalable
with sequential workers. Indeed, the recomputation, and especially the submission overhead
become too important when the number of subproblems increases.

Second, the bad performance of the parallel algorithms are not caused by a statistically
imbalanced decomposition because we would observe similar performance for the distributed
algorithm. Profiling the parallel algorithm on this particular instances suggests that the bad

EDS EPS (w = 16)

d p t su eff t su eff

2 186 73.0 10.2 0.435 1069.9 0.7 0.044
3 827 229.0 3.3 0.128 1074.2 0.7 0.044
4 2935 797.0 1.1 0.039 1091.8 0.7 0.044

Table 7: EDS and EPS for the crossword instance (Choco2, dom, data center).
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performance comes from the underlying solver itself. Indeed, the number of instructions is
similar for the sequential and parallel algorithms whereas the numbers of context switches,
cache references and cache misses increase considerably. In fact, the parallel algorithms
spent more than half of its time in some internal methods of extensional constraints, i.e. the
relation of the constraint is specified by listing its satisfying tuples. This issue occurred on all
computing infrastructure and for different Java virtual machines. Note that other instances
use extensional constraints, but they impose fewer consequences. This issue would not
happen with an MPI implementation because there is no shared memory. So, it advocates
for implementations of EPS based on MPI rather than on the Thread Technology.

4.6.2 Variations About the Golomb Ruler Problem

A Golomb ruler is a set of marks at integer positions along an imaginary ruler such that no
two pairs of marks are the same distance apart. The number of marks on the ruler is its
order, and the largest distance between two of its marks is its length. Here, we enumerate
the optimal rulers (minimal length for the specific number of marks) with a simple constraint
model inspired from the one by Galinier, Jaumard, Morales, and Pesant (2001) for which the
heuristics lex or dom are a reasonable choice. Table 8 gives the solving times, speedups, and
efficiencies for the parallel algorithm (w = 16), the distributed algorithm with sequential
workers (w = 1), and the distributed algorithms with parallel workers (w = 16 and the
worker decomposition depth is dw = 2) with different master decomposition depths d.

First, EPS obtains almost linear speedup if the decomposition depth is large enough.
Without surprise, speedups are lower if there are not enough subproblems. Second, the
distributed algorithm EDS with sequential workers is efficient only if the number of sub-
problems remains low. Otherwise, it can still give some speedups (dom), but wastes the
resources since the efficiency is very low. In fact, submitting too many jobs to the batch
scheduler (lex) lead to a high submission overhead (around 13 minutes) and globally de-
grades the performance. Finally, the distributed algorithms with parallel workers offer a
good trade-off between speedups and efficiencies because it allows to use many resources
while only submitting a few jobs thus reducing the submission and recomputation over-
heads. Note that EDS with d = 1 is not tested because it is roughly equivalent to EPS with
16 workers, and EDPS with d = 3 is not tested because the submission overhead becomes
too important.

EDS EDPS (w = 16, dw = 2) EPS (w = 16)

d p t su eff t su eff t su eff

1 20 – – – 572.0 89.7 0.968 11141.7 4.6 0.288
lex 2 575 769.0 66.8 0.846 497.0 103.3 0.232 4084.2 12.6 0.786

3 14223 17880.0 2.9 0.005 – – – 3502.6 14.7 0.916

1 20 – – – 1538.0 78,6 0,935 28299,9 4,3 0,267
dom 2 222 2394.0 50,5 0,989 366.0 330,2 0,742 9703,6 12,4 0,778

3 5333 3018.0 40,0 0,146 – – – 8266,6 14,6 0,914

Table 8: EDS and EPS for Golomb Ruler with 14 marks (Choco2, data center).
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Most other parallel approaches reported good performance for the Golomb ruler prob-
lem. For instance, Michel et al. (2009), and Chu et al. (2009) respectively reported linear
speedups for 4 and 8 workers. EDS is more efficient than the work stealing proposed
by Menouer and Le Cun (2014) using 48 workers for the ruler with 13 marks and as efficient
as the selfsplit by Fischetti et al. (2014) using 64 workers for the ruler with 14 marks.

Last, we enumerated optimal Golomb Rulers with 15 and 16 marks using EDPS. The
Master and workers use the lex heuristic. The master decomposition depth d is equal to
2 that generates around 800 hundreds subproblems. There are 16 parallel workers with a
decomposition depth dw equal to 2. With this settings, we used more than 700 cores of the
data center during the solving process. So, it bypasses the limitations on the number of
cores used by MPI imposed by the administrator. Furthermore, the solving process starts
immediately because cores are grabbed as soon as they become available whereas a MPI
process waits that enough cores becomes simultaneously available. Enumerating optimal
rulers with 15 and 16 marks respectively took 1422 and 5246 seconds. To our knowledge,
this is the first time where a constraint solver finds these rulers, and furthermore in a reason-
able amount of time. However, these optimal rulers have been discovered via an exhaustive
computer search (Shearer, 1990). More recently, Distributed Computing Technologies Inc
(20) found optimum rulers up to 26 marks. Beside, plane construction (Atkinson & Has-
senklover, 1984) allows to find larger optimal rulers.

4.7 Comparison With Portfolios

Portfolio approaches exploit the variability of performance that is observed between several
solvers, or several parameter settings for the same solver. We use 4 portfolios. The portfolio
CPHydra (O’Mahony et al., 2008) uses features selection on the top of the solvers Mistral,
Gecode, and Choco2. CPHydra uses case-based reasoning to determine how to solve an
unseen problem instance by exploiting a case base of problem solving experience. It aims
to find a feasible solution within 30 minutes, it does not handle optimization or all solu-
tion problems and the time limit is hard-coded. The other static and fixed-size portfolios
(Choco2, CAG, OR-tools) use different variable selection heuristics (see Section 2.1) as well
as randomization and restarts. Details about Choco2 and CAG can be found in (Malapert &
Lecoutre, 2014). The CAG portfolio extends the Choco2 portfolio by also using the solvers
AbsCon and Gecode. So, CAG always produces better results than Choco2. The OR-tools
portfolio was the gold medal of the Minizinc challenge 2013 and 2014. It can seem unfair
to compare parallel solvers and portfolios using different numbers of workers, but designing
scalable portfolio (up to 512 workers) is a difficult task and almost no implementation is
publicly available.

Table 9 gives the solving times of EPS and portfolios for solving the xcsp instances on the
data center. First, CPHydra with 16 workers only solves 2 among 16 unsatisfiable instances
(cc-15-15-2 and pigeons-14), but in less than 2 seconds whereas these are difficult for
all other approaches. OR-tools is the second less efficient approach because it solves fewer
problems and often takes longer as confirmed by its low Borda score. The parallel Choco2
using dom/wdeg is better in average than the Choco2 portfolio even if the portfolio solves a
few instances much faster such as scen11-f5 or queensKnights-20-5-mul. In this case, the
diversification provided by the portfolio outperforms the speedups offered by the parallel
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Instances EPS Portfolio

Choco2 Gecode Choco2 CAG OR-tools

w = 16 w = 16 w = 512 w = 14 w = 23 w = 16

cc-15-15-2 2192.1 – – 1102.6 3.5 1070.0
costasArray-14 649.9 64.4 3.6 6180.8 879.4 1368.8
crossword-m1-words-05-06 204.6 240.6 18.7 512.3 512.3 22678.1
crossword-m1c-words-vg7-7 ext 1611.9 171.7 13.3 721.2 721.2 13157.2
fapp07-0600-7 2295.7 – – 37.9 3.2 –
knights-20-9 491.3 5190.7 153.4 3553.9 0.8 –
knights-25-9 1645.2 7462.3 214.9 9324.8 1.1 –
knights-80-5 1395.6 1413.7 49.3 1451.5 301.6 32602.6
langford-3-17 3062.2 24351.5 713.5 8884.7 8884.7 –
langford-4-18 538.3 3203.2 94.6 2126.0 2126.0 –
langford-4-19 2735.3 26871.2 782.5 12640.2 12640.2 –
latinSquare-dg-8 all 294.8 613.5 23.6 65.1 36.4 4599.8
lemma-100-9-mod 145.3 3.4 1.0 435.3 50.1 38.2
ortholatin-5 362.4 309.5 10.4 4881.2 4371.0 4438.7
pigeons-14 2993.3 383.3 15.3 12336.9 5564.5 12279.6
quasigroup5-10 451.5 27.1 1.7 3545.8 364.3 546.0
queenAttacking-6 706.4 42514.8 1283.9 2644.5 2644.5 –
queensKnights-20-5-mul 5209.5 – – 235.3 1.0 –
ruler-70-12-a3 42.8 96.6 3.7 123.5 123.5 8763.1
ruler-70-12-a4 1331.3 178.9 6.0 1250.2 1250.2 –
scen11-f5 – – – 45.3 8.5 –
series-14 338.9 22.5 1.1 1108.3 302.1 416.2
squares-9-9 115.9 22.8 1.3 1223.7 254.3 138.3
squaresUnsat-19-19 3039.8 – – 4621.1 4621.1 –

Arithmetic mean 1385.0 5954.8 178.5 3293.8 1902.7 7853.6

Borda score (rank) 65.0 (3) 52.2 (5) 77.1 (1) 57.0 (4) 72.8 (2) 20.0 (6)

Table 9: Solving times of EPS and portfolio (data center).

B&B algorithm. This is emphasized for the CAG portfolio that solves all instances and
obtains several of the best solving times. The parallel Gecode with 16 workers is often slower
and less robust than the portfolios Choco2 and CAG. However, increasing the number of
workers to 512 clearly makes it the fastest solver, but still less robust because five instances
are not solved within the time limit.

To conclude, Choco2 and CAG portfolios are more robust thanks to the inherent diver-
sification, but the solving times vary more from one instance to another. With 16 workers,
implementations of EPS outperform the CPHydra and OR-tools portfolio, are competitive
with the Choco2 portfolio, and are slightly dominated by the CAG portfolio. In fact, the
good scaling of EPS is a key to beat the portfolios.

5. Conclusion

We have introduced an Embarrassingly Parallel Search (EPS) method for solving constraint
satisfaction problems and constraint optimization problems. This approach has several
advantages. First, it is an efficient method which matches or even outperforms state-of-the-
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art algorithms on a number of problems using various computing infrastructures. Second,
it involves almost no communication or synchronization and mostly relies on the underlying
sequential solver so that the implementation and debugging is made easier. Last, the
simplicity of the method allows to propose many variants adapted to specific applications
or computing infrastructures. Moreover, under certain restrictions, the parallel algorithm
can be deterministic, and even mimic the sequential algorithm which is very important in
practice either in production or for debugging.

There are several interesting perspectives around EPS. First, it can be modified in order
to provide diversification and to learn useful information when solving subproblems. For
instance, it can easily be combined with a portfolio approach in which subproblems can be
solved by several search strategies. Second, thanks to its simplicity, the simplest variants
of EPS could be implemented as meta-searches (Rendl, Guns, Stuckey, & Tack, 2015), and
would offer a convenient way to parallelize applications with a satisfactory efficiency. Last,
another perspective is to predict the solution time of a large combinatorial problem, based
on known solution times of a small set of subproblems based on statistical or machine
learning approaches.
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Appendix A. Efficiency of Hyper-Threading

In this section, we show that hyper-threading technology improves the efficiency of EPS
for solving the instances of xcsp1 on a multi-core computer. Figure 7 is a boxplot of the
speedups provided by the hyper-threading for each parallel solver among Choco2, Gecode,
OR-tools. Here, the speedups indicate how many times a parallel solver using 80 workers
(w = 2c) is faster than one using 40 workers (w = c). The maximum speedup according to
Amdahl’s law is 2.

Choco2 is tested with lex and dom whereas Gecode and OR-tools only use lex. They
are also compared to a work stealing approach proposed by Schulte (2000) and denoted
Gecode-WS. Hyper-threading clearly improves the parallel efficiency of EPS whereas the
performance of the work stealing roughly remains unchanged. It is interesting because
EPS has a very high CPU demand and resources of each physical core are shared by
its two logical cores. Indeed, the performance of hyper-threading are known to be very
application-dependent. With the exception of lemma-100-9-mod and squares-9-9, Choco2
and OR-tools are faster with 80 workers. For lemma-100-9-mod, the Choco2 decomposition
for 80 workers takes longer and generates too many subproblems. The instance is solved
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Figure 7: Speedups provided by hyper-threading (multi-core, w = 40, 80).

easily by OR-tools (less than two seconds) and it becomes difficult to improve its effi-
ciency. For squares-9-9, the decomposition changes according to the number of workers,
but it cannot explain why hyper-threading does not improve EPS. The parallel efficiency of
Gecode is reduced for multiple instances and the interest of hyper-threading is less obvious
than for Choco2 or OR-tools. To conclude, hyper-threading globally improves the efficiency
of EPS while it has a limited interest on the work stealing.

References

Almasi, G. S., & Gottlieb, A. (1989). Highly Parallel Computing. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA.

Amadini, R., Gabbrielli, M., & Mauro, J. (2013). An Empirical Evaluation of Portfolios
Approaches for Solving CSPs In Gomes, C., & Sellmann, M.Eds., Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Vol. 7874 of Lecture Notes in Computer Science, pp. 316–324. Springer
Berlin Heidelberg.

Amdahl, G. (1967). Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities In Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67, pp. 483–485, New York, NY, USA. ACM.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002). Seti@home:
An experiment in public-resource computing Commun. ACM, 45 (11), 56–61.

Atkinson, M. D., & Hassenklover, A. (1984). Sets of Integers with Distinct Differences Tech.
Rep. SCS-TR-63, School of Computer Science, Carlton University, Ottawa Ontario,
Canada.

Bader, D., Hart, W., & Phillips, C. (2005). Parallel Algorithm Design for Branch and
Bound In G, H.Ed., Tutorials on Emerging Methodologies and Applications in Opera-
tions Research, Vol. 76 of International Series in Operations Research & Management
Science, pp. 5–1–5–44. Springer New York.

457
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Een, N., & Sörensson, N. (2005). MiniSat: A SAT solver with conflict-clause minimization
Sat, 5, 1.

Ezzahir, R., Bessière, C., Belaissaoui, M., & Bouyakhf, E. H. (2007). DisChoco: A platform
for distributed constraint programming In DCR’07: Eighth International Workshop
on Distributed Constraint Reasoning - In conjunction with IJCAI’07, pp. 16–21, Hy-
derabad, India.

Fischetti, M., Monaci, M., & Salvagnin, D. (2014). Self-splitting of workload in parallel
computation In Simonis, H.Ed., Integration of AI and OR Techniques in Constraint
Programming: 11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-
23, 2014. Proceedings, pp. 394–404, Cham. Springer International Publishing.

Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J., Sahay, V., Kam-
badur, P., Barrett, B., Lumsdaine, A., et al. (2004). Open MPI: Goals, Concept,
and Design of a next generation MPI implementation In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 97–104. Springer.

Galea, Fran c., & Le Cun, B. (2007). Bob++ : a Framework for Exact Combinatorial
Optimization Methods on Parallel Machines In International Conference High Per-
formance Computing & Simulation 2007 (HPCS’07) and in conjunction with The 21st

European Conference on Modeling and Simulation (ECMS 2007), pp. 779–785.

Galinier, P., Jaumard, B., Morales, R., & Pesant, G. (2001). A Constraint-Based Approach
to the Golomb Ruler Problem In 3rd International Workshop on integration of AI
and OR techniques.

Gendron, B., & Crainic, T. G. (1994). Parallel branch-and-bound algorithms: Survey and
synthesis Operations research, 42 (6), 1042–1066.

Gent, I., & Walsh, T. (1999). CSPLIB: A Benchmark Library for Constraints In Pro-
ceedings of the 5th International Conference on Principles and Practice of Constraint
Programming, CP ’99, pp. 480–481.

Gomes, C., & Selman, B. (1997). Algorithm Portfolio Design: Theory vs. Practice In
Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, pp.
190–197.

459

http://www.distributed.net/
http://www.distributed.net/
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