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1 Introduction

1.1 Background

An irreducible holomorphically symplectic manifold (or compact hyper-Kähler manifold) is a smooth
compact simply connected Kähler manifold with a unique (up to scalar) nowhere degenerate holomor-
phic 2-form. Together with complex tori and Calabi-Yau manifolds, such varieties are building blocks
for the decomposition of Ricci-flat manifolds (see [Bog74, Bea83]). However, contrary to the former two,
it is quite hard to produce many different examples (or to classify them all) of compact hyper-Kähler
manifolds. Up to deformation, the following are the only known examples of such manifolds :

— S[n], the Hilbert-Douady scheme of n points on a K3 surface (see [Bea83]),
— Kn(A), the generalized Kümmer variety of level n associated to an abelian surface (see [Bea83]),
— A crepant resolution of MS(2, 0, 4), the moduli space of semi-stable rank-2 torsion free sheaves

with c1 = 0 and c2 = 4 on a K3 surface (see [O’G99]),
— A construction similar to the previous one, but where the K3 surface is replaced by an abelian

surface (see [O’G03]).
On the other hand, the derived categories of compact hyper-Kähler manifolds form an extremely

interesting playground to test Kontsevich’s Homological Mirror Symmetry conjecture. Indeed, one
expects that such categories have a lot of autoequivalences which do not come from automorphisms of
the complex structure but are instead related to Dehn twists along lagrangian projective spaces in the
mirror manifold (see [HT06]). 1 Hence, it seems of high importance to have more examples of derived
categories of compact hyper-Kähler manifolds. Or perhaps not so much derived categories of compact
hyper-Kähler manifolds at such, but we definitively need more examples of triangulated categories
which closely look like these derived categories.

The purpose of this paper is to introduce the notion of compact hyper-Kähler categories, to study
some of their basic properties and to provide some interesting new examples. Roughly speaking, a
compact hyper-Kähler category of dimension 2n is a smooth compact simply connected category with

1. One also expects the mirror of a hyper-Kähler manifold to be a twistor deformation of itself (see [Ver00, Huy04]).
Combined with Konstevich’s HMS conjecture, this should give rather strong constraints on the derived category of a
compact hyper-Kähler manifold.
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a Serre functor given by the translation by [2n] and endowed with a unique (modulo scalar) non-
degenerate categorical 2-form (all these notions will be made precise in the sections 2 and 3 of this
paper).

One easily shows that if X is an algebraic variety then Db(X) is a compact hyper-Kähler category
if and only if X is a compact hyper-Kähler manifold. Our main technique to construct new examples
of such categories is based on Kuznetsov’s theory of categorical crepant resolution of singularities (see
[Kuz08b]). It is well known that one can produce a lot of singular holomorphically symplectic varieties
(see [Muk84]) and that crepant resolutions of such varieties are holomorphically symplectic manifolds.
Unfortunately, experience tells us that it is almost always impossible to find crepant resolutions of in-
teresting singular holomorphically symplectic varieties (see [CK07, CK06, KL07, LS06, KLS06, MT07,
Sac13]).

It is however not too difficult to produce categorical strongly crepant resolutions of singularities of
some nice singular holomorphically symplectic varieties. For instance, if X is a hyper-Kähler manifold
and G is a finite group of automorphisms of X preserving the symplectic form, then X/G admits a
categorical strongly crepant resolution of singularities (see Theorem 2.2.1 below for a more general
statement). The existence of categorical crepant resolution for all quotient singularities is in clear
contrast with the known results in the commutative world. It is indeed a notoriously difficult problem
to decide when a quotient singularity of dimension bigger than 4 admits a crepant resolution [Kal02,
BKR01].

Hence, it seems that examples of compact hyper-Kähler spaces are way easier to construct in the
non-commutative setting. Given the scarcity of examples of commutative hyper-Kähler manifolds, the
ease with which one can construct non-commutative incarnations of such varieties plainly justifies, in
my opinion, the detailed study of such hyper-Kähler categories. Furthermore, unexpected properties of
such categories will probably be discovered in the near future and they will certainly shed a new light
on the algebraic study of compact hyper-Kähler manifolds.

1.2 Overview of the paper

Let me give a quick overview of the theory of compact hyper-Kähler categories developed in this
paper. First of all one would like to give a definition of compact hyper-Kähler categories which is
invariant by equivalence. The work of Huybrechts and Niper-Wisskirchen [HNW11] suggests that it is
possible in some geometric cases. Indeed, they prove that if X1 and X2 are derived equivalent smooth
projective varieties, then X1 is hyper-Kähler if and only if X2 is hyper-Kähler. A complete definition
of compact hyper-Kähler categories will be given in section 3 of this paper. For now, let me focus on
an important special case :

Definition 1.2.1 Let X be a smooth projective variety and T ⊂ Db(X) be a full admissible subcategory
and assume furthermore that OX ∈ T . The category T is said to be compact hyper-Kähler of
dimension 2m (with respect to its embedding in Db(X )) if the Serre functor of T is the shift
by 2m and H•(OX) = C[t]/tm+1, with t homogeneous of degree 2.

This definition would be independent of the embedding if one could prove that for all smooth projec-
tive Y such that T is a full admissible subcategory of Db(Y ) containing OY , one has H•(OY ) ≃ H•(OX)
(as graded algebras). This does not seem to be easy. Indeed, even in the case where T ≃ Db(X) ≃
Db(Y ) and X is hyper-Kähler, the proof given in [HNW11] that H•(OY ) ≃ H•(OX) relies on deep
structural results for the Hochschild cohomology of compact hyper-Kähler manifolds. Nevertheless, one
would expect that these two graded algebras are isomorphic whenever X and Y are derived equivalent.
I discuss this invariance problem in more details in [Abu16].

Given this definition, it is easy to check that X is a hyper-Kähler manifold if and only if Db(X)
is a compact hyper-Kähler category. Of course, one would like to construct new examples of such
categories. In section 2 (see Theorem 3.2.4), we will prove :
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Theorem 1.2.2 Let Y be a projective manifold with Gorenstein rational singularities of dimension
2m. Assume that ωY ≃ OY and that H•(OY ) ≃ C[t]/(tm+1), with t homogenous of degree 2. Any
categorical strongly crepant resolution of Y is a compact hyper-Kähler category.

This result provides us with a whole heap of examples of compact hyper-Kähler categories which
are not deformation equivalent one to another. Indeed, let X be a hyper-Kähler manifold and let G1

and G2 be two finite groups of automorphisms of X preserving the symplectic form. Then, one proves
(see Corollary 3.2.5) that Db(CohG1X) and Db(CohG2X) are compact hyper-Kähler categories, where
CohG(X) is the category of G-equivariant sheaves on X. If G1 and G2 are chosen in a astute way,
the orbifold topological Euler characteristic of X/G1 is different from that of X/G2. We deduce that
Db(CohG1X) and Db(CohG2X) are not deformation equivalent.

Since the theory of compact hyper-Kähler spaces is based on examples which are often considered
up to deformation equivalence, I would also like to discuss some properties of smooth deformations of
triangulated categories of geometric origin. For example, it is often stated that Hochschild homology
numbers of triangulated categories are invariant under deformation. I was unable to find a reference in
the literature for such a general statement (see however [Kal09] for some results on cyclic homology).
Hence, I think it is worth providing a setting for which we can prove that the Hochschild homology
numbers are indeed invariant under deformation. This will be done in the subsection 3.2.

After introducing this context for deformation theory of triangulated categories of geometric ori-
gin and proving invariance of Hochschild homology for smooth deformations, I go on studying more
precisely deformations of compact hyper-Kähler categories. The following proposition on “small defor-
mations” and its proof are straightforward generalizations of the corresponding statement and proof
for commutative compact hyper-Kähler manifolds :

Proposition 1.2.3 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subca-
tegory and B a smooth connected algebraic variety. Let D be a smooth deformation of T over B with
respect to π : X −→ B. Assume that OX ∈ T and that T is a compact hyper-Kähler category (with
respect to its embedding in Db(X)). Then, there exists a neighborhood 0 ∈ U ⊂ B, such that Db is
compact hyper-Kähler (with respect to its embedding in Db(Xb)) for all b ∈ U .

On the other hand, as far as “long-time deformations" are concerned, one can show that a limit
of (commutative) compact hyper-Kähler manifolds is again compact hyper-Kähler, provided it is pro-
jective. This result is not obvious and requires holonomy techniques to be proved. One would like to
know if this holds true in the non-commutative world. I believe that such a deformation result would
be important for the theory of compact hyper-Kähler categories and that it can not be proved without
the design of new (probably powerful) geometrico-categorical techniques.

Conjecture 1.2.4 (see Conjecture 3.3.8) Let X be a smooth projective variety, let T ⊂ Db(X)
be a full admissible subcategory and B a smooth algebraic variety. Let D be a deformation of T over
B. Assume that Db is compact hyper-Kähler for all b 6= 0. Then, the category D0 = T is compact
hyper-Kähler.

The first step toward such a result should establish that a deformation of a Calabi-Yau category is
again a Calabi-Yau category. This already happens to be not obvious. Restricting to deformations of
Calabi-Yau categories, one can demonstrate the following (see Proposition 3.3.10) :

Proposition 1.2.5 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subca-
tegory which is Calabi-Yau of dimension 4 and let B a smooth algebraic variety. Let D be a smooth
deformation of T over B with respect to π : X → B. Assume that OX ∈ T and that for all b 6= 0,
the category Db is compact hyper-Kähler of dimension 4 (with respect to its embedding in Db(Xb)).
Then, the category D0 = T is compact hyper-Kähler of dimension 4 (with respect to its embedding in
Db(X0)).
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It would certainly be desirable to know if this result can be generalized to higher-dimensional
cases. It would also be very interesting to discover which structural results known for the Hochschild
cohomology rings of compact hyper-Kähler manifolds are still valid in the categorical context. For
instance, if X is a compact hyper-Kähler manifold of dimension 2m and HH〈2〉(X) is the sub-algebra
of HH∗(X) generated by HH2(X), Verbitsky [Ver96] proved the following isomorphism :

HH〈2〉(X) ≃ S∗HH2(X)/{am+1, such that q(a) = 0},

where q is the Beauville-Bogomolov quadratic form. This result is heavily used in [HNW11] to prove
the derived invariance of the compact hyper-Kähler property for projective varieties. In my opinion, it
would be fascinating to have a similar statement for the Hochschild cohomology of a compact hyper-
Kähler category.

The last two sections of the paper are dedicated to the study of specific examples. In section 4, we
focus on a question that was asked to me by Misha Verbitesky.

Question 1.2.6 Let S be a K3 surface, for which G ⊂ Sn does the quotient S × · · · × S/G admits a
non-commutative crepant resolution which is hyper-Kähler ?

The answer to this question in the commutative world is due to Verbitski himself and he proves
that only for G = Sn such a resolution exists (and the resolution is the Hilbert scheme of n points on
S). In the non-commutative world, there are quite a few more examples and we have the :

Theorem 1.2.7 Let S be a K3 surface and n ≥ 1. Let G ⊂ Sn acting on S×· · ·×S by permutations.
The quotient S × · · · ×S/G admits a categorical crepant resolution which is a hyper-Kähler category if
and only if G is one of the following :

— G = Sn,
— G = An (the alternating group),
— n = 5 and G = F∗

5,
— n = 6 and G = PGL2(F5),
— n = 9 and G = PGL2(F8),
— n = 9 and G = PGL2(F8)⋊Gal(F8/F2).

Furthermore, this categorical resolution is always non-commutative in the sense of Van-den-Bergh.

The study of the Betti cohomology ring of Hilbert schemes of points on a K3 surface is a classical
subject where hyper-Kähler geometry, number theory and representation theory interact fruitfully with
one another. We expect that the study of the Hochschild cohomology ring of the above hyper-Kähler
categories should reveal interesting new connections between these three topics.

In the final section of this paper, we describe in some details a categorical strongly crepant resolution
of the relative compactified Prymian constructed by Markushevich and Tikhomirov in [MT07]. It is
known that this fourfold is a singular irreducible symplectic variety of dimension 4 which has no crepant
resolution of singularities. Our main result in section 5 is the :

Theorem 1.2.8 The relative compactified Prymian of Markushevich and Tikhomirov admits a cate-
gorical strongly crepant resolution which is a hyper-Kähler category of dimension 4. The Hochschild
cohomology numbers of this category are :

— hh0 = hh8 = 1,
— hh2 = hh6 = 16,
— hh4 = 206.

This result is based in an essential way on the computations of the Hodge numbers of some resolution
of singularities of the Prymian. This is done in the appendix by Grégoire Menet. Using the deformation
theory developed in section 3, we prove the :

5



Proposition 1.2.9 A small deformation of the categorical strongly crepant resolution of the relative
compactified Prymian of Markushevich-Tikhomirov can never be equivalent to the derived category of
a projective variety (and it thus provides a counter-example to conjecture 5.8 in [Kuz16]).

We expect in fact that any deformation of this category is never equivalent to the derived category
of a projective variety. If our expectation is correct, then the moduli space of hyper-Kähler categories
of dimension 4 (if such an object exists) contains a connected component which is purely non-
commutative !

Acknowledgements. I am very thankful to Chris Brav, Victor Ginzburg, Daniel Huybrechts,
Sasha Kuznetsov, Richard Thomas and Matt Young for very interesting discussions about the various
possible definitions of compact hyper-Kähler categories and the properties one would expect them to
enjoy. I would also like to thank my former PhD advisor Laurent Manivel for many helpful comments
on some preliminary version of this work. I am especially grateful to Gregoire Menet for supplying me
with the Hodge numbers I was looking for and to Misha Verbitsky for asking the question studied in
section 4 of this paper.

2 Categorical crepant resolution of singularities

As mentioned in the introduction, our examples of compact hyper-Kähler categories are based
on the theory of categorical crepant resolutions of singularities. This notion has been developed in
[Kuz08b] and was further explored in [Abu13a, Abu15].

2.1 Definition and motivations

Let us recall that a crepant resolution of a normal Gorenstein algebraic variety Y is a resolutions
of singularities π : X → Y such that π∗ωY = ωX , where ωY is the dualizing line bundle of Y . Crepant
resolutions are often considered to be minimal resolutions of singularities (see the first part of [Abu13a]
for an extended discussion about minimality for resolutions of singularities). Une fortunately crepant
resolutions of singularities are quite rare. The following example is very classical :

Example 2.1.1 Let Y be a cone over v2(P3) ⊂ P(S2C4). The variety Y is analytically equivalent to
C6/{1,−1}. Hence, it is locally analytically Q-factorial (see [KM98], Chapter 5), so that it has no
small resolution of singularities. Furthermore the blow-up of Y along the vertex gives a resolution of
singularities where the coefficient of the exceptional divisor in the dualizing bundle formula is 1 (this is
an obvious computation). As a consequence, the variety Y has terminal singularities. Since it admits
no small resolution, we find that Y has no crepant resolution of singularities.

Given a singularity which does not admit any crepant resolution, one still would like to know if it is
possible to produce minimal resolutions from the point of view of category theory. Kuznetsov’s insight
is that such categorical "minimal" resolutions should be constructed as categorical crepant resolution
(see [Kuz08b], section 4).

Definition 2.1.2 Let Y be an algebraic variety and X be a smooth Deligne-Mumford stack. We say
that X homologically dominates Y , if there exists a proper morphism p : X → Y , such that
Rp∗OX ≃ OY .

Typical examples of such phenomenon include resolutions of singularities for a variety with rational
singularities and the canonical projection from a smooth Deligne-Mumford stack to its coarse moduli
space.

Definition 2.1.3 Let Y be an algebraic variety with Gorenstein rational singularities. Let p : X → Y
be a smooth Deligne-Mumford stack which homologically dominates Y . A categorical resolution of
Y is a full admissible subcategory T ⊂ Db(X ) such that Lp∗Dperf(Y ) ⊂ T .
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In [Kuz08b], the definition of categorical resolution was restricted to the case where X is a variety.
A way more general notion of categorical resolution has been defined and studied by Kuznetsov and
Lunts in [KL12]. The main advantage of their definition is that one can prove the existence of a
categorical resolution for any scheme ( !) of finite typer over C. With Definition 2.1.3, we lie in the
middle. The possibility to work with Deligne-Mumford stacks allows to produce interesting examples
of non-commutative resolution of singularities (see [Abu15]). On the other hand, many elementary
techniques and results from [Kuz08b] are still valid when X is a smooth Deligne-Mumfod stack, with
proofs being exactly the same.

Definition 2.1.4 (Categorical crepancy, [Kuz08b]) Let Y be a an algebraic variety with Goren-
stein rational singularities and p : X → Y be a Deligne-Mumford stack homologically dominating Y .
Let δ : T →֒ Db(X ) be a categorical resolution of Y and let pT ∗ : T → Db(Y ) be the composition of
Rp∗ with δ.

— We say that pT ∗ : T → Db(Y ) is a weakly crepant resolution of Y , if for all F ∈ Dperf(Y ),
we have :

p∗T F ≃ p!T F ,

where p∗
T

and p!
T

are the left and right adjoint to pT ∗.
— We say that pT ∗ : T → Db(Y ) is a strongly crepant resolution of Y if the following two

conditions hold :

1. we have Lp∗F ⊗OX
δG ∈ T , for all F ∈ Dperf(Y ) and G ∈ T ,

2. the identity functor is a relative Serre functor for T with respect to the map pT ∗.

Let us make a few comments on this definition. The first requirement in the definition of a catego-
rical strongly crepant resolution is that T has a module structure over Dperf(Y ) (see [Kuz08b], section
3). Assume that T is a categorical strongly crepant resolution of a projective variety Y . Then the (ab-
solute) Serre functor of T is given by the tensor product by π∗ωY [dimY ]. Note also that a categorical
strongly crepant resolution of a Gorenstein rational singularity is automatically a categorical weakly
crepant resolution of this singularity, but the converse is not true (see [Kuz08b], section 8). However,
in the purely geometric setting (that is when T ≃ Db(X), for some algebraic variety X), all these
notion coincide [Abu13a]. I refer to [Kuz08b, Kuz08a, Abu13b, SVdB] for the existence of categorical
crepant resolution of determinantal varieties.

2.2 Categorical crepant resolutions and quotient singularities

In this sub-section, I will recall the main result of [Abu15]. It will be useful to construct new
compact hyper-Kähler categories starting from a compact hyper-Kähler variety endowed with a finite
group of symplectic automorphisms.

Theorem 2.2.1 ([Abu15]) Let X be a quasi-projective variety with normal Gorenstein quotient sin-
gularities and let X be a smooth separated Deligne-Mumford stack whose coarse moduli space is X.
Assume that the dualizing line bundle of X is the pull back of the dualizing line bundle on X, then
Db(X ) is a strongly crepant resolution of X.

Furthermore, there exists a sheaf of algebras A on X such that Db(X ) ≃ Db(X,A ). Hence, the
pair (X,A ) is a non-commutative crepant resolution of X in the sense of Van den Bergh.

Note that if X is a normal quasi-projective variety with quotient singularities, there is always a
smooth separated Deligne-Mumford stack associated to it as in the above statement (see Proposition
2.8 of [Vis89]). The non-trivial hypothesis (which can not be removed) is that the dualizing bundle
of the Deligne-Mumford stack associated to X is the pull back of the dualizing bundle on X. This
amounts to check that on an étale atlas of X , the line bundle ωX is equivariantly 2 locally trivial.
This finally boils down to checking that for any x ∈ X, there exists an étale neighborhood Ux of

2. for the isotropy groups of the fixed points of the étale atlas of X

7



x ∈ X, such that Ux = V/G where V is a vector space and G is a subgroup of SL(V ). This holds in
particular for a variety whose singularities are isolated points locally analytically equivalent to a cone
over v2(P3) ⊂ P(S2C4).

In the local case, the above result was already known for a long time (see [vdB04], for instance). The
heart of Theorem 2.2.1 is the existence result of categorical crepant resolutions for quotient singularities
in the global setting. Indeed, there is a priori no reason for the local resolutions constructed in [vdB04]
to glue globally. The main point of [Abu15] is to exhibit a sheaf of non-commutative algebras which
provides such a gluing of the local resolutions.

3 Compact hyper-Kähler categories

Recall that a holomorphically sympletic variety of dimension 2m is (in the projective case) a smooth
projective variety X having trivial canonical bundle and endowed with a 2-form σ ∈ H0(X,Ω2

X), such
that σ∧m 6= 0. On says that X is compact hyper-Kähler if X is simply connected and σ generates
H0(X,Ω2

X). Since σ defines an isomorphism σ : ΩX → TX , one can equivalently say that X is holo-
morphically symplectic if X is smooth simply connected projective with trivial canonical bundle and
there exists a Poisson bracket θ ∈ H0(X,

∧2 TX), such that θ∧m 6= 0. Hence, one could be tempted to
give the following definition :

Definition 3.0.1 (naive definition of holomorphically symplectic categories) Let T be a smooth
compact triangulated category. We say that T is holomorphically symplectic of dimension 2m if
the shift by 2m is a Serre functor for T and there exists θ ∈ HH2(T ) such that θ◦m 6= 0.

Such a definition has the advantage to be invariant by equivalences. Its (non-negligible) drawback
is that the derived categories of many non holomorphically symplectic varieties are then to be conside-
red as holomorphically symplectic categories. Indeed, the Hochschild-Kostant-Rosenberg isomorphism
[Mar09] shows that for X smooth projective, there is a decomposition (compatible with products on
both sides [CRVdB12, HNW11]) :

HH2(X) = H0(X,

2∧
TX)⊕H1(X,TX)⊕H2(X,OX ).

Hence, with Definition 3.0.1, the derived category of an abelian surface would be considered as a
holomorphically symplectic category, which is something we want to avoid. The main problem here is
to define categorically one of the algebras H0(X,

∧• TX) or H0(X,
∧•ΩX) (the latter being isomorphic,

by Hodge duality, to the algebra H•(X,OX )). We will give such a definition in the first subsection
below.

3.1 Homological units

Let X be a algebraic variety and let F ∈ Db(X) be an object whose rank is not zero. Then the
trace map :

Tr : RH om(F ,F ) → OX

splits and gives a splitting :

Hom•(F ,F ) = H•(OX)⊕Hom•(F ,F )0,

where Hom•(F ,F )0 is the graded vector space of trace-less endomorphisms. Hence, the algebra
H•(OX) appears as a maximal direct factor of the endomorphisms algebra of any object in Db(X)
which rank is not vanishing. We will see below that this algebra is an important categorical invariant.

Definition 3.1.1 Let C be an abelian category with a non-trivial rank function and T be a full ad-
missible subcategory in Db(C ). A graded algebra T• is called a homological unit for T (with respect
to C ), if T• is maximal for the following properties :

8



1. for any object F ∈ T , there exists a pair of morphisms iF : T• → Hom•(F ,F ) and tF :
Hom•(F ,F ) → T• with the properties :
— the morphism iF : T• → Hom•(F ,F ) is a graded algebra morphism which is functorial in

the following sense. Let F ,G ∈ T and let a ∈ Tk for some k. Then, for any morphism
ψ : F → G , there is a commutative diagram :

F
iF

//

ψ

��

F [k]

ψ[k]

��

G
iG

// G [k]

— the morphism tF :: Hom•(F ,F ) → T• is a graded vector spaces morphism which satisfies
the dual functoriality property of iF .

2. for any F ∈ T which rank (seen as an object in Db(C )) is not vanishing, the morphism tF
splits iF as a morphism of graded vector spaces.

With hypotheses as above, an object F ∈ T is said to be unitary, if Hom•(F ,F ) = T•, where T•

is a homological unit for T .

Of course, one can not expect that all examples of homological units as defined above will be significant.
In the main applications of the present paper, one will look at C = Coh(X), CohG(X) or Coh(X,α),
where X is a smooth projective variety, G a reductive algebraic group acting linearly on X, α a Brauer
class on X and the rank function will be the obvious one. However, it is well possible that many new
examples of homological units coming from representation theory will be discovered, so that it seems
sensible to give a general definition that does not restrict to purely geometrical examples.

Note also that the hypothesis of non-vanishing rank for the splitting is a technical hypothesis which
is important. It would be very interesting to know if there are some non-trivial examples where the
splitting occurs whatever the rank of the object.

Example 3.1.2 1. Let X be a smooth algebraic variety and α ∈ Br(X), a class in the Brauer
group of X. Consider C = Coh(X,α), the category of coherent α-twisted sheaves on X. One
can define a rank function on C as being the rank of F when seen as an OX -module. Then for
any F ∈ Db(C ), we have a trace map :

Tr : RH omDb(C )(F ,F ) → OX

which splits when the rank of F is not zero. As a consequence, for all F ∈ Dperf(C ), we have
a graded algebra morphism :

H•(OX) → Hom•
Db(C )(F ,F )

which is split (as a morphism of vector spaces) when the rank of F is not zero. The mor-
phism H•(OX) → Hom•

Db(C )(F ,F ) is given by a → idF ⊗ a, so that the functoriality pro-

perty is clearly satisfied. Furthermore, if L is a twisted line bundle in Db(Coh(X,α)), we have
Hom•

Db(C )(L,L) = H•(OX). Thus, H•(OX) is maximal for the properties required in Definition
3.1.1 and it is a homological unit for C .

2. Let X be a smooth algebraic variety and G be a reductive algebraic group acting linearly on X.
For any F ∈ Db(CohG(X)), the trace map Tr : RH om(F ,F ) → OX is G-equivariant and
it is split if the rank of F is non-zero. Hence, for all F ∈ Db(CohG(X)), we have a graded
algebra morphism :

H•(OX)
G → Hom•

Db(CohG(X))(F ,F ),
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which is split (as a morphism of vector spaces) when the rank of F is not zero. The morphism
H•(OX)

G → Hom•(F ,F ) is again given by a → idF ⊗ a, so that the functoriality property is
also satisfied. Furthermore, if L is a G-invariant line bundle on X, we have Hom•

Db(C )(L,L) =

H•(OX)
G. Hence, the algebra H•(OX) is maximal for the properties required in Definition 3.1.1

and it is a homological unit for C . This readily generalizes for any smooth Deligne-Mumford
stack. Namely, if X is a smooth Deligne-Mumford stack, then H•(OX ) is a homological unit
for Db(X ). Note that all line bundles on X are unitary objects.

One would like to know when the homological unit is unique and independent of the embedding
in the derived category of an abelian category. This question seems to be interesting for itself and it
it does not have an obvious answer. I discuss this invariance problem in [Abu16]), where I give some
applications to the conjectural derived invariance of Hodge numbers. The following result is a slight
generalization the fifth assertion of Theorem 2.0.10 in [Abu16] :

Theorem 3.1.3 Let X and Y be smooth projective varieties of dimension 4. Let Φ : Db(X) →֒ Db(Y )
be a fully faithful functor such that OY ∈ Φ(Db(X)) and that C(y) ∈ Φ(Db(X)) for generic y ∈ Y .
Then we have an isomorphism of graded algebras :

H•(OX) ≃ H•(OY ).

Note that the assumptions OY ∈ Φ(Db(X)) and C(y) ∈ Φ(Db(X)), for generic y ∈ Y , are not both
superfluous. Indeed, if X is a smooth subvariety of Y and Ỹ is the blow-up of Y along X, there is a
fully faithful embedding Φ : Db(X) →֒ Db(Ỹ ). But we have H•(OX) 6= H•(OỸ ) in general. Of course,

it is clear that OỸ /∈ Φ(Db(X)) and that C(ỹ) /∈ Φ(Db(X)) for generic ỹ ∈ Ỹ .

Proof :
◮ The proof follows closely the lines of the proof of Theorem 2.0.10 in [Abu16]. First we will prove that
there exists L ∈ Pic(X) such that the rank of Φ(L) is non-zero. We proceed by absurd. Assume that for
all L ∈ Pic(X), the rank of Φ(L) is zero. First of all, using Orlov’s representability Theorem, we can see
Φ as a Fourier-Mukai kernel with kernel G ∈ Db(X × Y ). This means that Φ(?) = Rp∗ (Lq

∗(?)⊗ G ),
where p and q are the natural projections in the diagram :

X × Y

q

||zz
zz
zz
zz
zz
zz
zz
zz
zz

p

!!
DD

DD
DD

DD
DD

DD
DD

DD
DD

X Y

Since Y is smooth, the vanishing of the rank of Φ(L) for all L ∈ Pic(X), implies the vanishing :

χ(Φ(L)⊗ C(y)) = 0,

for generic y ∈ Y and for all L ∈ Pic(X). This means that

χ(Rp∗ (Lq
∗(L)⊗ G )⊗ C(y)) = 0,

for all L ∈ Pic(X) and generic y ∈ Y . Using the projection formula for Rp∗ and the Leray spectral
sequence for Rp∗ and RΓ, we find that it is equivalent to :

χ(Lq∗(L)⊗ G ⊗ Lp∗C(y)) = 0,

for all L ∈ Pic(X) and generic y ∈ Y . As Lp∗ C(y) = OX×y, we find that :

χ(L⊗ jy
∗
G ) = 0,
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for all L ∈ Pic(X), generic y ∈ Y and where jy : X × y →֒ X × Y is the natural inclusion. This can be
rewritten also as :

χ(L⊗k1
1 ⊗ · · ·L

⊗kp
p ⊗ jy

∗
G ) = 0,

for all L1, · · · , Lp ∈ Pic(X), all k1, · · · , kp ∈ N and generic y ∈ Y . Using the Grothendieck-Riemann-
Roch Theorem, we find :

∫

X
ch(L⊗k1

1 ⊗ · · ·L
⊗kp
p ). ch(j∗yG ).td(X) = 0,

for all L1, · · · , Lp ∈ Pic(X), all k1, · · · , kp ∈ Z and generic y ∈ Y . As a consequence, we get :

(
c1(L1)

k1 . · · · .c1(Lp)
kp . ch(j∗yG ).td(X)

)
8−2k

= 0, (1)

for all L1, · · · , Lp ∈ Pic(X), all 0 ≤ k ≤ 4, all k1, · · · , kp ∈ N such that k1 + · · · + kp = k. The Chern
character is taken here to be with value in H•(X,C). Since numerical equivalence and homological
equivalence coincide for curves and divisors, we deduce that :

(
ch(j∗yG ).td(X)

)
2k

= 0,

for k = 0, 1, 3, 4.

Let us prove that
(
ch(j∗yG ).td(X)

)
4

also vanishes. By equation 1, we know that
(
ch(j∗yG ).td(X)

)
4

is in the primitive cohomology of X. Assume that
(
ch(j∗yG ).td(X)

)
4
6= 0, then the Hodge-Riemann

bilinear relations imply that :

(
ch(j∗yG ).td(X)

)
4
.
(
ch(j∗yG ).td(X)

)
4
6= 0.

But
(
ch(j∗yG ).td(X)

)
2k

= 0 for k = 0, 1, 3, 4, so that ch(j∗yG ) = ch(j∗yG ).td(X).td(X)−1 has non-

vanishing components only in degree 4, 6, 8 and its degree 4 component is
(
ch(j∗yG ).td(X)

)
4
. Hence, we

find that ch(j∗yG
∨) has non-vanishing components only in degree 4, 6, 8 and that its degree 4 component

is
(
ch(j∗yG ).td(X)

)
4

(here G ∨ is the derived dual of G ). We deduce that :

∫

X
ch
(
(j∗yG

∨)∨) ch((j∗yG
∨).td(X)

=
(
ch(j∗yG ).td(X)

)
4
.
(
ch(j∗yG ).td(X)

)
4
6= 0.

(2)

But the Grothendieck-Riemann-Roch Theorem implies :

∫

X
ch
(
(j∗yG

∨)∨) ch((j∗yG
∨).td(X) = χ(j∗yG

∨, j∗yG
∨).

On the other hand the left adjoint to Φ : Db(X) → Db(Y ) is a Fourier-Mukai transform with kernel
G ∨ ⊗ p∗KY . This shows that j∗yG

∨ ≃ Φ∗(C(y)), where Φ∗ is the left adjoint to Φ. Thus, we find that :

χ(j∗yG
∨, j∗yG

∨) = χ (Φ∗(C(y)),Φ∗(C(y))) .

We know by hypothesis that C(y) ∈ Φ(Db(X)), for generic y ∈ Y , and that Φ∗ : Φ(Db(X)) −→ Db(X)
is an equivalence. We conclude that :

χ (Φ∗(C(y)),Φ∗(C(y))) = χ (C(y),C(y)) = 0.

This is a contradiction with equation 2 and we this proves that
(
ch(j∗yG ).td(X)

)
4
= 0 for generic

y ∈ Y . We deduce that ch(j∗yG ) = 0 and then that ch(j∗yG
∨) = 0 for generic y ∈ Y . This translates as

ch (Φ∗(C(y))) = 0. But this is impossible. Indeed, Φ∗ : Φ(Db(X)) −→ Db(X) being an equivalence, we
know that it induces a bijection between the image of the Chern character from Φ(Db(X)) to H•(Y,C)
and H•(X,C). Since C(y) ∈ Φ(Db(X)) and that its class in H•(Y,C) is non-zero, we know that the
class of Φ∗(C(y)) must also be non-zero.
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We conclude that our starting hypothesis is absurd. Thus, there exists L ∈ Pic(X) such that the
rank of Φ(L) is non-zero. Using the trace map, we find an injection of graded algebras :

H•(OY ) →֒ Hom•(Φ(L),Φ(L)).

But Φ : Db(X) →֒ Db(Y ) is fully faithful, so that Hom•(Φ(L),Φ(L)) ≃ Hom•(L,L) ≃ H•(OX). As
a consequence, we have an injection of graded algebras :

H•(OY ) →֒ H•(OX). (3)

Now we consider the functor Φ∗ : Db(Y ) −→ Db(X). The very same proof as above shows that
there exists L ∈ Pic(Y ) such that the rank of Φ∗(L) is non zero. The trace maps yields again an
injection of graded algebras :

H•(OX) →֒ Hom•(Φ∗(L),Φ∗(L)).

On the other hand, given a map ak : L → L[k] in Db(Y ), we know that there exists unique bk ∈
Hom(Φ∗L,Φ∗L[k]) and ck ∈ Hom(Ψ!(L),Ψ!(L)[k]) such that the diagram :

Ψ!(L)

ck

��

// L //

ak

��

Φ∗(L)

bk

��

Ψ!L[k] // L[k] // Φ∗L[k]

commutes (here Ψ : ⊥Φ(Db(X)) →֒ Db(Y ) is the left-orthogonal to Φ(Db(X)) in Db(Y ) and Ψ! is the
right adjoint to Ψ). Using axiom TR3 for the definition of a triangulated category, we deduce that the
natural map Hom•(L,L) −→ Hom•(Φ∗(L),Φ∗(L)) is an epimorphism of graded vector spaces. Since
Hom•(L,L) ≃ H•(OY ), we conclude that the injective map of graded algebras in equation 3 is actually
an isomorphism of graded algebras.

◭

3.2 Definition and construction techniques

We first recall the definition of smoothness, compactness and regularity for triangulated categories.

Definition 3.2.1 ([Kon09], [Orl14]) Let T be the derived category of DG-modules over some DG-
algebra (A , d) (over C). The category T is said to be :

— smooth, if A is a perfect bi-module over A ⊗C A op.
— compact, if dimH•(A , d) < +∞.
— regular, if it has a strong generator.
— Calabi-Yau of dimension p if the shift by p is a Serre functor for A .

Assume that T = Db(X), where X is an algberaic over C. It is easily shown that X is smooth
and proper over C if and only if T is smooth and compact (see [Kon09]). Note also that if T is a
semi-orthogonal component of the derived category of a smooth proper scheme over C, then T is
smooth, compact and regular (see [Orl14]). With these definitions in hand, we can introduce the main
notion of this paper :

Definition 3.2.2 (compact hyper-Kähler categories) Let T be a smooth, compact and regular
triangulated category which is closed under direct summands. Assume that T is a semi-orthogonal
component of Db(C ), where C is an abelian category with a rank function. We say that T is a com-
pact hyper-Kähler category (with respect to its embedding in Db(C )) if T is Calabi-Yau of
dimension 2m and there is a unique homological unit for T (with respect to its embedding in Db(C )),
which is isomorphic C[t]/(tm+1) with t homogeneous of degree 2.
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Proposition A.1 of [HNW11] implies the following :

Proposition 3.2.3 Let X be an algebraic variety. The category Db(X) is compact hyper-Kähler (with
respect to its embedding in Db(X)) if and only if the variety X is compact hyper-Kähler.

We will see that one can construct many examples of compact hyper-Kähler categories which are
non-commutative. It seems extremely hard to find new examples of commutative compact hyper-Kähler
manifolds. Actually, one can produce a lot of compact singular holomorphically symplectic varieties
[Muk84]. But almost all of them do not admit any geometric crepant resolution of singularities. Hence,
I believe that the following result opens the door to a new world of compact hyper-Kähler spaces.

Theorem 3.2.4 Let Y be a projective manifold with Gorenstein rational singularities of dimension
2m. Assume that ωY = OY and that H•(OY ) ≃ C[t]/(tm+1), with t homogenous of degree 2. Any
categorical strongly crepant resolution of Y is a compact hyper-Kähler category.

The above statement is slightly ambiguous as we haven’t proved that the notion of compact hyper-
Kähler category is independent of the embedding inside the derived category of an abelian category with
a rank function. However, our definition of categorical resolution always refer to a Deligne-Mumford
stack which homologically dominates Y . In the above statement, we implicitly refer to the embedding
of T inside the derived category of this Deligne-Mumford stack.

Proof :
◮

Let p : X → Y be a projective Deligne-Mumford stack which homologically dominates Y and let
T ⊂ Db(X ) be an admissible full subcategory such that the induced map : Rp∗ : T → Db(Y ) is a
strongly crepant resolution. Since T is an admissible subcategory of the derived category of a smooth
projective Deligne-Muford stack, we know that T is smooth, compact and regular. Furthermore, it is
a strongly crepant resolution of a Gorenstein projective variety whose dualizing bundle is trivial, hence
T is Calabi-Yau of dimension dimY = 2m.

We are only left to prove that there is a unique homological unit for T (with respect to its
embedding inside Db(X )), which is isomorphic to C[t]/(tm+1) with t homogeneous of degree 2. By
hypothesis, we have Rp∗OX = OY , so that H•(OX ) ≃ H•(OY ) ≃ C[t]/(tm+1) (with t homogeneous of
degree 2) is a homological unit for Db(X ). Hence, for all F ∈ T , we have a graded algebra morphism :

C[t]/(tm+1) → Hom•(F ,F ),

given by a→ idF ⊗ a. As a consequence, this morphism satisfies the functoriality condition stated in
definition 3.1.1. Furthermore this morphism is split when the rank of F is not zero. But OX ∈ T ,
so that there is a unique homological unit for T (with respect to its embedding in Db(X )), which is
isomorphic to C[t]/(tm+1) with t homogeneous of degree 2. ◭

Corollary 3.2.5 Let X be a compact hyper-Kähler variety and G be a finite group of symplectic
automorphisms of X. The category Db(CohG(X)) is a compact hyper-Kähler category.

Proof :

◮ One can show directly that Db(CohG(X) is a compact hyper-Kähler category, but I think it is
interesting to show it is a consequence of Theorem 3.2.4. Indeed, if G is a finite group of symplectic
automorphisms of X, then X/G is a projective Gorenstein variety with rational singularities. The
generator of H2(OX) being G-equivariant, it descends to X/G and its top wedge-product remains non
zero on X/G. As a consequence, we have H•(OX/G) ≃ C[t]/(tm+1) with t homogeneous of degree 2 (m

is the half-dimension of X). Theorem 2.2.1 implies that Db(CohG(X) is a strongly crepant resolution
of X/G. Theorem 3.2.4 then proves that Db(CohG(X)) is a compact hyper-Kähler category. ◭

There has been recently quite a bit of work on symplectic automorphisms of compact hyper-Kähler
manifolds ([Cam12, BNWS13, Mon13]. Using the existing results in the literature and corollary 3.2.5,
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one might hope to construct a vast number of different deformation families of compact hyper-Kähler
categories in each even dimension. This would put the theory of compact hyper-Kähler categories on
the same footing as the theory of strict Calabi-Yau manifolds : we still have no efficient tools to classify
them, but one can construct a large amount of non-equivalent (up to deformation) examples of such
spaces in each fixed dimension.

Remark 3.2.6 The notion of (holomorphically) symplectic stack has been defined by Pantev, Toën,
Vaquié and Vezzosi [PTVV13] and by Zhang [Zha11]. It would be of course desirable to know if one
can define the notion of irreducible holomorphically symplectic stack and if the derived categories of
such stacks are related to compact hyper-Kähler categories.

One of my primary goal when developing the theory of compact hyper-Kähler categories was to
understand whether the sporadic examples of compact hyper-Kähler manifolds discovered by O’Grady
could be part of a larger sequence of examples living in the non-commutative world. Let MK3(2, 0, 2r)
be the moduli space of rank 2 torsion free sheaves with c1 = 0, c2 = 2r and which are semi-stable with
respect to a generic polarization. Because of the parity of c2, these moduli spaces are not smooth for
r ≥ 2. O’Grady proved that MK3(2, 0, 4) admits a crepant resolution and that this crepant resolution
is a compact hyper-Kähler manifold which is not deformation equivalent to the previously known
examples of compact hyper-Kähler manifolds [O’G99].

It was then proved in [CK07] and [KLS06] that the moduli spaces MK3(2, 0, 2r) do not admit any
crepant resolution for r ≥ 3. Hence one can’t hope to find new examples of commutative compact
hyper-Kähler variety starting with these moduli spaces. However, it seems quite likely that these
moduli spaces have categorical crepant resolutions. Exhibiting such resolutions would provide a whole
new heap of compact hyper-Kähler categories. This would also demonstrate that the O’Grady examples
are not sporadic at all : they would be part of a series which naturally lives in the non-commutative
world.

Question 3.2.7 Let r ≥ 3 be an integer. Does the moduli spaces MK3(2, 0, 2r) admit a categorical
strongly crepant resolution of singularities ?

3.3 Deformation theory for compact hyper-Kähler categories

In this subsection, I will prove some basic results for the deformation theory of compact hyper-
Kähler categories. They will be used in the last section of this paper to prove that there exists compact
hyper-Kähler categories of dimension 4 which deformations are never equivalent to the derived category
of a projective variety.

I will focus on a specific type of deformation of triangulated categories : deformation inside the
derived category of an algebraic variety (all results proven below should carry on without any problem
to deformation inside the derived category of a Deligne-Mumford stack). Let T ⊂ Db(X) be a full
admissible subcategory. Given a smooth algebraic variety B, one wants to define the deformation of
T inside Db(X) over B.

Definition 3.3.1 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subcategory
and B a smooth connected algebraic variety with a marked point 0 ∈ B. A smooth deformation
of T inside X over B is the data of :

— a smooth projective morphism π : X → B such that X0 = X,
— a full admissible subcategory D ⊂ Db(X ), which is B-linear, such that E0 := E ⊗OX ×BX

OX0×X0
∈ Db(X0×X0) is the kernel of the projection Db(X0) → T , where E ∈ Db(X ×BX )

is the kernel representing the projection functor Db(X ) → D .

The existence of the kernels in the above definition has been proved by Kuznetsov in [Kuz11]. We
have a semi-orthogonal decomposition Db(X ) = 〈D ,⊥D〉 and I denote by ⊥E ∈ Db(X ×B X ) the
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kernel of the projection Db(X ) → ⊥D . Let us display a Cartesian diagram which will be important
to study the deformation of T over B.

X ×B X

p

{{ww
ww
ww
ww
ww
ww
ww
ww
ww

q

##
GG

GG
GG

GG
GG

GG
GG

GG
GG

X Xb × Xb

pb

{{ww
ww
ww
ww
ww
ww
ww
ww
ww

jb

OO

qb

##G
GG

GG
GG

GG
GG

GG
GG

GG
G

X

Xb

ib

OO

Xb

ib

OO

Proposition 3.3.2 With hypotheses and notation as above, for all b ∈ B, there exists a semi-orthogonal
decomposition :

Db(Xb) = 〈Db,
t
Db〉,

where Db (resp. tDb) is the full subcategory of Db(Xb) closed under taking direct summands which is
generated by the objects Rpb∗(Lq

∗
bF ⊗ Eb) (resp. Rpb∗(Lq

∗
bF ⊗ ⊥Eb)), for F ∈ Db(Xb).

This proposition allows one to think of the Db for b ∈ B as the deformation of D0 = T over B.

Proof :

◮ Since X → B is projective, the family of line bundles OX /B(m)|Xb
,m ∈ N generates Db(Xb).

Hence, the category Db (resp. tDb) is also generated by the Rpb∗(Lq
∗
bLi

∗
bF⊗Eb) (resp. Rpb∗(Lq

∗
bLi

∗
bF⊗

⊥Eb)), for F ∈ Db(X ). I first prove that tDb is left orthogonal to Db. Let F ,G ∈ Db(X ), we have :

Hom(Rpb∗(Lq
∗
b (Li

∗
bF )⊗ ⊥

Eb),Rpb∗(Lq
∗
b (Li

∗
bG )⊗ Eb))

= Hom(Rpb∗(Lj
∗
b (Lq

∗
F ⊗ ⊥

E )),Rpb∗(Lj
∗
b (Lq

∗
G ⊗ E )))

= Hom(Li∗b(Rp∗(Lq
∗
F ⊗ ⊥

E )),Li∗b(Rp∗(Lq
∗
G ⊗ E )))

= Hom(Rp∗(Lq
∗
F ⊗ ⊥

E ),Rib∗(Li
∗
b(Rp∗(Lq

∗
G ⊗ E ))))

= Hom(Rp∗(Lq
∗
F ⊗ ⊥

E ),Rp∗(Lq
∗
G ⊗ E )⊗ Rib∗OXb

),

here the first equality is the identity Lq∗bLi
∗
b = Lj∗bLq

∗, the second is the flat base change Rpb∗Lj
∗
b =

Li∗bRp∗, the third is adjunction with respect to ib and the fourth is the projection formula with respect
to ib. By flat base change for the morphism π : X → B, we have Rib∗OXb

= Lπ∗C(b). The category
D is B-linear by hypothesis, so that Rp∗(Lq

∗G ⊗ E ) ⊗ Rib∗OXb
∈ D . As a consequence, we deduce

the vanishing :

Hom(Rp∗(Lq
∗
F ⊗ ⊥

E ),Rp∗(Lq
∗
G ⊗ E )⊗ Rib∗OXb

) = 0.

As Db (resp. tDb) is the full subcategory of Db(Xb) closed under taking direct summands which is
generated by the Rpb∗(Lq

∗
bLi

∗
bF ⊗ Eb) (resp. Rpb∗(Lq

∗
bLi

∗
bF ⊗ ⊥Eb)) for F ∈ Db(X ), the above

vanishing finally proves that Hom(F ,G ) = 0, for all G ∈ Db and F ∈ tDb.

We are left to show that for all H ∈ Db(Xb), there exists an exact triangle :

G → H → F ,

with F ∈ tDb and G ∈ Db. But on X ×B X , we have an exact triangle :
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E → O∆/B → ⊥
E .

Hence, for all F ∈ Db(Xb), we have an exact triangle :

Rpb∗L(q
∗
b (F ) ⊗ Eb) → F → Rpb∗L(q

∗
b (F )⊗ ⊥

Eb).

◭

Corollary 3.3.3 For all b ∈ B, the objects Eb (resp. ⊥Eb) is the kernel of the projection functor
Db(Xb) → Db (resp. Db(Xb) →

⊥Db).

Proof :
◮ Using exactly the same identities as in the proof of proposition 3.3.2, one shows that Rpb∗(Lq

∗
b (G )⊗

Eb) is quasi-isomorphic to G if G ∈ Db and is zero if G ∈ tDb (the opposite holds for ⊥Eb). Since
Proposition 3.3.2 shows that tDb =

⊥Db, the claim is proved. ◭

Theorem 3.3.4 Let X be a smooth projective variety and T ⊂ Db(X) a full admissible subcategory.
Let B a smooth variety and D be a smooth deformation of T over B. The dimension of the Hochschild
homology of Db is constant for b ∈ B.

Note that we do not need to assume that the kernel of the projection Db(X ) → D is flat over B.
Proof :
◮ Let X → B be a smooth projective morphism such that D is a full admissible subcategory of
Db(X ). Let E ∈ Db(X ×B X ) be the kernel of the projection functor Db(X ) → D . By corollary
3.3.3, we know that for all b ∈ B, the object Eb ∈ Db(Xb × Xb) is the kernel of the projection functor
Db(Xb) → Db. As a consequence of Theorem 4.5 in [Kuz09], we have an equality :

HH•(Db) = H•(Xb × Xb,Eb ⊗ E
T
b ),

where E T
b is the pull back of Eb with respect to the permutation Xb × Xb → Xb × Xb. Let us prove

that the dimension of the cohomology vector spaces H i(Xb ×Xb,Eb ⊗ E T
b ) are upper semi-continuous

with respect to b ∈ B for all i. By flat base change for the diagram :

Xb × Xb
jb

//

πb

��

X ×B X

π

��

Spec(C(b)) // B

we have the equality :

H i(Xb × Xb,Eb ⊗ E
T
b ) = H

i(Rπ∗(E ⊗ E
T )⊗ C(b)).

Since B is a smooth variety, we can represent Rπ∗(E ⊗E T )⊗C(b) by a bounded complex of vector
bundles on B, say E•. Thus, we only have to show the following : the cohomology sheaves of E•⊗C(b)
are upper semi-continuous, for b ∈ B. This result is now obvious as the dimension of the image of the
differential :

d• ⊗ C(b) : E• ⊗ C(b) → E•+1 ⊗ C(b)

is lower semi-continuous with respect to B.

We have proved that the dimension of HHi(Db) is upper semi-continuous with respect to B, for all
i. This holds also true for the dimension HHi(

⊥Db). By corollary 7.5 of [Kuz09], we have :

HHi(Db)⊕HHi(
⊥
Db) = HHi(D

b(Xb)).
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But the morphism X → B is smooth projective, so that the Hodge numbers of Xb are constant with
respect to B. By the Hochschild-Kostant-Rosenberg decomposition, this implies that the Hochschild
numbers of Xb are constant. Hence the sum of the dimensions of the cohomology vector spaces HHi(Db)
and HHi(

⊥Db) is constant with respect to B. But each dimension is upper semi-continuous with respect
to B, so that they are in fact both constant with respect to B.

◭

Before going turning to deformation results for compact hyper-Kähler categories, I want to comment
about the level of generality of the deformation theory used above. In order to define the notion of
deformation of an admissible subcategory T ⊂ Db(X), one could be tempted to work with a seemingly
more general definition, as follows. A deformation of T over B is the data of a (not necessarily flat)
morphism π : X → B and a B-linear admissible subcategory D ⊂ Db(X ×B X ), such that D0 = T

and the flat base change formula holds for D with respect to the diagram :

Db
Rjb∗

// D

Spec(C(b))

Lπ̃∗
b

OO

kb∗
// B

Lπ̃∗

OO

The base change formula would imply Rjb∗Lπ̃
∗
bC(b) = Lπ̃∗Rkb∗C(b). But we have a commutative

diagram :

Dd
//

Rπ̃b∗

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

H
Db(Xb)

��

Db(Spec(C(b))

Assume that OX ⊂ D . The fact that D is B-linear then implies Lπ̃∗bC(b) = OXb
. As a consequence,

we have Lπ̃∗Rkb∗C(b) = jb∗OXb
. In particular, we have Tor1B(OX ,C(b)) = 0. By Theorem 22.3 of

[Mat89], the morphism X → B is flat. Hence, a strictly more general setting than the one developed
above for the deformation of triangulated categories can not be obtained if one requires the following
three conditions :

— the total space of the deformation is a full admissible subcategory of the derived category of an
algebraic variety,

— the base change formula holds for the total space of the deformation,
— OX ∈ D .
The first two conditions seem essential if one wants to get some significant homological results while

working with admissible subcategories of derived categories of algebraic varieties. As far as the third
condition is concerned, it is satisfied in many examples (for instance in the setting of non-commutative
resolution of singularities).

I will now focus on the deformation theory of compact hyper-Kähler categories. We start with the
following :

Lemma 3.3.5 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subcategory
and B a smooth algebraic variety. Let D be a smooth deformation of T over B with respect to π :
X −→ B. Assume that OX ∈ T . Then, there exists an open 0 ∈ U ⊂ B, such that OXb

∈ Db, for all
b ∈ U .

Proof :

◮ Let E be the kernel giving the projection functor Db(X ) −→ D . The hypothesis OX0
= OX ∈ D0
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can be translated as :
Rp0∗(Lq

∗
0OX ⊗ ⊥

E0) = 0,

that is :
Rp0∗(

⊥
E0) = 0.

By semi-continuity, there exists an open neighborhood 0 ∈ U ⊂ B such that :

Rpb∗(
⊥
Eb) = 0,

for all b ∈ U . Thus, we have OXb
∈ Db, for all b ∈ U . ◭

The very same proof also yields :

Lemma 3.3.6 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subcategory
and B a smooth algebraic variety. Let D be a smooth deformation of T over B with respect to π :
X −→ B. Assume that C(x) ∈ T , for generic x ∈ X. Then, there exists an open 0 ∈ U ⊂ B, such
that C(xb) ∈ Db, for generic xb ∈ Xb and for all b ∈ U .

We now state our first result on the deformation theory of hyper-Kähler categories. It shows that
a “small deformation” of a hyper-Kähler category is still hyper-Kähler.

Proposition 3.3.7 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subca-
tegory and B a smooth algebraic variety. Let D be a smooth deformation of T over B with respect to
π : X −→ B. Assume that OX ∈ T and that T is a compact hyper-Kähler category (with respect
to its embedding in Db(X)). Then, there exists a neighborhood 0 ∈ U ⊂ B, such that Db is compact
hyper-Kähler (with respect to its embedding in Db(Xb)) for all b ∈ U .

Proof :
◮ Let π : X → B be the smooth projective morphism in which the deformation D is embedded. We
know that D0 = T is compact hyper-Kähler of dimension 2m (with respect to its embedding in Db(X)).
In particular, the category T is Calabi-Yau of dimension 2m. Hence there exists a quasi-isomorphism :

θ0 : E0 → E0 ⊗ q∗0ωX0
[dimX0 − 2m].

But E0 = E ⊗X ×BX OX0×X0
and ωX0

= ωX /B ⊗X ×BX OX0×X0
. Hence, by Nakayama’s lemma,

there exists a neighborhood 0 ∈ U ⊂ B, such that θ0 can be lifted to a quasi-isomorphism :

θU : E ⊗X ×BX OU → E ⊗X ×BX q∗ωXU/U [dim(XU/U)− 2m].

This proves that the categories Db, b ∈ U are Calabi-Yau of dimension 2m. SinceXb is smooth projective
for all b ∈ B, the categories Db are also smooth, compact and regular for all b ∈ B. It remains to prove
(up to shrinking U), that C[t]/(tm+1) (with t homogeneous of degree 2) is a homological unit for
Db, b ∈ U .

We know by hypothesis that T contains OX . Hence, by lemma 3.3.5, there exists an open 0 ∈
U ′ ⊂ U such that the categories Db, b ∈ U ′ all contain OXb

. We deduce that for all b ∈ U ′, the graded
algebra H•(OXb

) is a homological unit for Db. But H•(OX0
) ≃ C[t]/(tm+1). Hence there exists another

neighborhood 0 ∈ U ′′ ⊂ U ′ such that H•(OXb
) ≃ C[t]/(tm+1), for all b ∈ U ′′. The open U ′′ is the

neighborhood of 0 ∈ B we are looking for.
◭

The above statement shows that being compact hyper-Kähler is an open condition (if one assumes
that OX ∈ D). I also expect it to be a closed condition. Namely :

Conjecture 3.3.8 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subca-
tegory and B a smooth algebraic variety. Let D be a deformation of T over B. Assume that Db is
compact hyper-Kähler for all b 6= 0. Then, the category D0 = T is compact hyper-Kähler.
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The commutative specialization of this result is well-known. Namely, let π : X → B be a smooth
projective morphism with B smooth. If Xb is compact hyper-Kähler for all b 6= 0, then X0 is also
compact hyper-Kähler. It is usually proved using the holonomy principle and the invariance of holonomy
groups in smooth families (see [Huy99], section 1). As far as I am aware, there are no algebraic proof
of this result. Hence, a proof of conjecture 3.3.8, would certainly require the design of interesting new
categorical techniques.

Two key results are to be proved in order to demonstrate conjecture 3.3.8 : the invariance of the
Calabi-Yau condition and of the homological unit under smooth deformations.

Conjecture 3.3.9 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible subca-
tegory and B a smooth algebraic variety. Let D be a deformation of T over B. Assume that Db is
Calabi-Yau of dimension r for all b 6= 0. Then, the category D0 = T is Calabi-Yau of dimension r.

Note that it is very unlikely that this conjecture can be proved by abstract algebraic arguments.
Indeed, the work of Keller ([Kel11]) suggests that strong additional hypotheses are usually used in
order to prove that a deformation of a Calabi-Yau algebra is again Calabi-Yau. Hence, the fact that
the categories appearing in conjecture 3.3.9 are subcategories of derived categories of algebraic varieties
will certainly play an important role in a potential proof.

Let us conclude this section with a “long-time” deformation result for hyper-Kähler categories. It
gives a partial answer to Conjecture 3.3.8 in the four-dimensional case.

Proposition 3.3.10 Let X be a smooth projective variety, let T ⊂ Db(X) be a full admissible sub-
category which is Calabi-Yau of dimension 4 and let B a smooth algebraic variety. Let D be a smooth
deformation of T over B with respect to π : X → B. Assume that OX ∈ T and that for all b 6= 0,
the category Db is compact hyper-Kähler of dimension 4 (with respect to its embedding in Db(Xb)).
Then, the category D0 = T is compact hyper-Kähler of dimension 4 (with respect to its embedding in
Db(X0)).

Proof :
◮ We already know that T is smooth, compact, regular and Calabi-Yau of dimension 4. Since
OX ∈ T , lemma 3.3.5 implies that there exists an open subset 0 ∈ U ⊂ B such that OXb

∈ Db, for all
b ∈ U . Hence, for all b ∈ U , the algebra H•(OXb

) is a homological unit for Db. By hypothesis, for all
b 6= 0 ∈ B, there exists a unique homological unit for Db (with respect to its embedding in Db(Xb))
which is C[t]/(t3), with t in degree 2. As a consequence, for all b 6= 0 ∈ U , we have :

H•(OXb
) = C[t]/t3,

with t in degree 2. Hodge numbers are invariant in smooth family, so that H•(OX0
) ≃ C[t]/(t3) as a

graded vector space. But the category D0 is Calabi-Yau of dimension 4, hence the pairing :

H2(OX0
)×H2(OX0

) → H4(OX0
) ≃ C

given by the Yoneda product coincide with the Serre-duality pairing : it is non degenerate. As dimH2(OX0
) =

1, we find an isomorphism of graded algebras : H•(OX0
) ≃ C[t]/(t3), with t in degree 2. This proves

that D0 is compact hyper-Kähler (with respect to its embedding in Db(X0)). ◭

One would obviously like to generalize this result in higher dimension. However, the non-degeneracy
of the Serre-duality pairing does not have so strong consequences in higher dimensions.

4 Non-commutative Hilbert schemes

In this section, we will be interested in the following question that was asked to me by Misha
Verbitsky :

Question 4.0.1 Let S be a K3 surface and n ≥ 1. For which subgroups G ⊂ Sn does the quotient
S × · · · × S/G has a categorical crepant resolution of singularities which is a hyper-Kähler category ?
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The commutative version of this question has been solved by Verbitsky himself. Indeed, in [Ver00]
he proves the following :

Theorem 4.0.2 Let S be a K3 surface and n ≥ 1. Let G be a subgroup of Sn such that S×· · ·×S/G
has a crepant resolution which is hyper-Kähler. Then G = Sn and the resolution is the Hilbert scheme
of n points on S.

Note that the result actually proved by Verbitsky in [Ver00] is more general. He shows that if V
is a symplectic vector space and G ⊂ Sp(V ) is such that V//G admits a symplectic resolution, then
G is generated by symplectic reflections. In the setting of Theorem 4.0.2, symplectic reflections are
immediately seen to be transpositions. Furthermore, for the crepant resolution of S × · · · × S/G to be
irreducible symplectic, we need that each factor of S × · · · S is acted on non-trivially by an element of
G. This is easily demonstrates that G = Sn.

We now state the answer to question 4.0.1 :

Theorem 4.0.3 Let S be a K3 surface and n ≥ 1. Let G ⊂ Sn acting on S×· · ·×S by permutations.
The quotient S × · · · ×S/G admits a categorical crepant resolution which is a hyper-Kähler category if
and only if G is one of the following :

— G = Sn,
— G = An (the alternating group),
— n = 5 and G = F∗

5,
— n = 6 and G = PGL2(F5),
— n = 9 and G = PGL2(F8),
— n = 9 and G = PGL2(F8)⋊Gal(F8/F2).

Furthermore, this categorical resolution is always non-commutative in the sense of Van-den-Bergh.

The categorical McKay correspondence [BKR01] implies that :

Db(Hilb[n](S)) ≃ Db(CohSn(S × · · · × S).

Hence, in case G = Sn, our result does not produce any new hyper-Kähler category. On the other hand,
for G = An,F∗

5,PGL2(F5),PGL2(F8),PGL2(F8)⋊Gal(F8/F2), it seems that Theorem 4.0.3 is the first
instance of a result which connects hyper-Käher geometry with the quotient spaces S × · · · × S/G.

Proof :

◮ We denote by Y the quotient S × · · ·S/G. By [Abu15], we know that Db(CohG(S × · · · × S)) is
a categorical strongly crepant resolution of singularities of Y . Furthermore, the Serre functor of the
category Db(CohG(S × · · · × S)) is the shift by 2n and its homological units is H•(OS×···×S)

G.
By the Künneth formula, we have H•(OS×···×S) = H•(OS)⊗· · ·⊗H•(OS). Hence, the homological

unit of Db(CohG(S × · · · × S)) is :

T
• = (H•(OS)⊗ · · · ⊗H•(OS))

G ,

where G acts on H•(OS)⊗· · ·⊗H•(OS) by permutation. Since H•(OS) is generated by 1 in degree
0 and by σS in degree 2, a basis of Hk(OS×···×S) is given by :

{σIS ⊗ 1{1,··· ,n}\I , for I ∈ Pk({1, · · · , n})},

where σIS⊗1{1,··· ,n}\I is the tensor product of σS in the positions indexed by I and 1 in the positions
by the complement of I in {1, · · · , n} and Pk({1, · · · , n}) is the set of unordered sets of length k in
{1, · · · , n}.

The subalgebra of H•(OS)⊗· · ·⊗H•(OS) generated by
∑

i∈{1,··· ,n} σ
{i}
S ⊗1{1,··· ,n}\{i} is isomorphic

to C[t]/tn+1, with t in degree 2 and is invariant by G for any G ⊂ Sn. Hence, the category Db(CohG(S×
· · · × S)) is hyper-Kähler if and only if (H•(OS)⊗ · · · ⊗H•(OS))

G is equal to the algebra generated

by
∑

i∈{1,··· ,n} σ
{i}
S ⊗ 1{1,··· ,n}\{i}. That is if and only if :
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∑

I∈Pk({1,··· ,n})

σIS ⊗ 1{1,··· ,n}\I

is the only element (up to scalar) of degree k in H•(OS) ⊗ · · · ⊗H•(OS) which is invariant under
the action of G, for all 1 ≤ k ≤ n. This condition can be rephrased as saying that G acts transitively
on Pk({1 · · · n}) for all 1 ≤ k ≤ n. Such groups have been classified by Beaumont and Peterson
[BP55, LW65] and they are the following :

— G = Sn,
— G = An (the alternating group),
— n = 5 and G = F∗

5,
— n = 6 and G = PGL2(F5),
— n = 9 and G = PGL2(F8),
— n = 9 and G = PGL2(F8)⋊Gal(F8/F2).

In [Abu15], we showed that if X is a smooth projective variety and G a reductive algebraic group
acting linearly on X with finite stabilizers, then there exists a sheaf of algebra B on X//G such that
Db(CohG(X)) ≃ Db(X//G,B). This result applies in the present setting and shows that Db(CohG(S×
· · ·×S)) is a non-commutative crepant resolution of S×· · ·×S/G in the sense of Van den Bergh which
is a hyper-Kähler category of dimension 2n.

◭

If X is a smooth projective holomorphically symplectic variety, then the twisted Hochschild-
Kostant-Rosenberg isomorphism shows that the Betti cohomology ring ofX is isomorphic (as a ring !) to
the Hochschild cohomology ring of Db(X). On the other hand, the Betti cohomology ring of Hilb[n](S)
has been extensively studied and many fascinating connections between hyper-Kähler geometry, re-
presentation theory and number theory have been discovered this way. We refer to the ICM talk of
Göttsche for a nice overview of these connections [G0̈2]. It wouldn’t be surprising that the study of
the Hochschild cohomology rings of the categories appearing in Theorem 4.0.3 yield new connections
between these three topics. In particular, we feel it is worth asking the following questions :

Question 4.0.4 Let G be any of the groups appearing in Theorem 4.0.3. Let BG the sheaf of algebra
on S×· · ·×S/G such that Db(CohG(S×· · ·×S)) ≃ Db(S×· · ·×S/G,BG). Is BG a sheaf of symplectic
algebras in the sense of Ginzburg ?

We feel that this first question shouldn’t be too hard and shall be just a matter of checking that
Ginzburg’s definition [Gin] of symplectic algebras matches with ours when the triangulated category
under study is the derived category of coherent modules over a sheaf of finitely generated algebras.

Question 4.0.5 What are the Hochschild numbers of the hyper-Kähler categories appearing in Theo-
rem 4.0.3 ? Is it possible to compute explicitly the ring structure of the Hochschild cohomology ring of
these examples ?

Following work of Baranovsky [Bar03], Arinkin, Hablicsek and Caldararu proved a version of the
Hochschild Kostant Rosenberg for global finite quotient stacks [ACH]. The compatibility of this isomor-
phism (or a twisted version of it) with cup product on both sides is still conjectural. Nonetheless, one
can be confident that it will be proven soon. Hence, question 4.0.5 basically boils down to computing
the orbifold cohomology of the Deligne-Mumford stack [S×· · ·×S//G] for all G appearing in Theorem
4.0.3.

Question 4.0.6 Does the sum
∑

n≥0 e(D
b(CohAn(S×· · ·×S)))zn have special modularity properties ?

Question 4.0.7 Is the graded vector space
⊕

n≥0HH
•(Db(CohAn(S × · · · × S))) a module for some

(twisted) Heisenberg algebras ?
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In the last two questions, e(Db(CohAn(S × · · · × S) is the Euler number (that is the alternating
sum of Hochschild numbers) of Db(CohAn(S×· · ·×S)) and HH•(T ) is the Hochschild cohomology of
T . If An is replaced by Sn, the answer to Questions 4.0.6 and 4.0.7 is known to be ”yes”. Furthermore,
it is known that hyper-Kähler geometry plays an important role in the proof of these results in the Sn

case [G0̈2].

5 Non-commutative relative compactified Prymian

In this section, we study in details a categorical strongly crepant resolution of a singular compac-
tified Prymian. This singular compactified Prymian first appeared in the work of Markushevich and
Tikhomirov [MT07]. We recall briefly their construction in the first subsection.

5.1 Markushevich-Tikhomirov’s construction

Let X be a Del Pezzo surface of degree 2 obtained as a double cover of P2 branched in a generic
quartic curve B0, µ : X −→ P2 the double cover map, B = µ−1(B0) the ramification curve. Let ∆0

be a generic curve from the linear system | − 2KX , ρ : S −→ X the double cover branched in ∆0 and
∆ = ρ−1(∆0). Then S is a K3 surface, and H = ρ∗(−KX) is a degree 4 ample divisor on S.

We will denote by ι (resp. τ) the Galois involution of the double cover µ (resp. ρ). The plane
quartic B0 has 28 bitangent lines m1, · · · ,m28 and µ−1(mi) is the union of two rational curves li ∪ l

′
i

meeting in 2 points. The 56 curves li, l
′
i are all the lines on X, that is, curves of degree 1 with respect

to −KX . Further, the curves Ci = ρ−1(li), C
′
i = ρ−1(l′i) are conics on S, that is, curves of degree 2

with respect to H. Each pair Ci, C
′
i meets in 4 points, thus forming a reducible curve of arithmetic

genus 3 belonging to the linear system |H|. We assume furthermore that B0 and ∆0 are sufficiently
generic. This implies that each line li meets only one of the two lines lj , l

′
j for j 6= i. The following is

lemma 1.1 of [MT07] :

Lemma 5.1.1 The linear system |H| is very ample and embeds S as a quartic surface into P3. Every
curve in |H| is reduced and the only reducible members of |H| are the 28 curves Ci+C ′

i for i = 1, . . . , 28.

Let m ≥ 1 and let M 2m be the moduli space of torsion sheaves with Mukai vector (rk = 0, c1 =
H,χ = 2m − 2) which are semi-stable with respect to H. Markushevich and Tikhomirov prove the
following (see proposition 1.2, proposition 2.7 and corollary 2.9 of [MT07]) :

Proposition 5.1.2 The moduli space M 2m is a singular irreducible holomorphically symplectic variety
of dimension 6. It is singular in exactly 28 points corresponding to the strictly semi-stable sheaves
OCi

(m − 1) ⊕ OC′i(m− 1). Around each of these 28 singular points, the moduli space M 2m is locally
analytically equivalent to the contraction of the zero section of ΩP3 → P3.

By varying the polarization, one gets symplectic desingularizations of M 2m which are deformation
equivalent to Hilb3(S). The idea of Markushevich and Tikhomirov is to study the fixed locus of a
specific symplectic involution on M 2m in the hope it may provide a new hyper-Kähler manifold. Let
j be the involution of M 2m defined as :

j : M
2m −→ M

2m

F −→ E xt1(F ,OS((m− 1)H)).

We consider the involution κ = τ ◦ j. The involution κ is symplectic and its fixed locus is made of one
four-dimensional components and 64 zero-dimensional components. The four-dimensional component,
denoted by P2m, is called the relative compactified Prymian of S by Tikhomirov and Markushevich
and they prove the :
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Theorem 5.1.3 (Theorem 3.4 [MT07]) The variety P2m is a singular irreducible holomorphically
symplectic variety of dimension 4. It has exactly 28 singular points corresponding to the sheaves OCi

(m−
1) ⊕ OC′

i
(m − 1). Around each of these 28 singular points, the Prymian P2m is locally analytically

equivalent to C4/{−1, 1}. The topological Euler number of P2m is 268.

Since P2m is locally equivalent to C4/{−1, 1} around its 28 isolated singular points, it has no crepant
resolution. As a consequence, it is not possible to construct a hyper-Kähler manifold starting from
P2m. The singular variety P2m is nevertheless studied in details by Markushevich and Tikhomirov
and they prove, among other things, that it is birational to the quotient of Hilb2(S) by a symplectic
involution.

5.2 Strongly crepant resolution of the relative compactified Prymian of Markushevich-

Tikhomirov

In this section, we construct a strongly crepant categorical resolution of P. We study the Hochschild
numbers and we show that they satisfy the Salamon’s relation for Betti numbers of hyper-Kähler
manifolds [Sal96]. We finally prove that this category can’t be a deformation of the derived category of
a projective variety, giving a counter-example to a conjecture of Kuznetsov (conjecture 5.8 of [Kuz16]).

Theorem 5.2.1 The singular variety P2m admits a categorical strongly crepant resolution (denoted
AP2m) which is a hyper-Kähler category of dimension 4. The Hochschild cohomology numbers of AP2m

are :
— hh0 = hh8 = 1,
— hh2 = hh6 = 16,
— hh4 = 206.

Proof :
◮

Let P̃2m be the blow-up of P2m along its 28 singular points. We denote by E1, · · · , E28 are the
exceptional divisors of the blow-up along the 28. Example 7.1 of [Kuz08b] shows that there exists a
semi-orthogonal decomposition :

Db(P̃2m) = 〈AP2m ,OE1
,OE1

(1), · · · ,OE28
,OE28

(1)〉 ,

where AP2m is a categorical strongly crepant resolution of P2m. Markushevich and Tikhomirov prove
that P2m is a singular irreducible holmorphically symplectic variety, so that ωP2m = OP2m and
H•(OP2m) = C[t]/t3, with t homogeneous of degree 2. By Theorem 3.2.4, we deduce that the category

AP2m is hyper-Kähler of dimension 4 (with respect to its embedding in Db(P̃2m)).

The Hodge numbers of P̃2m are computed by Grégoire Menet in the appendix and they are :

1
0 0

1 42 1
0 0 0 0

1 14 176 14 1

By the Hochschild-Kostant-Rosenberg isomorphism, we have :

HHk(D
b(P̃2m)) =

⊕

p−q=k

Hp(P̃2m,Ωq
P̃2m

).

We deduce that the Hochschild homology numbers of Db(P̃2m) are :
— hh0 = 262
— hh2 = hh−2 = 16
— hh4 = hh−4 = 1,
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and the others are zero. By corollary 7.5 of [Kuz09], we have a graded direct sum decomposition :

HH•(D
b(P̃2m)) = HH•(AP2m)⊕ C56.

We deduce that the Hochschild homology numbers of Db(AP2m) are :
— hh0 = 206
— hh2 = hh−2 = 16
— hh4 = hh−4 = 1,

and the others are zero. But the Serre functor of the category AP2m is the shift by 4, hence we get an
isomorphism of graded vector spaces HH•(AP2m) ≃ HH•−4(AP2m). We then find that the Hochschild
cohomology numbers of AP2m are as stated. ◭

We notice that the Hochschild cohomology numbers of AP2m satisfy the following relation :

4∑

j=1

(−1)j(3j2 − 2)hh4−j = hh4.

This relation is the four dimensional case of the Salamon relation for Betti numbers of hyper-Kähler
manifolds [Sal96]. It is very tempting to believe that this relation holds for all hyper-Kähler categories.

Conjecture 5.2.2 Let T be a full admissible subcategory of the derived category of a smooth projective
variety. Assume that T is hyper-Käler of dimension 2r. Then, we have the relation :

2r∑

j=1

(−1)j(3j2 − r).hh2r−j =
r

2
hh2r.

Of course it would be interesting to first prove that this formula holds for the Hochschild numbers
of the hyper-Kähler categories exhibited in Theorem 4.0.3. Note that the construction of relative
compactified Prymians has been recently generalized to for arbitrary Enriques surfaces in [AFS15]. It
is very likely that their construction will provide new examples of hyper-Kähler categories and that
the Hochschild cohomology numbers of these categories will satisfy conjecture 5.2.2.

We close this section with a discussion of a conjecture made by Kuznetsov in [Kuz16] :

Conjecture 5.2.3 ([Kuz16], conjecture 5.8) Let X be a smooth projective variety of dimension n
and A ⊂ Db(X) be a full admissible subcategory which is Calabi-Yau of dimension n. Then, there
exists a birational morphism X −→ X ′ such that A ≃ Db(X ′).

We will prove that this conjecture is far from being true :

Proposition 5.2.4 The category AP2m is not equivalent to the derived category of any projective
variety. In fact, a small deformation of AP2m is never equivalent to the derived category of a projective
variety.

The deformation theory we use here is the one developed in section 3 of this paper.
Proof :
◮

Let D be a deformation of AP2m . This is the data of a smooth connected algebraic variety B and
a smooth projective morphism p : X −→ B such that :

— X0 = P̃2m,
— The category D is full admissible in Db(X ) and it is B-linear with the property that E0 :=

E ⊗OX ×BX
OX0×X0

∈ Db(X0 × X0) is the kernel of the projection Db(X0) → AP2m , where

E ∈ Db(X ×B X ) is the kernel representing the projection functor Db(X ) → D .

As in section 3, for any b ∈ B, we denote by Db the full admissible subcategory of Db(Xb) whose
projection functor is given by the kernel E ⊗OX ×BX

OXb×Xb
. Since OX0

∈ AP2m and C(x0) ∈ AP2m ,
for generic x0 ∈ X0, we know by lemmas 3.3.5 and 3.3.6 that there exists an open subset 0 ∈ U ⊂ B
such that :
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— for all b ∈ U , we have OXb
∈ Db,

— for all b ∈ U , we have C(xb) ∈ Db, for generic xb ∈ Xb.
Furthermore, up to shrinking U , proposition 3.3.7 shows that for all b ∈ U , the category Db is

hyper-Kähler of dimension 4 (with respect to its embedding in Db(Xb)).

Assume that there exists b0 ∈ B such that Db0 ≃ Db(Y ), for some Y projective. We immediately
see that Y is smooth projective of dimension 4 with trivial canonical bundle. By hypothesis, the
homological unit of Db0 with respect to its embedding in Db(Xb0) is C[t]/t3. Since OXb0

∈ Db0 , we
have :

H•(OX0
) ≃ C[t]/t3,

with t in degree 2. By Theorem 3.1.3, we have H•(OY ) ≃ C[t]/t3, with t in degree 2. By proposition
3.2.3, we deduce that Y is hyper-Kähler of dimension 4. Theorem 3.3.4 and Theorem 5.2.1 imply that
the Hochschild numbers of Y are :

— hh0 = 206
— hh2 = hh−2 = 16
— hh4 = hh−4 = 1.

But Y being holomorphically symplectic, the Hochschild-Kostant-Rosenberg isomorphism implies that
the Betti numbers of Y are :

— b0 = b8 = 1
— b2 = b6 = 16
— b4 = 206.

This is a contradiction. Indeed, it is proved in [Gua01] that the second Betti number of a hyper-Kähler
fourfold is either less than 8 or equal to 23. This concludes the proof that a small deformation of AP2m

can not be equivalent to the derived category of a projective variety. ◭

If one assumes that the deformation of AP2m is Calabi-Yau of dimension 4, contains OX and the
structure sheaf of a generic point, then one has a stronger statement than proposition 5.2.4 :

Proposition 5.2.5 Let D be a deformation of AP2m inside Db(X ) over B, for some p : X −→ B
smooth projective. Assume that OXb

∈ Db, that C(xb) ∈ Db, for generic xb ∈ Xb and that Db is Calabi-
Yau of dimension 4, for all b ∈ B. Then, for all b ∈ B, the category Db is never equivalent to the
derived category of a projective variety.

Proof :

◮ Assume that there exists b0 ∈ B such that Db ≃ Db(Y ), where Y is projective. By hypothesis,
this immediately implies that Y is smooth projective of dimension 4 with trivial canonical bundle. By
proposition 3.3.7, the set of b ∈ B such that Db is hyper-Kähler of dimension 4 (with respect to its
embedding in Db(Xb)) is open (and non empty).

Hence, up to shrinking B, one can assume that for all b 6= b0, the category Db0 is hyper-Kähler of
dimension 4 (with respect to its embedding in Db(Xb0). Since Db0 is Calabi-Yau of dimension 4 and
contains OXb0

, we can apply proposition 3.3.10 and we find that Db0 is hyper-Kähler of dimension 4

(with respect to its embedding in Db(Xb0)). One finishes the proof exactly as in the proof of proposition
5.2.4 above.

◭

Of course, in view of conjecture 3.3.8, one would expect that the hypotheses OXb
∈ Db, C(xb) ∈ Db

for generic xb ∈ Xb, and Db CY-4, for all b ∈ B, are superfluous in the statement of proposition
5.2.5. If this expectation is correct, then any deformation of AP2m would never be equivalent to
the derived category of a projective variety. In particular, this would imply that the moduli space of
hyper-Kähler categories of dimension 4 (if such an object exists) contains a component which is purely
non-commutative !
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A Hodge numbers of a resolution of the Markushevich–Tikhomirov

relative compactified Prymian

by Grégoire Menet

Let P0 be the Markushevitch–Tikhomirov variety defined in [2]. By Corollary 5.7 of [2], P0 is a
projective irreducible symplectic V-manifold of dimension 4 whose singularities are 28 points of analytic

type (C4/ {±1} , 0). These singularities can be solved with one blow-up. Let r : P̃0 → P0 be such a

blow-up with D1, ...,D28 the exceptional divisors. We want to calculate the Hodge numbers of P̃0. We
will proceed as follows ; first, we will calculate the Hodge numbers of P0. Then, we will deduce the

Hodge numbers of P̃0 using the following lemma that can be found in [4, Section 2.5].

Lemma A.0.1 The pullback r∗ : H i(X,P0) → H i(X, P̃0) is a morphism of Hodge structure.

The reader non-familiar with the Hodge structure for a Kähler V-manifolds can also read [1, Section
1]. Let’s calculate the Hodge numbers of P0.

Lemma A.0.2 The Hodge diamond of P0 is :

1

0 0

1 14 1

0 0 0 0

1 14 148 14 1.

0 0 0 0

1 14 1

0 0

1

Proof :
◮

By Paragraph 6.3 of [1], for a projective irreducible symplectic V-manifold of dimension four, we
have : h0,0 = h2,0 = h4,0 = 1 ; h3,0 = h1,0 = 0 ; h1,1 = h3,1. Hence, it only remains to calculate the
three Hodge numbers h1,1, h2,1 and h2,2.

By Proposition 3.5 of [3], we have :

b2(P) = 16, b3(P
0) = 0 and b4(P

0) = 178.

Since we know that h2,0(P0) = 1, we have h1,1(P0) = 14. Since b3(P
0) = 0, we have h2,1(P0) = 0.

And since h4,0(P0) = 1 and h3,1(P0) = 14, we have h2,2(P0) = 148. ◭

Now, we state the Hodge numbers of P̃0.

Proposition A.0.3 The Hodge diamond of P̃0 is :

1

0 0

1 42 1

0 0 0 0

1 14 176 14 1.

0 0 0 0

1 42 1

0 0

1
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Proof :

◮ Let U = P0 r SingP0 = P̃0 r
⋃28
i=1Di. We consider the following exact sequence that we call

Ek :

Hk−1(U,C ) // Hk(P̃0, U,C )
g

// Hk(P̃0,C ) // Hk(U,C ) // Hk+1(P̃0, U,C ). (4)

We recall from Lemma 1.6 of [1] that the restriction map :

Hk(P0,C ) ≃ Hk(U,C ) (5)

is an isomorphism for all 0 ≤ k ≤ 6. Moreover, by Thom’s isomorphism :

Hk(P̃0, U,C ) ≃
28⊕

i=1

Hk−2(Di,C ), (6)

for all k. Furthermore, the map g can be identified with the push-forward j∗ :
⊕28

i=1H
k−2(Di,C ) →

Hk(P̃0,C ), where j : ∪28
i=1Di →֒ P̃0 is the inclusion.

Now, we are ready to calculate the Hodge numbers. First, the blow-up does not change the funda-

mental group, so b1(P̃0) = 0. Applying (5) and (6) to the exact sequence E2, we obtain :

H1(P0,C ) = 0
⊕28

i=1H
0(Di,C )

j∗
))SS

SSS
S

H2(P0,C )
r∗
vvmm
mm
m

⊕28
i=1H

1(Di,C ) = 0

H1(U,C ) // H2(P̃0, U,C )
g

// H2(P̃0,C ) // H2(U,C ) // H3(P̃0, U,C ).

So, it provides an isomorphism :

(r∗, j∗) : H
2(P0,C )⊕

(
28⊕

i=1

H0(Di,C )

)
→ H2(P̃0,C ).

We know that the cohomology classes of analytics subsets are of type (p,p) (see for example Theorem
11.31 of [5]). So by Lemma A.0.1 and A.0.2 :

h2,0(P̃0) = h2,0(P0) = 1 and h1,1(P̃0) = h1,1(P0) + 28 = 42.

Applying the same method to the exact sequences E3 and E4, we obtain :

H3(P̃0,C ) = 0,

and the isomorphism :

(r∗, j∗) : H
4(P0,C )⊕

(
28⊕

i=1

H2(Di,C )

)
→ H4(P̃0,C ).

From Theorem 11.31 of [5], Lemma A.0.1 and A.0.2, it follows :

h4,0(P̃0) = h4,0(P0) = 1, h3,1(P̃0) = h3,1(P0) = 14 and h2,2(P̃0) = h2,2(P0) + 28 = 176.

It finishes the proof. ◭
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