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Abstract—On the one hand, a strength of FPGAs is their
ability to perform non-standard computations not supported by
classical microprocessors. Many libraries of highly customizable
application-specific IPs have been developed to exploit this
strength.

On the other hand, HLS tools, which allow to program an
FPGA using a dialect of the C language, are gaining traction.
However, the ease of use of the C language becomes a hindrance
when one wants to express non-standard computations. Indeed,
the C language was designed for programming microprocessors
and carries with it many restrictions of the microprocessor
paradigm. This is especially true when computing with floating-
point, whose data-types and evaluation semantics are defined by
the IEEE-754 and C11 standards. If the high-level specification
was a computation on the reals, HLS imposes a very restricted
implementation space.

This work attempts to bridge FPGA application-specific effi-
ciency and HLS ease of use. This is illustrated on the ubiquitous
floating-point summation-reduction pattern. A source-to-source
compiler rewrites, inside critical loop nests of the input C
code, selected floating-point additions into sequences of simpler
operators using non-standard arithmetic formats.

Evaluation of this method demonstrates that the benefits of
application-specific operators (better performance and better
accuracy) can be brought to HLS workflows while keeping their
ease of use.

I. INTRODUCTION

Many case studies have demonstrated the potential of Field-
Programmable Gate Arrays (FPGAs) as accelerators for a wide
range of applications, from scientific or financial computing
to signal processing and cryptography. FPGAs offer massive
parallelism and programmability at the bit level. This enables
programmers to exploit a range of techniques that avoid many
bottlenecks of classical von Neumann computing: dataflow
operation without the need of instruction decoding; massive
register and memory bandwidth, without contention on a
register file and single memory bus; operators and storage
elements tailored to the application in nature, number and size.

However, to unleash this potential, development costs for
FPGAs are orders of magnitude higher than classical pro-
gramming. High performance and high design costs are the
two faces of the same coin.

Florent de Dinechin
Univ Lyon, INSA Lyon, Inria, CITI
F-69621 Villeurbanne, France
Florent.de-Dinechin @insa-lyon.fr

Steven Derrien
University Rennes 1, IRISA
Rennes, France
Steven.Derrien @univ-rennes1.fr

Hardware design flow and High-level synthesis: To ad-
dress this, languages such as C or Java are increasingly being
considered as hardware description languages. This has many
advantages. The language itself is more widely known than any
HDL. The sequential execution model makes designing and
debugging much easier. One can even use software execution
on a processor for simulation. All this drastically reduces
development time.

The process of compiling a software program into hardware
is called High-Level Synthesis (HLS), with tools such as Vi-
vado HLS [L1] or Catapult C|['|among others [18]. These tools
are in charge of turning a C description into a circuit. This
task requires to extract parallelism from sequential programs
constructs (e.g. loops) and expose this parallelism in the target
design. Today’s HLS tools are reasonably efficient at this task,
and can automatically synthesize highly efficient pipelined
dataflow architectures.

They however miss one important feature: they are not able
to tailor operators to the application in size, and even less in
nature. This comes from the C language itself: its high-level
datatypes and operators are limited to a small number (more
or less matching the hardware operators present in mainstream
processors). Indeed, such a high-level language have been
designed to be compiled and run on hardware and not to
describe hardware. Therefore, HLS tools performs better
for general purpose computing whereas FPGAs performs
better for application-specific computing.

The broader objective of this work is to show that HLS
tools can produce application-specific hardware and therefore,
unleash FPGAs potential again.

Arithmetic in HLS: To better exploit the freedom offered
by hardware and FPGAs, HLS vendors have enriched the C
language with integer and fixed-point types of arbitrary sizeﬂ
However the operations on these types remain limited to the
basic arithmetic and logic ones. Exotic or complex operators
(for instance for finite-field or floating-point arithmetic) may

Catapult C Synthesis, Mentor Graphics, 2011, http:/calypto.com/en/
products/catapult/overview/

2 Arbitrary-size floating-point should follow some day, it is well supported
by mature libraries and tools
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Figure 1: The proposed compilation flow

be encapsulated in a C function that is called to instantiate the
operator.

The case study in this work is a program transformation
that applies to floating-point additions on a loop’s criti-
cal path. It decomposes them into elementary steps, resizes
the corresponding sub-components to guarantee some user-
specified accuracy, and merges and reorders these components
to improve performance. The result of this complex sequence
of optimizations could not be obtained from an operator
generator, since it involves global loop information.

For this purpose, we envision a compilation flow involving
one or several source-to-source transformations, as illustrated
by Figure [T} Before detailing it, we must digress a little on
the subtleties of the management of floating-point arithmetic
by compilers.

HLS faithful to the floats: Most recent compilers, includ-
ing the HLS ones [10], attempt to follow established standards,
in particular C11 and, for floating-point arithmetic, IEEE-754.
This brings the huge advantage of almost bit-exact repro-
ducibility — the hardware will compute exactly the same results
as the software. However, it also greatly reduces the freedom
of optimization by the compiler. For instance, as floating point
addition is not associative, C11 mandates that code written
a+b+c+d should be executed as ( (a+b) +c) +d, although
(a+b) + (c+d) would have shorter latency. This also pre-
vents the parallelization of loops implementing reductions. A
reduction is an associative computation which reduces a set
of input values into a reduction location. Listing [I] provides
the simplest example of reduction, where acc is the reduction
location.

The first column of Table | shows how Vivado HLS synthe-
sizes Listing [I] on Kintex7. The floating-point addition takes
7 cycles, and the adder is only active one cycle out of 7 due
to the loop-carried dependency. Listing [2] shows a different
version of Listing [l| that we coded such that Vivado HLS
expresses more parallelism. Vivado HLS will not transform
Listing [I] into Listing [2] because they are not semantically
equivalent (the floating-point additions are reordered as if
they were associative). However as Listing [2] expresses more
parallelism, Vivado HLS is able to exploit (second column
of Table [I). The main adder is now active at each cycle on
a different sub-sum. Note that a parallel execution with the
sequential semantics is also possible, but very expensive [13l].

Note that Listing [2] is only here as an example and might
need more logic if N was not a multiple of 10.

Listing 1: Naive reduction

#define N 100000

float acc = 0;

for (int 1=0; i<N;
acct+=in[i];

i++) {

}

Listing 2: Parallel reduction
#define N 100000
float acc = 0, tmpl=0, ... ,
for (int 1i=0; 1i<N; i+=10) {
tmpl+=in[i];

tmpl0=0;

tmplO+=in[i+9];
}
acc=tmpl+...+tmpl0;

Towards HLS faithful to the reals: Another point of
view, chosen in this work, is to assume that the floating-
point C program is intended to describe a computation on
real numbers when the user specifies it. In other words,
the floats are interpreted as real numbers in the initial C,
thus recovering the freedom of associativity (among other).
Indeed, most programmers will perform the kind of non-
bit-exact optimizations illustrated by Listing [2] (sometimes
assisted by source-to-source compilers or “unsafe” compiler
optimizations). In a hardware context, we may also assume
they wish they could tailor the precision (hence the cost) to the
accuracy requirements of the application — a classical concern
in HLS [9]], [2]. In this case, a pragma should specify the
accuracy of the computation with respect to the exact result.
A high-level compiler is then in charge of determining the best
way to ensure the prescribed accuracy.

The proposed approach uses number formats that are larger
or smaller than the standard ones. These, and the correspond-
ing operators, are presented in Section [lIl The contribution of
this paper, which are compiler transformations to generate C
description of these operators in a HLS workflow, is presented
in Section Section evaluates our approach on the
FPMark benchmark suite.

II. THE ARITHMETIC SIDE: AN APPLICATION-SPECIFIC
ACCUMULATOR IN VIVADO HLS

The accumulator that we used for this paper is based on a
more general idea developed by Kulisch. He advocated a very
large floating-point accumulator [14] whose 4288 bits would



Listing Listing Listing Listing Listing FloPoCo VHDL
(float) (float) (double (double (71 bits (71 bits)
LUTs 266 907 801 2193 736 719
DSPs 2 4 3 6 0 0
Latency 700K 142K 700K 142K 100K 100K
Accuracy 17 bits 17 bits 24 bits 24 bits 24 bits 24 bits

Table I: Different ways of implementing a simple accumulation.

cover the entire range of double precision floating-point. Such
an accumulator would remove rounding errors from all the
possible floating-point additions and sums of products, with
the added bonus that addition would become associative.

So far, Kulisch’s full accumulator has proven too costly to
appear in mainstream processors. However, in the context of
application acceleration with FPGAs, it can be tailored to the
accuracy requirements of applications. Its cost then becomes
comparable to classical floating point operators, although it
vastly improves accuracy [6]. This operator can be found
in the FloPoCo [5] generator and in Altera DSP Builder
Advanced. Its core idea, illustrated on Figure 2] is to use a
large fixed-point register into which the mantissas of incoming
floating-point summands are shifted (top) then accumulated
(middle). A third component (bottom) converts the content
of the accumulator back to the floating-point format. The
sub-blocks visible on this figure (shifter, adder, and leading
zero counter) are essentially the building blocks of a classical
floating-point adder.

The accumulator described is the one offered in FloPoCo
[6]], although it is not the contribution of this paper, we
included two improvements to it:

« In FloPoCo, Float-to-Fix and Accumulator form a single
component, which restricts its application to simple ac-
cumulations similar to Listing[T] The two components of
Figure 2| enable a generalization to arbitrary summations
within a loop, as Section |l1I| will show.

e Our implementation supports subnormal numbers (spe-
cial floating-point numbers with leading zeros to their
significand to fill the underflow gap around 0).

Note that we could have implemented any other non-
standard operator performing a reduction such as [16], [12]].

A. The parameters of a large accumulator

The main feature of this approach is that the internal
fixed-point representation is configurable in order to control
accuracy. It has two parameters:

o« MSB, is the weight of the most significant bit of the ac-
cumulator. For example, if MSB 4 = 20, the accumulator
can accommodate values up to a magnitude of 220 ~ 10°.

o LSB 4 is the weight of the least significant bit of the accu-
mulator. For example, if LSB4 = —50, the accumulator
can hold data accurate to 27°9 ~ 10713,

Such a fixed-point format is illustrated in Figure

The accumulator width w, is then computed as MSB 4 —

LSB4+1, 71 bits in the previous example. 71 bits represents a
wide range and high accuracy, and still additions on this format

Mantissa

Exponent

Registers

wA

Exponent  Mantissa

Figure 2: The conversion from float to fixed-point (top), the
fixed-point accumulation (middle) and the conversion from the
fixed-point format to a float (bottom).

QMSB 4 gMSB 4 —1

N/ 90 9LSBA
GITTTTTT{TTITTTTT]
bit weight 7161541312, 1,0-1-2-3-4)-5|-6/-7-8,
Figure 3: The bits of a fixed-point format, here

(MSB4,LSB,) = (7,-8).

will have one-cycle latency for practical frequencies on recent
FPGAs. If this is not enough the frequency can be improved
thanks to partial carry save [6] but this was not useful in
the present work. For comparison, for the same frequency, a
floating-point adder has a latency of 7 to 10 cycles, depending
on the target.

In the following of this paper, we refer as latency of a



circuit the number of cycles needed for the entire application
to complete.

B. Implementation within a HLS tool

This accumulator has been implemented in C, using
arbitrary-precision fixed point types (ap_int). The leading
zero count, bit range selections and other operations are imple-
mented using Vivado HLS built-in functions. For modularity
purposes, the FloatToFix and FixToFloat are wrapped
into C functions (28 LoC for the FloatToFix, 22 LoC
for FixToFloat) whose calls are inlined to enable HLS
optimizations.

Because the internal accumulation is performed on a fixed-
point integer representation, the combinational delay between
two accumulations is lower compared to a direct floating
point addition. We expect HLS tools to benefit from this
delay reduction by taking advantage of more agressive loop
pipelining (with shorter Initiation Interval pipeline) resulting
in a design with a shorter overall latency.

C. Validation

To evaluate and refine this implementation, we used Listing
which we compared to Listings [I] and [2] In the latter, the
loop was unrolled by a factor 7, as it is the latency of a
floating-point adder on our target FPGA (Kintex-7).

For test data, we use as in Muller et al. [17] the input values
c[il=(float)cos (i), where i isthe input array’s index.
Therefore the accumulation computes Y c[i].

?
The parameters chosen for the accumulator are:

o MSBA = 17. Indeed, as we are adding cos(¢) 100K times,
an upper bound is 100K, which can be encoded in 17 bits.

¢ MAXMSBx = 1 as the maximum input value is 1.

e LSBA = -50: the accumulator itself will be accurate to
the 50th fractional bit. Note that a f1oat input will see
its mantissa rounded by FloatToFix only if its exponent
is smaller than 2725, which is very rare. In other words,
this accumulator is much more accurate than the data that
is thrown to it.

The results are reported in Table |I] for simple and double
precision. The Accuracy line of the table reports the number of
correct bits of each implementation, after the result has been
rounded to a f1oat. All the data in this table was obtained by
generating VHDL from C synthesis using Vivado HLS followed
by place and route from Vivado v2015.4, build 1412921.
This table also reports synthesis results for the corresponding
FloPoCo-generated VHDL, which doesn’t include the array
management.

Vivado HLS uses DSPs to implement the shifts in its
floating-point adders. Even if the shifts were implemented
in LUTs, the first column would remain well below 500
LUTs: it has the best resource usage. However the latency
of one iteration is 7 cycles, hence 100K iterations takes
700K cycles. When unrolling the loop, Vivado HLS is using
almost 4 times more LUTs for floats, and 3 times more for
doubles. The unrolled versions improves latency over naive

versions. Nevertheless, our approach gets even betters latencies
for a reasonable LUT usage. Also, we achieve maximum
accuracy for the float format which caps at 24 bits (the
internal representations of the double, unrolled double and
our approach have a higher accuracy than 24 bits, but are
then casted to the 24 bits of the f1oat format). Finally, our
results are very close to FloPoCo ones, both in terms of LUTSs
usage, DPSs and latency.

Listing 3: Sum of floats using the large fixed-point
accumulator

#define N 100000
float acc = 0; ap_int<68> long_accumulator = 0;
for(int 1 = 0; i < N; i++) {
long_accumulator += FloatToFix(in[i]);
}

acc = FixToFloat (long_accumulator);

Using this implementation method, we also created an exact
floating-point multiplier with the final rounding removed as in
[6]. This function is called ExactProductFloatToFix.
Due to lack of space we do not present it in de-
tail. As the output of this multiplier is not standard,
we also created an adapted Float-to-fix block called
ExactProductFloatToFix. These functions represent 44
lines of code for ExactProduct and 21 lines of code for
ExactProductFloatToFix.

III. THE COMPILER SIDE: GECOS SOURCE-TO-SOURCE
TRANSFORMATIONS

We have shown in previous Section that Vivado HLS can
be used to synthesize very efficient specialized floating point
operators which rival in quality with those generated by
FloPoCo. Our goal is now to study how such optimization
can benefit from automation. More precisely, we aim at being
able to automatically optimize Listing [I] into Listing [3] and
generalizes this transformation to many more situations.

For convenience, we chose to develop our optimization as a
source-to-source transformation implemented within the open
source GeCoS compiler framework [8], and aim at making
our tool publicly available. Source-to-source compiler are
very convenient in a HLS context since they can be used as
optimization front-ends on top of closed-source commercial
tools.

This work focuses on two computational patterns, namely
the accumulation and the sum of product. Both are specific
instances of the reduction pattern, which can be optimized by
many compilers or parallel run-time environments. Reduction
pattern are exposed to the compiler/runtime either though user
directives (e.g #pragma reduce in openMP), or automati-
cally inferred using static analysis techniques [19]], [7]].

As the problem of detecting reductions is not the main
focus on this work, our tool uses a straightforward solution
to the problem using a combination of user directive and
(simple) program analysis. More specifically, the user must
identify a target accumulation variable through a pragma,
and provide additional information such as the dynamic range



of the accumulated data along with the target accuracy (in the
future, we expect to automate our flow such that the two later
parameter could systematically be omitted).

We found this approach easier, more general and less
invasive than those attempting to convert a whole floating-
point program into a fixed-point implementation [20]].

A. Proposed compiler directive

In imperative languages such as C, reductions are imple-
mented using for or while loop constructs. Our compiler
directive must therefore appear right outside such a construct.
Listing [] illustrates its usage on the code of Listing

The pragma must contain the following information:

e The keyword FPacc, which triggers the transformations.

e The name of the variable in which the accumulation
is performed, preceded with the keyword VAR. In the
example, the accumulation variable is acc.

o The maximum value that can be reached by the accumu-
lator through the use of the MaxAcc keyword. This value
is used to determine the weight MSB 4.

o The desired accuracy of the accumulator using the
epsilon keyword. This value is used to determine the
weight LSB 4.

o Optional: The maximum value among all inputs of the
accumulator in the MaxInput field. This value is used
to determine the weight MaxMSB x. If this information
is not provided, then MaxMSB x is set to MSB 4.

Listing 4: Tllustration of the use of a pragma for the
naive accumulation

#define N 100000
float accumulation (float in[N]) {
float acc = 0;
#pragma FPacc VAR=acc MaxAcc=100000.0
epsilon=1E-15 MaxInput=1.0
for (int i=0; 1i<N; i++){
acc+=in[1i];
}

return acc;

In the case when no size parameters are given, a full Kulisch
accumulator is produced. Also note that the user can quietly
overestimate the maximum value of it’s accumulator without
major impact on area. For instance, overestimating MaxAcc
by a factor 10 only adds 3 bits to the accumulator width.

B. Proposed code transformation

The proposed transformation operates on the compiler
program intermediate representation (IR), and rely on the
ability to identify loops constructs and expose def/use relations
between instructions of a same basic block in the form of an
operation dataflow graph (DFG).

To illustrate our transformation, consider the sample pro-
gram shown in Listing [5} This program performs a reduction
into the variable sum, involving both sums and sums of
product operations. The operation dataflow graph associated
to the basic block forming the loop body in this program is

depicted in Figure fa] In this Figure, dotted arrows represent
loop carried dependencies between operations belonging to
distinct loop iterations. Such loop carried dependencies have a
very negative impact on the kernel latency as they prevent loop
pipelining. For example, when using a pipelined floating-point
adder with a seven cycle latency, the HLS tool will schedule
a new iteration of the loop at best every seven cycle.

As illustrated in Figure [5a] our proposed optimization hoists
the floating-point normalization step out of the loop, and
performs the accumulation using fixed point arithmetic. Since
integer add operations can generally be implemented with a
1-cycle delay, the HLS tool may now be able to initiate a new
iteration every cycle, improving the overall latency by a factor
of 7.

Listing 5: Simple reduction with multiple accumulation
statements

#define N 100000
float computeSum(float inl[N],
float sum = 0;
#pragma FPacc VAR=sum MaxAcc=300000.0
epsilon=le-15 MaxInput=3.0
for (int i=1; i<N-1; i++){
sum+=inl[i]*in2[i-1];
sum+=inl[i];
sum+=in2[i+1];
}

return sum;

float in2[N]) {

The code transformation first identifies all relevant basic
blocks (i.e those associated to the pragma directive). It then
performs a backward traversal of the dataflow graph, starting
from a Float Add node that writes to the accumulation
variable identified by the #pragma.

During this traversal, the following actions are performed
depending on the visited nodes:

¢ A node with the summation variable is ignored.

e AFloat Add node is transformed to an accurate fixed-
point adder. The analysis is then recursively launched on
that node.

¢ A Float Mul node is replaced with a call to
the ExactProduct function followed by a call to
ExactProdFloatToFix.

o Any other node has a call to FloatToFix inserted.

This algorithm rewrites the DFG from Figure fa] into the
new DFG shown on Figure [3_5} In addition, a new basic block
containing a call to FixToFloat is inserted immediately
after the transformed loop, in order to expose the floating point
representation of the results to the remainder of the program.

From there, it is then possible to regenerate the corre-
sponding C code. As an illustration of the whole process, the
synthesized codes from before and after the transformations
result in the architectures from Figure [db| and Figure [5b|
respectively.

C. Evaluation of the toy example of Listing [3]

The proposed transformations work on non-trivial examples
such as Listing [5] Table [l shows how resource consumption
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Figure 4: DFG of the loop body from Listing [5| (top) and it’s
corresponding architecture (bottom). Keywords float mul and
float add correspond to floating-point multipliers and adders
respectively

depends on epsilon, all the other parameters being those
given in the pragma of Listing [5] All these versions where
synthesised for 100 MHz. Indeed, some circuits might need
more work than others to increase their frequency and would
not give a fair comparison.

Our transformed code makes Vivado HLS use more LUTs
for less DSPs compared to the classical IEEE-754 imple-
mentation. This is due to the smaller shifter and multiplier
of our implementation. In all cases, on this example, the
transformed code has its latency reduced by a factor 20.
This is due to the fact that Vivado HLS is able to perform
the Float Mul and the Float Adder in a single block
with a latency of 10 cycles for the naive version. The two
following Float Adder are accelerated from 14 cycles to
10 cycles due to a very short pipeline that follows the IEEE-
754 standard. Comparatively, the transformed code has 1 cycle
latency operators that can be pipelined.

IV. EVALUATION ON FPMARK BENCHMARKS

In order to evaluate the relevance of the proposed transfor-
mations on real-life programs, we used the EEMBC FPMark
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]
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—
| Fixed Add |
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(b) Architecture

Figure 5: DFG of the loop body from Listing |3| (top) and it’s
corresponding architecture (bottom) after transformations

Naive Transformed Transformed Transformed
LSBy, = —14 | LSB4 = —20 | LSB4 = —50
LUTs 538 693 824 1400
DSPs 5 2 2 2
Latency | 2000K 100 K 100K 100K

Table II: Comparison between the naive code from Listing
[ and its transformed equivalent. All these versions run at
100MHz.

benchmark suite [1]].
This suite consists of 10 programs. A first result is that half
of these programs contain visible accumulations:

e Enhanced Livermore Loops (1/16 kernels contains one
accumulation)

o LU Decomposition (multiple accumulations)

o Neural Net (multiple accumulations)

o Fourier Coefficients (one accumulation)

e Black Scholes (one accumulation)



The following focuses on these, and ignores the other half
(Fast Fourier Transform, Horner’s method, Linpack, ArcTan,
Ray Tracer).

Most benchmarks come in single-precision and double-
precision versions, and we focus here on the single-precision
ones.

A. Benchmarks and accuracy: methodology

Each benchmark comes with a golden reference against
which the computed results are compared. As the proposed
transformations are controlled by the accuracy, it may happen
that the transformed benchmark is less accurate than the orig-
inal. In this case, it will not pass the benchmark verification
test, and rightly so.

A problem is that the transformed code will also fail the
test if it is more accurate than the original. Indeed, the golden
reference is the result of a certain combination of rounding
errors using the standard FP formats, which we do not attempt
to replicate.

To work around this problem, each benchmark was first
transformed into a high-precision version where the accumu-
lation variable is a 10,000-bit floating-point numbers using
the MPFR library. We used the result of this highly-accurate
version as a “platinum” reference, against which we could
measure the accuracy of the benchmark’s golden reference.
This allowed us to choose our epsilon parameter such that
the transformed code would be at least as accurate as the
golden reference. This way, the epsilon of the following
results is obtained through profiling. The accuracy of the
obtained results are computed as the number of correct bits of
the result.

We first present the benchmarks that are improved by our
approach before discussing the reasons why we can’t prove
that the others are.

B. Benchmarks improved by the proposed transformation

Enhanced Livermore Loops: This program contains 16
kernels of loops that compute numerical equations. Among
these kernels, there is one that performs a sum-of-product
(banded linear equations). This kernel computes 20000 sums-
of-products. The values accumulated are pre-computed. This
is a perfect candidate for the proposed transformations.

For this benchmark, the optimal accumulation parameters
were found as:

MaxAcc=50000.0 epsilon=le-5
MaxInput=22000.0

Synthesis results of both codes (before and after transforma-
tion) are given in Table As in the previous toy examples,
latency and accuracy are vastly improved for comparable area.

LU Decomposition and Neural Net: Both the LU decom-
position and the neural net programs contain multiple nested
small accumulations. In the LU decomposition program, an
inner loop accumulates between 8 and 45 values. Such accu-
mulations are performed more than 7M times. In the neural
net program, inner loops accumulate between 8 and 35 values,
and such accumulations are performed more than 5K times.

Benchmark Type LUTs | DSPs | Latency | Accuracy
Livermore Original 384 5 80K 11 bits
Transformed 576 2 20K 13 bits

LU-8 Original 809 5 82 8-23 bits
Transformed 1007 2 17 23 bits

LU-45 Original 819 5 452 8-23 bits
Transformed 1034 2 54 23 bits

Scholes Original 15640 175 N/A 19 bits
Transformed | 15923 175 N/A 23 bits
Fourier Original 34596 64 N/A 6 bits
Transformed | 34681 59 N/A 11 bits

Table III: Synthesis results of benchmarks before and after
transformations

Both of these programs accumulate values from registers or
memory that are already computed. It makes these programs
good candidates for the proposed transformations.

Vivado HLS is unable to predict a latency for these im-
plemented designs due to their non-constant loop counts,
therefore we do not present complete results for these two
benchmarks. Still, in order to show that the approach works
on these examples, the LU inner loops were transformed
and synthesized. Table [[II] shows the results obtained for the
smallest (8 terms) and the largest (45 terms) sums-of-products
in lines LU-8 and LU-45 respectively. The latency is vastly
improved even for the smallest one. The accuracy results of the
original code here varies from 8 to 23 bits between different
instances of the loops. To have a fair comparison, we generated
a conservative design that performs 23 bits accuracy on all
loops, using a sub-optimal amount of resources.

C. Benchmarks that exposed the limitations of HLS tools

Black Scholes: This program contains an accumulation that
sums 200 terms. The result of this computation is divided by
a constant (that could be optimized by using transformations
based on [3]]). This process is performed 5000 times.

Here the optimal accumulator parameters are the following:
MaxAcc=245000.0 epsilon=le-4
MaxInput=278.0
This gives us an accumulator that uses 19 bits for the integer
part and 10 bits for the fractional part. The result of the
synthesis are provided in Table

For comparable area, accuracy is vastly improved but
latency could not be obtained from Vivado HLS. Indeed,
the Black Scholes algorithm uses the mathematical function
power. Such a function is not implemented in Vivado HLS,
therefore we coded it using a loop with a non-constant count.
As the latency of this operator depends on the input data, the
latency of the all circuit cannot be statically recovered.

Fourier Coefficients: The Fourier coefficients program,
which computes the coefficients of a Fourier series, contains an
accumulation which is performed in single precision. This pro-
gram comes in three different configurations: small, medium
and big. Each of them computes the same algorithm but with
a different amount of iterations. The “big” version is supposed
to compute the most accurate answer. We obtain similar results
for the three versions of this program, as a consequence



we only present the “big” version here. In this version,
there are multiple instances of 2K terms accumulations. The
accumulator is reset at every call.

The parameters determined for this benchmark were the
following:

MaxAcc=6000.0 epsilon=le-7 MaxInput=10.0

This results in an accumulator using 14 bits for the integer
part and 24 bits for the fractional part. The synthesis results
obtained for the original and transformed codes are given in
Table

Here, area is again comparable, accuracy is improved by
5 bits (which represents one order of magnitude), but latency
could not be obtained. Vivado HLS faces the same problem as
in Black Scholes, it cannot compute the latency of the power
function.

Note that our operators have a shorter latency by nature.
Therefore, even if Vivado HLS is not able to provide latency
results, the circuits indeed have a shorter latency.

The pow operator could be implemented such as in [4] in
the near future. This would allow us to obtain the latency of
the two last benchmarks.

V. CONCLUSION

The main result of this work is that HLS tools have the
potential to generate efficient designs for handling floating-
point computations in a completely non-standard way. The use
of application-specific intermediate formats can provide both
performance and accuracy at a competitive cost. For this, we
have to sacrifice the strict respect of the IEEE-754 and Cl11
standards. It is replaced by the strict respect of a high-level
accuracy specification.

Classically, designers have to face a trade-off between per-
formance and cost. This approach adds computation accuracy
to this trade-off. Some designers may not like this. To con-
vince them, consider that established performance benchmarks
compute results which are accurate only to a few bits. If only
a few bits are important, do we really need to instantiate 32-
bit or 64-bit floating-point operators to compute them ? Isn’t
this accuracy information worth investigating and exploiting?

This work also provides a practical tool that improves a
given C program. The input to the tool is application-specific
information representing high-level domain knowledge such
as the range and desired accuracy of a variable. The resulting
code is compatible with Vivado HLS.

The proposed transformation already works very well on all
the FPMarks that contains a reduction where it improves both
latency and accuracy by an order of magnitude for comparable
area.

In the longer term, we believe there is much more to come.
The arithmetic optimizations that a classical compiler can do
are very limited by the fixed hardware of classical processors.
With compilers of high-level software to hardware, there is
much more freedom, hence many more opportunities to build
application-specific arithmetic operators.

Future work will attempt to explore this new realm, starting
with operator specialization; operator fusion such as in [21]]

but at a more coarse grain allowing more aggressive fusion;
compile-time generation of application-specific cores; error
analysis such as in [15] benefiting from compilers static
analysis and more generaly building upon compiler progresses
in program analysis.
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